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1 Introduction

The model, adapted from that proposed by [4, 5], is a stochastic, spatially structured, individ-
ual based model with discrete time simulation. Infection spreads within households, within
schools and workplaces, by random contacts in the population (see also [6, 8, 7]). The models
consists of (A) a sociodemographic model, in which individuals are co-located in households,
schools, workplaces on the basis of census and commuting data, (B) a local epidemiological
model describing the temporal evolution of the flu epidemic in the country considered (Italy)
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and (C) a global SEIR model describing the worldwide temporal evolution of the flu epidemic
and allowing for the estimate of the number of imported cases by international flights.

2 Sociodemographic model

2.1 Population data

Population data of Italy (56,995,744 individuals) are obtained from census data [10] (382,534
census sections) and are hierarchically grouped by municipalities (8,101), provinces (103)
and regions (20), according to the administrative borders of the study area (see Fig. S1a).
Number of individuals by municipality ranges from 33 to 2,546,804 (Rome municipality) with
an average of 7,035 and a standard deviation of 39,326 (see Fig. S2a). Only 42 municipalities
contain more than 100,000 individuals (6 of which contain more than 500,000), while 1,971
contain less than 1,000 individuals (37 of which less than 100). By approximating the districts
as circles, the mean radius of the municipalities is 3.02 km (SD=1.64 km), the mean radius of
the provinces is 13.01 km (SD=3.56 km), the mean radius of the regions is 67.01 km (SD=18.32
km).

2.2 Households

Census data on age structure and household type and size [11] are used to randomly assign
age and co-locate individuals in households. These data refer to the analysis of 19,227 house-
holds, corresponding to approximately 0.1% of the Italian households. Nine different types
of household are considered: they are described in Table S1. Their size is reported in Table
S2. The age of the household head for some of the different household types considered is
reported in Table S3 (couples with children), Table S4 (couples without children) and Table
S5 (singles without children). Note that the description “without children”applies either to
families without children or with children which do not live with the parents anymore. The
following additional constraints are also considered when assigning individuals to households:

C1 any household must contain at least 1 adult (age ≥ 18);

C2 the age of any child is between 43 and 18 years less than that of the youngest parent;

C3 spouses age differs by no more than 15 years.

The algorithm employed for generating individuals, assigning age an co-locating individuals
in households is described in Fig. S3. A comparison between real and simulated age structure
is reported in Fig. S2b. A comparison between real and simulated data on household size
is reported in Fig. S2c (note that these data are not directly employed in the algorithm
developed for generating individuals and co-locating them in households).

2.3 Employment

Demographic, school [12, 13] and industry [9] census data are used for randomly assigning an
employment category to each individual on the basis of age. The Italian population at 2001
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is structured as follows: 20,559,595 workers, 11,360,556 students and 25,084,274 unemployed
or retired. Students are deterministically assigned to a specific school type (6 types, from
nursery school to university) on the basis of age. Workers are assigned to a random workplace
type (7 types, depending on the workplace size, i.e., the number of employees, see Fig. S2d).
Students are grouped in classes, whose average size depends on the type. Specifically, the
average size has been set to 20 in nursery schools, 40 in kindergartens, 19 in primary school,
21 in middle and high schools, 34 in universities [12, 13]; we also consider close colleagues
of workers: in small workplaces (less than 10 employees) all workers are close colleagues. In
bigger workplaces employees are clustered in groups of size 5.

2.4 Commuting

Commuting destination are assigned in order to fit available commuting data [10]. In par-
ticular, the proportion of individuals with age ≥ 15 working or attending school in the same
municipality of residence (N) is available for each municipality, together with the number of
individuals traveling either to a municipality of the same province they live in (P), or outside
the province but within the same region (R), or outside the region (S).

As a starting point, for determining the probability of commuting from municipality i to
municipality j we employed a gravity model of the form [14]

Cij = θ
pτi

i p
τj

j

dρ
ij

, (1)

where pi and pj are the number of individuals living in municipality i and j respectively and
dij is the distance between the two municipalities. θ is a proportionality constant, τi and τj
tune the dependence of dispersal on donor and recipient sizes and ρ tunes the dependence on
the distance.

