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The data 

Datasets from eight different endemic sites of sub-Saharan Africa were analysed. The 

clinical patterns and transmission intensity characteristics have been described previously 

for five sites [1]. Here we have included a further three sites where data were assembled 

using similar methodologies. The datasets consist of retrospectively assembled data on 

paediatric admissions presenting from pre-defined catchment populations with clearly 

defined addresses to selected hospitals within 20km of their home. Diagnosis was 

supported by detailed clinical examination and parasitology. Children were recorded as 

having severe malaria where the primary diagnosis for admission to hospital was 

recorded at discharge from the hospital or within death certificates if the child did not 

survive. For modelling purposes we defined all children hospitalized with malaria as a 

primary diagnosis as clinical malaria, although we accept that these might include some 

patients admitted merely for observation and would overlap with a group of ambulatory 

patients not admitted to hospital. Surveillance periods included complete years and 

ranged from one year in Tanzania to five years for Kilifi, Kenya.  The information 

regarding hospital admissions was discriminated in months for the first year of life, and 

in years up to the 10th birthday. The purposive selection of catchment areas proximal to 

the hospital minimized as far as possible variations in the rates of malaria admission 

attributable to physical access and utilization between settings. Furthermore, the selection 

criteria based on residence enabled the attribution of temporally and spatially 

coincidental estimates of malaria endemicity, as defined by community-based childhood 

parasite prevalence rates covering the spectrum of classical hypoendemic to holoendemic 

transmission typical of much of sub-Saharan Africa.  
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Table S1. Characteristics of study data sources 

 Bakau, 
The Gambia1 

Foni Kansala, 
The Gambia2 

Sukuta, 
The Gambia1 

Mponda, 
Malawi3 

Kilifi, 
Kenya1 

Chonyi, 
Kenya1 

Siaya, 
Kenya1 

Ifakara, 
Tanzania4 

Surveillance period 
 

1.91-12.94 
(4 years) 

1.94-12.95 
(2 years) 

 

1.92-12.94 
(4 years) 

1.95-12.95 
(1 year) 

11.90-10.95 
(5 years) 

6.92-5.96 
(4 years) 

1.92-12.92 
& 

11.94-10.96 
(3 years) 

5.91-4.92 
(1 year) 

Total severe malaria 
admissions 

 
108 193 605 356 1358 766 719 144 

All cause malaria 
rate 0-9 years p.a. 

 

3.89 
(108/27792) 

31.49 
(193/6129) 

25.78 
(605/23468) 

22.30 
(356/15966) 

25.88 
(1363/52675) 

16.66 
(766/45967) 

17.95 
(719/40064) 

 

19.51 
(144/7380) 

Median age months 
(IQR) of malaria 

admissions 0-9 years 
 

41.5 
(23.5, 75.5) 

 
 

36 
(24, 60) 

 

36 
(22, 60) 

 

21 
(11, 31) 

 

24 
(12, 40) 

11 
(6, 21) 

11 
(5, 23) 

 

10 
(6, 18) 

 

Parasite ratio in 
childhood and 
approximate 

endemicity class 

2% 
Hypoendemic1 

31% 
Mesoendemic5 

37% 
Mesoendemic1 

40% 
Mesoendemic6 

49% 
Meso-

hyperendemic1 

74% 
Hyper-

holoendemic1 

83% 
Holoendemic1 

90% 
Holoendemic7 

 
 
1. Data derived directly from [1]. 
 
2. Data collected in 1997 in collaboration with Dr Gisela Schneider from the WEC clinic at Sibanor, which had maintained a detailed clinical and 
laboratory surveillance of all pediatric admissions since 1990. Only patients presenting from Foni Kansala district were recorded in the 
retrospective review of admission data. 
 
3. Data were re-assembled from a series reported in [2] and raw data were provided by Dr Terrie Taylor. Data were only included from a 
circumscribed address area representing the southern part of Mponda Terretorial Area of Mangochi District 
 
4. Data collected during an earlier study [3] were re-analyzed to ensure that the clinical admission data and the parasitological data were spatially 
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coincidental (Idete and Lumeno wards) 
 
5. Parasite prevalence data derived from [4] and (Umberto D’Alessandro, personal communication). 
 
6. Parasite prevalence data derived from [5]. 
 
7. Parasite prevalence data obtained from [6] and (Tom Smith, personal communication). 
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Fitting method 

The model was calibrated through the estimation of parameters both extrinsic and 

intrinsic to the human host. Forces of infection and rates of recovery and waning 

immunity were estimated by confronting the output prevalence of clinical malaria, I1, 

with data from different countries in sub-Saharan Africa. As a first step to fit the model to 

the data we aggregated the data in such a way as to be comparable to the model output. 

