Appendix 1

The mathematical problem
Consider a fish swimming upriver against the current. Insert a coordinate axis along the river with positive direction against the current. Assume that the water in the river flows with a constant velocity vc > 0. Consider a water particle which at time t = 0 is at the origin of the coordinate axis. The position
 of the particle as a function of time is then given by sc(t) = -tvc. Let sg be the position1 of the fish, and let s = sg – sc be the distance of the fish to the water particle. Assume that the fish is swimming upriver at all times, i.e
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Here vg and v are functions of t. Thus, we assume that 
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 for all t.

We assume that the amount of energy that the fish is using per time unit is described by a power function given by
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where, 
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 are constants which satisfy the inequalities 
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Our assumptions on 
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so that the fish always provides a positive effect, which is increasing with the speed of the fish.

The amount of energy used per unit of distance travelled upriver is given by
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We seek to determine a constant value v > vc of the function v which minimizes this value. Put 
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. Our task is then to minimize
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Existence and uniqueness of a solution
Case 
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 is a positive constant, and h is minimized by choosing u as large as possible.

Case 
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where 
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We see that F(0) < 0, and that 
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Since
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and both 
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have the same sign as x (except for u = 0, where 
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We now subdivide the case under consideration in two.

Case 
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(according to (1)), F is negative. h is thereby strictly decreasing. Therefore, h is minimized by choosing u as large as possible.

Case 
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Properties of the solution

In the remaining part of the text we consider the case 
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 and x > 1. In this case we have found that there exists a unique u minimizing 
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The last condition shows that the minimizing u depends only on 
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We find that
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Since 
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For certain values of 
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THEOREM
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PROOF. The first equation follows easily from (2). The other two are based on the observation that g(u,x) is a second or third degree polynomial in (1 + u) when x equals 2 or 3 respectively. Hence 
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can be solved explicitly for u in these cases. In the case x = 3 use Cardano’s formula. 

Differentiation of equation (2) with respect to 
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and thereby
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Thus u is strictly increasing with 
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Differentiation of equation (2) with respect to x gives that
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and thereby
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To investigate the sign of this, we notice that
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The formula for 
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Thus, when 
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� the signed distance to the origin of the coordinate axis.
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