Text S1: Steady state equations and relevant parameters for $c A M P-P K A, M A P K$ and TOR pathways.

Steady state equations for upstream regulation of cAMP and MAPK pathways by Mep2.
(1) Fractional activation of Mep2 by ammonium sulphate (Figure S1, Module1)

$$
f \text { Mep } 2=\left(\frac{A m^{n H 8}}{K^{n H 8}+A m^{n H 8}}\right) \times\left(\frac{K_{9}{ }^{n H 9}}{K_{9}{ }^{n H 9}+A m^{n H 9}}\right)
$$

(2) Ras2 activation module involving cdc25p and Iral (Figure S1, Module 2)

$$
\frac{k 1 \times \operatorname{Ras} 2 G T P \times I r a 1}{K m 1}=\frac{k 2 \times \operatorname{Ras} 2 G D P \times C d c 25}{K m 2}
$$

Activated Mep2 function to destabilize Ira1 by inactivating Gpb1/2, thereby reduces the active Ira1 concentration. Here, we assume that the total concentration of Ira1 is affected with activation of Mep2, which is given by Ira1t $=\mathrm{fMep} 2 \times$ Ira1max.
(3) Gpa2 regulation by Mep2 (Figure S1, Module 3)
$\boldsymbol{k} 3 \times \boldsymbol{G} \boldsymbol{\alpha} \boldsymbol{\beta} \gamma \times \boldsymbol{R} \mathbf{L}=\boldsymbol{k} 4 \times \boldsymbol{G} \boldsymbol{\alpha} \boldsymbol{G T P} \times \boldsymbol{R g s} 2$
$\mathbf{k} 4 \times \boldsymbol{G} \boldsymbol{\alpha} \boldsymbol{G T P} \times \mathbf{R g s} 2=\mathbf{k} 5 \times \boldsymbol{G} \boldsymbol{\alpha} \boldsymbol{G} \mathbf{D P} \times \boldsymbol{G} \boldsymbol{\beta} \gamma$
These equations represent the regulation of GPCR by binding of ligand to the receptor. Here, $\mathrm{G} \alpha \beta \gamma$ represents Gpa2-Gpb1/2 complex, G α GTP represents Gpa2GTP, G $\beta \gamma$ represents $\mathrm{Gpb} 1 / 2$ and $\mathrm{G} \alpha \mathrm{GDP}$ represents Gpa2GDP. RL represents the receptor-ligand complex. Here, RL represents the Mep2 activated by ammonium sulphate.

Steady state equations relevant to cAMP and MAPK pathways (Figure S1, Module 4) were taken from our previous work [1].

Reaction description

Flo8 activation by Tpk2

$$
\frac{k 11}{K m 11}[F l o 8][T p k 2]=\frac{k 22}{K m 22}[F l o 8 p][E 2]
$$

Pde1p activation

$$
\frac{k 13}{K m 13}[P d e 1][T p k 2]=\frac{k 14}{K m 14}[P d e 1 p][E 14]
$$

cAMP rate balance

$$
\begin{aligned}
& k 16\left[A d c_{-} a\right] \\
& =\frac{k 14}{K m 14}[P d e 2][c A M P]+\frac{k 15}{K m 15}[P d e 1 p][c A M P]
\end{aligned}
$$

Cdc25 activation
$\frac{k 24}{K m 24}[C d c 25][K s s 1 p]=\frac{k 25}{K m 25}[C d c 25 p][E 25]$
Dig1/2 inactivation

$$
\frac{k 26}{K m 26}[\operatorname{Dig1} 12][K s s 1 p]=\frac{k 27}{K m 27}[\operatorname{Dig} 1 / 2 p][E 27]
$$

Ste12Tec1 activation

$$
\frac{k 28}{K m 28}[\text { Ste } 12 \text { Tec } 1][\text { Kss } 1 p]=\frac{k 29}{K m 29}[\text { Ste } 12 p \text { Tec } 1 p][E 29]
$$