As such, we calculated disease rates per age class by dividing the number of admissions 

by the number of individuals in the respective class. We then proceed to use a least 

squares minimisation method within the Berkeley Madonna v8.3.6© software to fit the 

model output of the I1 variable to the data, affected by a hospitalisation rate, η. The 

method minimises the sums of the squares of residuals in I1, which is the vertical 

difference between the model prediction and the data output at each age. We run the age-

structured model and fit it to all equally weighted datasets simultaneously. The results of 

this process are displayed in Figure S1, while the fitted parameter values obtained for 

each region and for the global spectrum of endemicities are shown in the main text. 

We used unweighted non-linear regression, which assumes a Gaussian distribution of the 

scatter and the same standard deviation for all points, although the datasets available are 

biased towards the points from one year of age onwards. The finer stratification of the 

first year of age results in smaller sample sizes, accounting for the larger error bars 

displayed in Figure S1, which suggests the use of a weighted non-linear regression [7].  

We performed an alternative approach, deferring from using weighted least squares in 

favor of implementing a log likelihood maximization which assumes Poissonian 

regression. This method results in a better adjustment to the higher age classes where the 
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sample size is larger in detriment of the fit to the first year of age. 

 

Figure S1. The age profiles of the proportion of hospital admissions at each age class for each region 

are represented by the squares, with the correspondent error bars depicted. The output of the model I1 

variable that minimizes the root mean square of residuals, when the model is confronted with the data 

is shown by the curves. 
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Irrespective of the methods we obtain 21 ττ > , which is the key to the results presented 

here. Indeed, under Poissonian regression the estimates are 24.51 =τ  and 66.02 =τ , 

translating into a ratio of 8, while with the Gaussian the estimates were are 12.141 =τ  

and 23.22 =τ , corresponding to a ratio of 6. 

The values for the initial guesses are chosen at random a priori from within the interval 

considered biologically plausible for each parameter. After a first fit, the resulting 

estimates are considered as an average of the first and second guesses. These values are 

then used as guesses for a new fit and are subsequently fine-tuned in an iterative manner. 

The ideal fit is the one that results in the computed least sum of square of residuals, and is 

a compromise between using a range of plausible parameter values and optimising the 

minimum least squares method result. The description of the age-dependent force of 

infection involves the three parameters, λ0, k, and c, of which only the first is free to vary 

among locations. All the other parameters are constrained to have the same value for 

every location. We kept η equal to 1 in a first analysis. The value for this parameter is 

always fixed for a given fit, while all other parameters are being estimated.  

We note that the fitting outcome is particularly sensitive to the value of τ1, and less so to 

τ2. More strict estimates of τ2 would require the availability of data corresponding to the 

prevalence of mild infections (I2) as well. By subsuming the vast range of clinical 

outcomes into two classes, the adopted model structure contributes to a high sensitivity of 

the results to the rate of waning immunity, α. Only the development of more constrained 

models, where a detailed system of acquired immunity is implemented, can limit these 

sensitivities. The trends presented here, however, can serve as a useful guide through the 

process of formulating and exploring tactic models and hypothesising mechanisms of 
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immunity in more detail. 

 

Sensitivity analysis 

To infer the importance of the non-estimated parameters over the model outcome, we 

performed multiple fits using different values for parameter η. Parameter η reflects the 

rate of under-reporting of clinical cases or percentage of clinical infections that account 

for hospitalisations. Tables S2 and S3 show the global and region-specific estimated 

parameters values, respectively, for a range of values of η. 

 

 

Table S2. Estimated global parameters and 95% confidence intervals for different 

values of η. 

