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We fitted a power law model ( ) ~P x x   to the cumulative distributions of 

resting periods, and a stretched exponential model ( ) ~ xP x e
  to the cumulative 

distributions of active periods. In order to evaluate the goodness of fit for our fitting 

models quantitatively, we calculated the following four statistical measures (for the 

cumulative distributions shown in Figs. 3–4):  

 

1. Residual: 2( ( ) ( ))
N

data fiti
Err P i P i  ,  

2. Chi-square statistic: 2 2( ( ) ( )) ( ( ) ( ))
N

data fit data fiti
P i P i P i P i     ,  

3. Akaike information criterion: 2 2AIC Ł k   ,  

4. Schwarz’s Bayesian information criterion: 2 ln( )BIC Ł k N   ,  

 

where dataP  and fitP  denote the observed and approximated cumulative distributions, 

respectively. i  represents the index number of a histogram bin, N  is data number for 

fitting and Ł  and k  are the likelihood function and the number of parameters in the 

model.  

In addition, we also provided the goodness of fit for alternative fitting models 

(Barabasi’s model and power-law distribution with exponential cut-off).  

 

1. Comparison of goodness of fit for Fig. 3: Dependency on 

threshold values 

In Fig. 3, we show the influence of the choice of threshold values for cumulative 

distributions of resting and active periods. Then, we provide the invariance of the results 

with the threshold values used. Tables S1–S2 provide the goodness of fit for rescaled 

cumulative distributions of both resting and active periods respectively, with different 

threshold values ranging from 0.6 to 1.6 times the overall non-zero activity counts in 

both adolescents and wild-type mice. In this case, the fitting range is set to 

[0 2 20]a a     for resting periods and [1 25]a a    for active periods.  

All measures of goodness of fit mark the minimum values around threshold value 

1 0  .  

 

2. Comparison of goodness of fit for Fig. 4: Dependency on 

data resolutions 

We also examined the influence of data resolutions, and show the results in Fig 4. 

Tables S3–S4 provide the goodness of fit of the cumulative distributions for different 



data resolutions. We set the fitting range to [0 2 20]a a     for resting periods and 

[1 25]a a    for active periods. In the longer scales, the distributions of resting periods 

gradually converge to the overall slope when increasing the data resolution. Indeed, all 

measures of goodness of fit show decreasing tendencies with increasing data 

resolutions.  

 

3. Comparison of goodness of fit for other fitting models 

Other than the stretched exponential used in the main text and evaluated above, there 

can be multiple other choices of formal model fitted to the active period distributions. 

We therefore also attempted to fit (1) an integrated (cumulative) distribution such as 

that obtained analytically for the waiting-time probability distribution in the Barabasi’s 

model with two tasks, Eq. 8 in [Vazquez A. et al, Phys. Rev. Lett. 95, 248701 2005], 

and (2) a power-law distribution with an exponential cut-off, such as that obtained 

analytically for the waiting-time probability distribution with two priority levels [Abate 

J. et al, Queuing Systems 25, 173-233, 1997].  

 

1. Stretched exponential: ( ) xP x e
  

 

2. Cumulative power-law with exponential cut-off : ( ) t

x
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3. Cumulative model (Vazquez’ Eq. 8) : 
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These alternative models also fit active period distributions quite well (Tables S5–S7 

and Fig. S1), although the fit for the stretched exponential form is slightly better in 

terms of four measures.  