Ste12Tec1_Dig1/2_kss1 complex
phosphorylation by Ste7pp (MAPK
activation by MAPKK)

Ste7 (MAPKK) activation by Ste20
(МАРККК)

$$
\begin{aligned}
& \frac{k 31}{\text { Km31 }}[\text { Ste12Tec1_Dig1/2_Kss1 }][\text { Ste } 7 \text { pp }] \\
& =\frac{k 32}{K m 32}[\text { Ste12Tec1_Dig1/2_Kss1p }][E 32]
\end{aligned}
$$

Ste7p (MPKK) activation by Ste20 (MAPKKK) $\quad \frac{k 36}{K m 36}\left[\right.$ Ste $11 p_{-}$Ste 50$][S t e 7]=\frac{k 37}{\operatorname{Km37}}[$ Ste $7 p][E 37]$

Ste11 (MAPKKK) activation by Ste20 complex
(МАРКККК)

$$
\begin{aligned}
& \frac{k 38}{K m 38}\left[\text { Ste } 20 _C d c 42 G T P_{-} \text {Bmh1/2][Ste1 } 1_{-} \text {Ste } 50\right] \\
& =\frac{k 39}{K m 39}\left[\text { Ste } 11 p_{-} \text {Ste } 50\right][E 39]
\end{aligned}
$$

Cdc42 activation by Cdc24p

$$
\begin{aligned}
& \frac{k 43}{K m 43}[C d c 42 G D P][C d c 24 p] \\
& =\frac{k 44}{K m 44}[C d c 42 G T P][\text { Rgal }]
\end{aligned}
$$

> Nomenclature: If a protein is ' A ' and another protein is ' B ' then ' $\mathrm{A}_{-} \mathrm{B}$ ' represents the complex between 'A' and ' B '. Also, 'Ap' represents the activated protein (phosphorylated). Ei represents a phosphatase.
> Relevant parameters (Rate constants, Michaelis Menten constant, total concentrations and disassociation constants) for the module cAMP and MAPK (Module 4) were taken from Sengupta et al 2007 [1].

Steady state equations for TOR mediated control of G1 cyclins and Msn2/4 translocation (Figure S2)

(1) Fractional activation of TOR by ammonium sulfate

$$
f T O R=\left(\frac{A m^{n H 4}}{K_{4}^{n H 4}+A m^{n H 4}}\right)
$$

(2) Translational control of Cln3 by TOR

$$
C \ln 3=C \ln 3_{\max }\left(\frac{T O R^{n H 14}}{{K_{14}}^{n H 14}+T O R^{n H 14}}\right)
$$

(3) Inactivation of Phosphatase Pph21/22 by TOR
(4) Control of nuclear translocation of Msn2/4 by Pph21/22 and Tpk

$$
\operatorname{Msn} 2 / 4_{c y c} \times \underbrace{K_{\text {imp }} \times\left(\frac{K_{10}{ }^{n H 10}}{T p k^{n H 10}+K_{10}{ }^{n H 10}}\right)}_{\text {term } 1}=\operatorname{Msn} 2 / 4_{n u c} \times \underbrace{K_{\exp } \times\left(\frac{K_{11}{ }^{n H 11}}{K_{11}^{n H 11}+P p h 21 / 22^{n H 11}}\right) \times\left(\frac{T p k^{n H 12}}{K_{12}^{n H 12}+T p k^{n H 12}}\right)}_{\text {term } 2}
$$

(5) Sbf activation and inactivation by Cln3 and Clb2, respectively

$$
\begin{aligned}
& V a=\boldsymbol{k a s b f} \times \boldsymbol{C} \ln 3 \\
& \boldsymbol{V i}=\boldsymbol{k}_{\text {isbf }}+\boldsymbol{k i} \times \boldsymbol{C l b} 2 \\
& \boldsymbol{k a s b} \boldsymbol{f} \times \boldsymbol{C} \ln 3-\left(\boldsymbol{k}_{\text {isbf }}+\boldsymbol{k i} \times \boldsymbol{C l b} 2\right) \times \boldsymbol{S b} \boldsymbol{f}=0
\end{aligned}
$$