η 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

τ1 
14.72 

(14.49-14.95) 

12.57 

(12.34-12.79) 

10.69 

(10.46-10.92) 

9.41 

(9.18-9.64) 

8.28 

(8.05-8.51) 

6.16 

(5.93-6.39) 

4.22 

(3.99-4.45) 

2.15 

(1.92-2.38) 

0.52 

(0.27-0.77) 

τ2 
1,05 

(0.83-1.28) 

1.10 

(0.88-1.33) 

1.37 

(1.14-1.60) 

1.00 

(0.78-1.23) 

0.70 

(0.47-0.93) 

0.63 

(0.40-0.85) 

0.48 

(0.25-0.70) 

0.43 

(0.20-0.65) 

0.29 

(0.04-0.54) 

α 2.33 

(2.11-2.56) 

2.07 

(1.84-2.30) 

1.83 

(1.60-2.06) 

2.30 

(2.08-2.53) 

3.21 

(2.98-3.44) 

2.98 

(2.76-3.21) 

2.97 

(2.75-3.20) 

2.06 

(1.83-2.29) 

0.69 

(0.44-0.93) 

k 0.09 

(-0.14-0.32) 

0.11 

(-0.12-0.34) 

0.09 

(-0.14-0.32) 

0.09 

(-0.14-0.32) 

0.11 

(-0.12-0.33) 

0.11 

(-0.12-0.34) 

0.13 

(-0.10-0.36) 

0.16 

(-0.07-0.39) 

0.63 

(0.39-0.88) 

c 0.99 

(0.77-1.22) 

1.00 

(0.77-1.22) 

1.00 

(0.77-1.22) 

1.00 

(0.77-1.22) 

0.99 

(0.77-1.22) 

0.99 

(0.76-1.22) 

0.98 

(0.75-1.21) 

0.97 

(0.74-1.20) 

1.00 

(0.75-1.25) 
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Table S3. Estimated region-specific parameters and 95% confidence intervals for 

different values of η. 

 