The proportion of commuters (individuals traveling outside the municipality of residence
for work or school) in Italy, however, varies significantly by province. In particular, the
proportion of commuters drastically increases from South to North of Italy (see Fig. S4).
The proportion of commuters varies from 15% to 60% and this variability does not depend
on the size of the municipalities or on the distance among municipalities. Indeed, it depends
on social factors and thus can not be explained by model (1). Thus, we considered model (1)
with an additional constraint forcing the model to produce in each province the proportion of
commuters as resulting from the available data.

The set of model parameters was optimized by searching for the set giving rise to a sim-
ulated population of commuters matching the available data on the number of individuals
commuting within the province, the region or outside the region of residence. We obtained
the following estimates: τi = 0.28, τj = 0.66 and ρ = 2.95 which are very close to those ob-
tained in [14] for modeling travel destinations in the US at short distances (less than 119 km).
Fig. S5a-c shows how well the model fit the available commuting data. Fig. S5d shows the
resulting distance to work/school distribution. Schools and workplaces are finally generated
to fit data on number and size and commuting data.
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3 Epidemiological model

3.1 The individual based model

For each individual i we define:

• Hi as the set of the ni individuals belonging to the same household of the individual i;

• Lj
i as the set of themj

i individuals attending the same school (index j = 1, . . . , 6 identifies
school type) or sharing the same workplace (index j = 7, . . . , 13 identifies workplace
type) of the individual i;

Any susceptible individual i, at any time t of the simulation has a probability pi = 1− e−λi∆t

of becoming infected, where ∆t = 0.25 days is the time-step of the simulation and λi is the
instantaneous risk of infection. The latter is the sum of the risks coming from the three source
of infections:

1. contacts with infectious members of the household (first term in Eq. 2),

2. contacts with infectious individuals working in the same workplace or attending the
same school (second term in Eq. 2),

3. random contacts in the population (third term in Eq. 2).

λi =
∑

k|Hk=Hi

Ikβhκ(t− τk) [1 + Ck(ω − 1)]

nα
i

+
∑

j,k|Lj

k
=Lj

i

Ik[1 +Ak(ξ − 1)]βj
pκ(t− τk)

[

1 +Ck(ωψ
j
p(t− τk)− 1)

]

mj
i − c

j
i

+

N
∑

k=1

Ikβrκ(t− τk)f(dik) [1 + Ck(ω − 1)]
∑N

k=1 f(dik)
(2)

The terms in Eq. (2) are defined as follows:

• N is the total population;

• Ik = 1 if individual k is infected, 0 otherwise;

• βh/day is the within–household transmission coefficient, β j
p are the within–school/workplace

transmission coefficients and βr is the transmission coefficient for random contacts.

• τi is the time individual i became infectious and κ(T ) is a lognormal function describ-
ing infectiousness over time. Estimates of incubation period (1.48 ± 0.47 days) and
infectiousness period (

∫ ∞
0 Tκ(T )dT ) lead to a generation time Tg = 2.6 days (as in [4]);

• Ck = 1 for symptomatic cases (we suppose the 50% of cases to be symptomatic), 0
otherwise. Since ω = 2, the infectiousness of symptomatic cases doubles the one of
asymptomatic cases (as in [4]);
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• α = 0.8 scales the household transmission rates with household size (as in [4]);

• ψj
p(T ) is a function accounting for induced absenteeism and it is defined as follows: if
T > 0.25 (the minimum time for recognizing the infection) ψj

p(T ) is set to 0.1 for j = 1, 2,
0.2 for j = 3, 4, 0.25 for j = 5 and 0.5 for j = 6, . . . , 13, 1 otherwise;

• Ak = 1 if individual k is a close contact of individual i, 0 otherwise. The parameter ξ > 1
is used to weight the transmission of close contacts with respect to generic contacts. cj

i

is the number of close contacts of individual i (see Tab. 1 in the main text).

The second term of Eq. (2) accounts for the transmission of infection in schools and workplaces
due to both generic and close contacts. Let βj

pc be the transmission coefficient among close
contacts. In order to make the contribution to the force of infection of the cj

i close contacts ξ

times that of the mj
i − c

j
i generic contacts, the following relation must hold:

βj
pc

cji
= ξ

βj
p

mj
i − c

j
i

.