(6) Sbf mediated synthesis and degradation of G1 cyclin Cln 1/2

$$
\boldsymbol{k s} \times \boldsymbol{S b f}-\boldsymbol{k} \operatorname{deg} \times \boldsymbol{C} \ln 1=0
$$

Species Total molar balances

Ras2t	$=$ Ras $2 G T P+\operatorname{Ras} 2 G D P+\operatorname{Ras} 2 G D P_{-} C d c 25 p+$ Ras $2 G T P_{-}$Iral
Irat	$=$ Iral $+($ Ras 2 GTP $)($ Iral $) /$ Kml
$G \alpha t$	$=G \alpha \beta \gamma+G \alpha G T P+G \alpha G D P+$ Adc_G ${ }_{-}$GTP
$G \beta \gamma t$	$=G \beta \gamma+G \alpha \beta \gamma$
Msn $2 t$	$=$ Msn2nuc + Msn2cyc
Adct	$=A d c+A d c_{-} G \alpha G T P+A d c_{-}$Ras2GTP
Flost	$=$ Flos + Flo8p
E2t	$=E 2+F l o 8 p_{-} E 2$
Pdelt	$=$ Pdel + Pdelp-Camp + Pdelp + Pdelp_E12 + Pdel_C
$R_{2} \mathrm{C}_{2} t$	$=2 . R_{2} C_{2}+2 R_{2}(\mathrm{Camp})_{4}$
Pde2t	$=P d e 2=\operatorname{Pde} 2 t /(1+[\mathrm{Camp}] / \mathrm{Km}(2))$
$C t$	$=2 R_{2} C_{2}+C+$ Pdel_C
Ste12tec_t	$=$ Kssl_Dig12_Stel2Tecl + Ksslp_Dig12_Ste12Tecl + Ste12Tecl +
	Ste12Teclp + Ste12Tecl_Ksslp + Ste12pTeclp_E29
Ksslt	$=$ Ksslp_Dig12_Ste12Tecl + Ksslp + Kssl_Dig12_Ste12Tecl + Kssl +
	Stel2Tecl_Ksslp + Ksslp_Dig12_Ste12Tecl_E32 +
	Kssl_Digl2_Ste12Tecl_Ste7p + Ksslp_Dig12 + Cdc25_Kss + Kssfus 3
Dig12t	$=$ Dig12p + Dig12 + Kss1_Dig12_Ste12Tecl + Ksslp_Dig12_Ste12Tec1 +
	Ksslp_Dig12_Ste12Tec1_E32 + Kss1_Dig12_Ste12Tec1_Ste7pp +
	E27_Dig12p + Dig12_Ksslp
Cdc $25 t$	$=\quad$ Cdc25p + Cdc25 + Cdc25_Kss + Cdc25_Fus3 + Cdc25_Kss1p +
	Cdc25p_E10

Fus3t	=	Fus3 + Cdc25_Fus3 + Kssfus3
E35t	$=$	$E 35+(S t e 7 p p)(E 35) / K m(2)$
E37t	$=$	$E 37+(S t e 7 p)(E 37) / K m(4))$
E39t	$=$	$E 39+(S t e 7 p)(E 39) / K m(6))$
Ste7t	$=$	Ste $7+$ Ste $7 p p+$ Ste $7 p$ (intermediate complexes are neglected)
Ste11ste50t	$=$	Ste11ste50 + Stel1pste50
Ste20t	$=$	Ste20_Hl7p + Ste20 + Cdc42p_Ste20_Bmh + Cdc42p_Ste20_Bmh
Hl7pt	$=$	$H l 7 p+S t e 20 _H l 7 p$
Rgalpt	=	Rgalp + Cdc $42 p G T P P_{-}$Rgalp
Cdc42pt	=	Cdc42p_Gtp + Cdc42pGtp_Ste20 + Cdc42p_Ste20_Bmh + Cdc $42 p_{-}$Gdp +
		$C d c 24 p _C d c 42 p G d p+$ Rgalp_Cdc42pGtp

Relevant parameters (Rate constant, Michaelis Menten constant, total concentration and disassociation constant) for TOR pathway and Modules 1, 2 and 3 of Figure S1.