 η = 0.9 η = 0.8 η =0.7 

 λ0 β R0 λ0 β R0 λ0 β R0 

Bakau 0.18 

(-0.05-0.40) 
9.20 0.62 

0.13 

(-0.10-0.36) 
8.86 0.70 

0.17 

(-0.06-0.39) 
7.84 0.73 

Foni Kansala 8.73 

(8.50-8.95) 
7.45 0.50 

6.55 

(6.33-6.78) 
6.26 0.50 

8.24 

(8.02-8.47) 
7.45 0.70 

Sukuta 11.66 

(11.43-11.89) 
9.36 0.64 

9.27 

(9.05-9.50) 
8.08 0.64 

11.08 

(10.85-11.30) 
9.31 0.87 

Mponda 26.64 

(26.42-26.87) 
19.46 1.32 

20.71 

(20.49-20.94) 
16.08 1.28 

25.43 

(25.21-25.66) 
19.03 1.78 

Kilifi 
34.99 

(34.76-35.22) 
25.14 1.71 

28.06 

(27.84-28.29) 
21.30 1.69 

33.08 

(32.85-33.30) 
24.25 2.26 

Chonyi 
89.19 

(88.96-89.42) 
61.82 4.19 

71.00 

(70.77-71.23) 
51.92 4.12 

86.06 

(85.83-86.29) 
60.63 5.66 

Ifakara 
94.72 

(94.49-94.95) 
65.97 4.48 

71.89 

(71.66-72.12) 
52.55 4.18 

85.13 

(84.90-85.35) 
59.99 5.60 

Siaya 
135.08 

(134.85-135.30) 
93.59 6.35 

106.72 

(106.49-106.95) 
77.42 6.15 

123.95 

(123.72-124.18) 
86.68 8.09 

 η = 0.6 η = 0.5 η =0.4 

 λ0  β R0 λ0 β R0 λ0  β R0 

Bakau 0.15 

(-0.08-0.38) 
7.11 0.75 

0.15 

(-0.08-0.38) 
6.31 0.76 

0.13 

(-0.10-0.36) 
5.03 0.81 

Foni Kansala 8.42 

(8.19-8.65) 
7.15 0.76 

7.51 

(7.29-7.74) 
6.44 0.78 

6.68 

(6.45-6.91) 
5.78 0.94 

Sukuta 11.53 

(11.30-11.76) 
9.18 0.97 

10.29 

(10.07-10.52) 
8.31 1.00 

9.18 

(8.95-9.41) 
7.48 1.21 

Mponda 26.46 

(26.23-26.68) 
19.23 2.04 

23.41 

(23.18-23.64) 
17.46 2.10 

21.16 

(20.94-21.39) 
15.92 2.58 

Kilifi 
35.24 

(35.02-35.47) 
25.21 2.67 

31.48 

(31.25-31.71) 
23.15 2.79 

28.57 

(28.34-28.80) 
21.19 3.43 

Chonyi 
94.23 

(94.00-94.45) 
65.44 6.94 

87.89 

(87.66-88.12) 
63.07 7.60 

81.01 

(80.78-81.23) 
58.65 9.49 

Ifakara 
93.48 

(93.25-93.71) 
64.93 6.88 

85.32 

(85.09-85.55) 
61.25 7.38 

77.68 

(77.46-77.91) 
56.28 9.11 

Siaya 
139.11 

(138.88-139.33) 
96.09 10.19 

128.53 

(128.30-128.76) 
91.87 11.07 

118.99 

(118.76-119.22) 
85.82 13.89 
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 η = 0.3 η = 0.2 η =0.1 

 λ0  β R0 λ0  β R0 λ0  β R0 

Bakau 0.12 

(-0.10-0.36) 
3.60 0.85 

0.06 

(-0.17-0.28) 
2.06 0.95 

0.03 

(-0.22-0.27) 
0.55 1.02 

Foni 

Kansala 
5.53 

(5.30-5.75) 
4.86 1.15 

4.17 

(3.94-4.40) 
3.82 1.76 

2.03 

(1.78-2.28) 
2.06 3.79 

Sukuta 7.60 

(7.37-7.83) 
6.30 1.49 

5.85 

(5.63-6.08) 
5.04 2.33 

3.53 

(3.28-3.78) 
3.29 6.07 

Mponda 17.90 

(17.67-18.13) 
13.72 3.24 

14.55 

(14.32-14.77) 
11.53 5.32 

12.71 

(12.46-12.95) 
10.93 20.16 

Kilifi 
24.35 

(24.12-24.58) 
18.42 4.34 

20.39 

(20.17-20.62) 
15.94 7.35 

25.40 

(25.16-25.65) 
21.52 39.69 

Chonyi 
73.28 

(73.05-73.50) 
54.21 12.78 

73.80 

(73.57-74.03) 
56.33 25.98 

150.40 

(150.16-150.65) 
125.82 232.04 

Ifakara 
67.97 

(67.74-68.20) 
50.33 11.87 

61.75 

(61.52-61.97) 
47.21 21.78 

69.00 

(68.75-69.25) 
57.89 106.77 

Siaya 
107.22 

(106.99-107.45) 
79.06 18.65 

103.61 

(103.39-103.84) 
78.89 36.39 

195.74 

(195.50-195.99) 
163.65 301.82 

 

 

The forces of infection estimated for each region, allowed us to test the effect of a 

parameter φ (relative infectivity of I2 with respect to I1) in equilibrium conditions. For 

this analysis we solved the model system of equations (described in the Methods of the 

main text) analytically taking into account φ embedded into the transmission coefficient: 

( )21 II φβ +Λ= . For  η = 1 we obtain the equilibrium results depicted in Figure S2, 

given that  ( )µτβ += 10R . It is evident from Figure S2, and as discussed in the main 

text, that I2 type infections are extremely important for supporting high levels of 

prevalence of clinical malaria at very low levels of transmission. Decreasing the 

infectiousness of this type of infection below 1 (by decreasing φ) will reduce the potential 

endemic equilibrium, while increasing φ enhances the width of the bistable region.  
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Figure S2. (A) Equilibrium curves for different values of φ (0.5, 1, and 2, from right to left). The 

full part of the curves represents the stable solutions at equilibrium, whereas the dashed part 

refers to unstable equilibria. (B) This diagram shows the values of φ for which bistability exists 

and how this parameter influences the value of R0 for 2 regions. The black full line represents the 

minimum values of R0 for which an endemic equilibrium solution exists, for each value of φ. The 

red and blue full lines refer to the values of R0 estimated for Foni Kansala, and Kilifi, 

respectively, according to the value of φ. Circles highlight the values of φ corresponding to the 

curves in (A). 
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Simulating interventions 

In a bistable system, convergence to either a malaria-free regime or sustained 

transmission resulting in high levels of clinical disease is determined by the initial 

conditions, and can be manipulated by specially designed interventions. We simulated 

several scenarios of practical interest to regions of mesoendemic transmission, such as 

Foni Kansala. For illustration purposes we show the results when η is equal to unity in 

Figure S3. 