It follows that βj
pc = ξ

cj
i

mj
i
−cj

i

βj
p . Consequently, the contribution to the force of infection in

schools and workplaces due to both generic and close contacts is given by

∑

j,k|F j

k
=F j

i

Ikξ
cj
i

mj
i−cj

i

βj
pκ(t− τk)

[

1 + Ck(ωψ
j
p(t− τk)− 1)

]

cji

+
∑

j,k|Gj

k
=Gj

i

Ikβ
j
pκ(t− τk)

[

1 + Ck(ωψ
j
p(t− τk)− 1)

]

mj
i − c

j
i

=
∑

j,k|Lj

k
=Lj

i

Ik[1 +Ak(ξ − 1)]βj
pκ(t− τk)

[

1 + Ck(ωψ
j
p(t− τk)− 1)

]

mj
i − c

j
i

where

- F j
i is the set of the cji close contacts of the individual i attending the same school/workplace;

- Gj
i = Lj

i \ F
j
i is the set of the mj

i − c
j
i generic contacts of the individual i attending the

same school/workplace.

We set ξ = 2.
The third term of Eq. (2) accounts for the transmission due to random contacts with

infectious individuals in the population. As in [4, 5], we assume that an infectious individual
k can infect any susceptible individual i in the population and we assume that transmission
depends explicitly on the distance between infectious individual k and susceptible individual
i. The probability that an infectious individual k infects individual i is weighted by the kernel
function

f(dik) =
1

1 + (dik/a)b
(3)
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which is a decreasing function of the distance dik between the two individuals. Parameters
a and b where optimized by employing Eq. (3) for generating a synthetic population of
commuters such that the resulting distance to work/school distribution matches that obtained
by employing the gravity model (1) (see Fig. S5d). The estimated parameters are a = 3.8km
and b = 2.32.

3.2 Estimating R0R0R0

A practical method for computing the basic reproductive number of an IBM is to consider the
first generation index G0, which is the average number of secondary infections generated by
the first infectious individual and to approximate R0 by averaging G0 over many simulations.
However, the resulting estimate of R0 is systematically lower than that obtained by employing
Eq. (4) or (5) and the difference increases with R0 [6, 5, 2].

Another problem is that the infectiousness in the IBM is not constant over time and thus
classical methods for estimating R0 for SEIR models [3],

R0 = 1 +
r2 + r(ω + γ)

ωγ
, (4)

or SIR models
R0 = 1 +

r

γ
, (5)

where 1/ω is the the incubation period, 1/γ is the infectious period and r is the initial
per-capita rate of growth that can be estimated as the regression coefficient of a linear model
fitted to the logarithm of the cumulative number of cases y(t), that is by assuming y(t) ≈ ert,
are not suitable.

In [5], a method for computing the reproductive number for discrete-time simulations with
infectiousness not constant over time has been proposed:

R0 =
1

e−r∆t

∞
∑

m=0

κ(m∆t)e−rm∆t

(6)

where κ(T ) is the infectiousness T days after infection, normalized to be a probability
density function and ∆t is the time step of the simulation.

For estimating the basic reproductive number R0 of the simulation model we employed Eq.
(6). More in detail, we initialized simulations with 100 infected individuals at time 0 (and no
imported cases) and estimated the rate of growth of the cumulative number of cases when it
stabilizes (see Fig. S6). R0 where estimated by applying Eq. (6) and by averaging over many
simulations.

As in [5], we found that a good approximation (with R0 approximately proportional to
the real time growth rate r) of Eq. (6) is given by

R0 = 1 + rTe , (7)

with Te = 3.2 days that is slightly larger than the generation time of the model Tg = 2.6 days,
though the estimates tend to differ in the severe scenario.
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3.3 Number of imported cases

To estimate the number of imported cases by international flights we employed different global
deterministic SEIR models (depending on the basic reproductive number R0) describing the
worldwide temporal evolution of the epidemics.

More in detail, the number of imported cases at each step of the simulation is obtained
by sampling a Poisson distribution with parameter ∆tE(t)a/N , where E(t) is the number
of exposed individuals obtained with the SEIR model at time t, N is the world population,
a ≈ 70, 000/day is the total number of persons arriving daily in Italy and ∆t is the time step
of the simulation (see Fig. S7).