Component Concentrations (nM)

Species	Conc. (nM)	Reference	Species	Conc.(nM)	Reference
Pph21/22	160^{*}	$[4]$	Adc	40	$[2]$
Msn 2	2	$[4]$	Ira	30	$[1]$
Tor 1	15	$[4]$	Sbf	50	$[3]$
Cln 3	50	$[3]$	Rgs 2	50	$[2]$
$\mathrm{Cln} 1 / 2$	50	$[3]$	$\mathrm{G} \beta \alpha$	75	$[4]$
Clb 2	50	$[3]$	Mep2	50	$[4]$
$\mathrm{G} \alpha$	75	$[4]$	Ras2	200	$[2]$

Unknown concentrations were calculated from molecules numbers obtained from Yeast GFP fusion localization database (http://yeastgfp.ucsf.edu) [4]. Molecule numbers were converted into nM by considering a cell volume of 100 fL

* Only 10% of $\operatorname{Pph} 21 / 22$ is actually involved in the TOR signaling [5].

Nomenclature	Value (min^{-1})	Reference	Nomenclature	Value $\left(\right.$ min $\left.^{-1}\right)$	Reference
k1	36	[7]	kasbf	0.38	[3]
k2	12	[7]	ki	8	[3]
k3	0.5	[2]	kisbf	0.8	[3]
k4	4	[2]	ks	0.15	[3]
k5	2.5	[2]	kdeg	0.12	[3]
kimp	1	[assumed]	d] kexp	1	[assumed]
Dissociation constants			Michaelis Menten constants		
Kd	Value (nM)	Reference	Km	Value (nM)	Reference
kd1	10	[6] K	Km1	250	[7]
kd2	2	[2] K	Km2	160	[7]

Hills Coefficient

$\boldsymbol{n H}$	value	Reference	$\boldsymbol{n H}$	value	Reference
$\mathrm{nH1}$	4	$[1]$	nH 9	2	[calculated]
nH 2	0.8	$[1]$	$\mathrm{nH10}$	2	[assumed]

nH3	3-4	[calculated]	nH11	3-4	[calculated]
nH4	0.3	[calculated]	nH12	2	[assumed]
nH5	2-3	[calculated]	nH13	0.9-1.2	[calculated]
nH6	4	[1]	nH14	2	[calculated]
nH7	0.8	[1]			
nH8	1-2	[calculated]			
K0.5	Value (nM)	Reference	K0.5	Value(nM)	Reference
K1	67	[1]	K9	1000*	[calculated]
K2	10	[1]	K10	10	[assumed]
K3	2.5	[calculated]	K11	3	[calculated]
K4	15-30*	[calculated]	K12	10	[assumed]
K5	5	[calculated]	K13	2	[calculated]
K6	14	[1]	K14	7.5	[calculated]
K7	2	[1]			
K	2-16*	[calculated]			

References

1. Sengupta N, Vinod PK, Venkatesh KV (2007) Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression. Biophys Chem 125:59-71.
2. Bhalla US (2002) Use of Kinetikit and GENESIS for modeling signaling pathways, Methods Enzymol. 345: 3-23.
3.. Chen, KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841-3862.
3. Ghaemmaghami S, Huh WK, Bower K, Howson R W, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast Nature. 425: 737741.
4. DiComo CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes \& Dev 10: 1904-1916.
5. Shima F, Yuriko YK, Yanagihara C, Tamada M, Tomoyo O, Kariya K, Kataoka T (1997) Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein, Mol Cell Biol 17: 1057-1064.
6. Steven AH, Broach JR (1997) Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state. J Biol Chem 269: 16541-16548.