Figure S3(A,C) is concerned with intervention design showing that eradication is 

sustainable, but may be just missed, stressing the importance of tailoring the invested 

effort to the epidemiological context. We simulate antimalarial treatment of all infected 

individuals, regardless of severity of disease, by bringing the recovery rate, τ2, up to the 

same value as τ1. We chose to implement the extreme intervention of treating 

uncomplicated malaria as effectively as clinical malaria. Any therapeutic intervention 

will be less powerful than that simulated here but the qualitative behaviour will be 

maintained. Here, the intervention is implemented for a fixed time period and then halted.  

Maintaining the effort for 10 months and 10 days (dashed line) leads to sustained 

eradication, while intervening for 10 months and 9 days (full line) gives rise to 

resurgence and the original endemic equilibrium is re-established within a few years. 

Figure S3(B,D) deals with conditions for malaria to invade a malaria-free population. We 

simulate the introduction of individuals with uncomplicated malaria into a naive 

population. The grey area, with upper bound 0.017, represents the proportion of 

infections that can be introduced (maintaining the original rates τ1 and τ2) without 

establishing an endemic situation. An initial condition within this area proceeds to the 
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disease free equilibrium (dashed lines) while an initial prevalence above the grey area 

evolves to a endemic equilibrium sustaining mesoendemic transmission (full lines). 

A B

C D

A B

C D

 

Figure S3. Threshold conditions for sustained control in areas of mesoendemic 

transmission. (A,C) simulation of an intervention that brings τ2 up to the same value as τ1. The 

intervention starts at the end of the first year and is maintained for 10 months and 9 days (full 

line) or 10 months and 10 days (dashed line).  The grey area marks the time of intervention 

required for convergence to a disease free situation (sustained control). (B,D) simulation of the 

introduction of individuals with uncomplicated malaria into a completely susceptible population. 

The grey area, with upper bound 0.017, represents the proportion of infections that can be 

introduced (and cleared) without establishing sustained transmission (dashed lines). An initial 

prevalence above the grey area evolves to an endemic equilibrium (full lines). The simulations 

were performed with the parameters values estimated for Foni Kansala. 

 

The duration of intervention necessary for eradication to be achieved as well as the 

proportion of new infections necessary for resurgence are greatly dependent on the level 
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of endemicity of the unstable solution for a given R0 (depicted as a dashed line in Fig.2B 

of the main text). This endemicity level represents the threshold above which the system 

will converge to an endemic steady state, and below which the disease free situation is 

reached at equilibrium. The initial conditions are crucial in determining to which attractor 

the system will converge. 

 

References 

1. Snow RW. et al. (1997) Relation between severe malaria morbidity in children and 

level of Plasmodium falciparum transmission in Africa. Lancet. 349:1650-4. 

2. Slutsker L, Taylor TE, Wirima J, Steketee RW (1994) In-hospital morbidity and 

mortality due to malaria associated severe anaemia in two areas of Malawi with different 

patterns of malaria infection. Trans R Soc Trop Med Hyg. 88:548-551.  

3. Snow RW et al. (1994) Severe childhood malaria in two areas of markedly different 

falciparum malaria transmission in East Africa. Acta Tropica. 57:289-300.  

4. Thomson MC et al. (1994) Malaria prevalence is inversely related to vector density in 

The Gambia, West Africa. Trans R Soc Trop Med Hyg. 88:638-43. 

5. Yeudall F, Gibson RS, Kayira C, Umar E (2002) Efficacy of a multi-micronutrient 

dietary intervention based on hemoglobin, hair zinc concentrations, and selected 

functional outcomes in rural Malawian children. European Journal of Clinical Nutrition. 

56:1176-85. 

6. Smith T et al. (1993) Absence of seasonal variation in malaria parasitaemia in an area 

of intense seasonal transmission. Acta Tropica. 54:55-72. 

7. Neter J, Kutner MH, Nachtsheim CJ, Wasserman, W (1996) Applied Linear 



 15

Statistical Models. Chicago: Irwin/McGraw-Hill. 1408p. 

   

   

 

 