To parametrize the global SEIR models, we fixed the latent period to 1/ω = 1.5 days (as
in the IBM) and than we set the infectious period to 1/γ = 1.5 days in order to give approx-
imatively the same real time growth rate as in the IBM, namely r =0.12/day, r =0.21/day
and r =0.3/day for R0 = 1.4, R0 = 1.7 and R0 = 2 respectively.

By assuming that only 50% of cases are symptomatic, the cumulative clinical attack rate
of the SEIR model for R0 = 2 is 39.8%, the peak day is at 80 days and the clinical peak attack
rate is 2.6%. For R0 = 1.7, the cumulative clinical attack rate is 34.5% with peak day at 106
days and clinical peak attack rate 1.7%. For R0 = 1.4, the cumulative clinical attack rate is
25.5%, with peak day at 170 days and clinical peak attack rate 0.7%.

This choice does not account for possible international travel restriction measures and of
course results can change drastically by changing the length of the infectious period.

In [5], a unique SEIR model was employed for seeding the simulations of all scenarios. The
R0 was set to 1.6 with latent period of 1/ω =1.5 days and infectious period adjusted to give
a real time growth rate of r =0.2/day (as in the IBM). Also, in our model we import a lower
number of cases since the number of travelers is 25 millions for Italy, 92 millions for GB and
73 millions for US, even though we employ a global SEIR model with the same R0 as in the
IBM.

Figure S8 shows the stochastic variability in timing of initial case in the baseline scenario
and when travel restrictions measures are considered.

As regards the seeding municipalities, we decided to locate infected individuals arriving
daily in the Italian international airports in the municipalities hosting the airports themselves.
In fact, detailed information on the final destinations of travelers or spatial data on the number
of tourists are not available to us. The choice adopted in [5] for GB and UK to locate travelers
proportionally to population density is not suitable for Italy since sea and mountain touristic
localities are, in general, low population municipalities. Moreover, data on travelers by sea
and land were not available to us and were not considered in the model.

3.4 Comparison with past pandemics

Since daily or weekly historical data on past pandemics in Italy are not available, we compared
simulation results with data on weekly deaths in GB during the first two waves of the 1918-19
Spanish pandemic. Of course, the results of this comparison have to be considered cautiously.
In fact, the sociodemography of today Italy and 1918-19 GB are quite different, especially
as regards the size of households. Moreover, while we considered our baseline model for this
comparison, individual behavior could have been modified during the curse of the pandemic
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(for instance, workplaces and school closure could have be considered when incidence exceeded
a certain threshold). However this is the same procedure considered in [5]. First of all, by
assuming an incubation period 1/ω of 1.5 days, we employed Eq. (4) (with 1/γ = 1.5 days as
in the global SEIR model for cases importation), Eq. (5) (with 1/γ = Tg = 2.6 days) and Eq.
(7) for estimating R0 during the first two waves of the 1918-19 pandemic in GB.

For the first peak we obtained estimates of R0=2.1, R0=1.9 and R0=1.8 for the three
methods respectively. For the second peak we obtained R0=1.7, R0=1.6 and R0=1.5. The
estimates comply with those obtained in [5] where the last two methods were employed. Fig.
S9 shows the comparison between the observed data and the output of two baseline simulations
with R0 = 1.9 and R0 = 1.6 for the first and second wave respectively. The poor fit observed
in the decay phase of the second wave my be due to military demobilization at the end of the
first world war. Fig. S10 compares clinical attack rates by age for a simulation with R0 = 1.6
with the data reported in [7] on the 1918-19 pandemic. These results also support our choice
of incubation period and infectious period for parameterizing the individual based model.

4 Software

The software implementing the algorithm described in this work is available at the URL
http://mpa.fbk.eu/static/merler/ibmflu. It is available as a gzipped archive containing
the source code in C. It contains a README file with information for compiling it (under
Unix/Linux machines) and a short description of program parameters, input and output files.
It requires GNU Scientific Library (http://www.gnu.org/software/gsl) and Sqlite (http:
//www.sqlite.org/).
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