
Asap: A framework for over-representation
statistics for transcription factor binding sites,

supplementary material

1 High-order models

Having both a motif model and a background model we can define the PWM
as the log-ratio between the motif frequency and the corresponding back-
ground frequency across all nucleotides and all positions. Assume that the
motif model is an order m Markov model and the background model is a
Markov chain of order n. The probability of observing a sequence x1, . . . , xL

according to the background model can then be written as:

Pbg(x1, . . . , xL) = q̂(x1, . . . , xn)q(xn+1|x1, . . . , xn)

. . . q(xi|xi−n, . . . , xi−1) . . . q(xL|xL−n, . . . , xL−1)

where q̂(x1, . . . , xn) is the equilibrium probabilities of the Markov chain. We
thus assume that the initial sampling distribution from which we start gen-
erating the sequence is the equilibrium probabilities. The above is the likeli-
hood of the background model. The probability of observing a sequence with
the motif at position i under the motif model and the background model can
then be written as:

q̂(x1, . . . , xn)q(xn+1|x1, . . . , xn) . . . q(xi−1|xi−n−1, . . . , xi−2)

×p1(xi|xi−m, . . . , xi−1) . . . pW (xi+W−1|xi+W−m−1, . . . , xi+W−2)

×q(xi+W |xi+W−n, . . . , xi+W−1) . . . q(xL|xL−1, . . . , xL−1)

where p1 to pW are the position specific nucleotide probabilities. In the gen-
eral formulation we define the scores as the log of the ratio of the conditional
probabilities. The log-likelihood-ratio between the two models is then:

log
p1(xi|xi−m, . . . , xi−1) . . . pW (xi+W−1|xi+W−m−1, . . . , xi+W−2)

q(xi|xi−n, . . . , xi−1) . . . q(xi+W−1|xi+W−n−1, . . . , xi+W−2)
=

1

W−1∑
k=0

log
pk+1(xi+k|xi−m+k, . . . , xi+k−1)

q(xi+k|xi−n+k, . . . , xi+k−1)

Then the general form of a higher-order PWM is essentially the same as the
standard PWM: scores are log ratios of the conditional pattern probabilities
and conditional background probabilities. Here we have ignored any PWM
scoring above threshold within the first n + 1 nucleotides and assume that
that n ≥ m.

2 Speed test

2.1 The datasets used

For the performance tests we had to choose some sequence sets and some
PWMs to run the algorithms on.

2.1.1 The sequences sets

When choosing the sequence set we found it necessary to take into account
that the size of the input DNA and the extend to which the suffixes in the
sequences have common prefixes can have an effect on performance. The
problem was to create a series of tests that would allow us to asses the
isolated effects of sequence size and of common prefix lengths.

In order to asses the influence of size independently, we made a master
file containing all transcriptional start sites in the human genome found in
the DBTSS database; around 31.000 sequences all of length 1201 bases. We
then partitioned these sequences into several sets of files: The first test set
simply consisted of the master file, the second test set consisted of two files
each containing one half of the master file. The third and the fourth test set
consisted of the master file split into 9 and 36 parts, respectively.

The idea was that by taking the average of the running times of all files in
a set we would (to a certain extend) able to assess how changes in sequence
size alone affect the running time.

In order to assess the influence of the lengths of the common prefixes we
created four new test sets consisting of 2, 4, 36 and 72 files, respectively, in
the exact same way as before. Each of the files in these sets were doubled,
though, in the sense that we added an extra copy of all the sequences in
it. In this way we again got four test set with files of the exact same sizes
as before (36MB, 18MB, 4MB and 1MB). But these files had an artificially
increased extend of prefix sharing. Hence, by comparing the running times
of each algorithm on the original partitions and the doubled ones we hoped

2

File size File type Number of files
' 36 MB single 1
' 36 MB double 2
' 18 MB single 2
' 18 MB double 4
' 4 MB single 9
' 4 MB double 18
' 1 MB single 36
' 1 MB double 72

Table 1: An overview of our set of test files. The file type double means that
we added an extra copy of all the sequences from the single file type.

to get an idea of how the different algorithms reacted to increases in prefix
sharing, independently of the file size. It should be noted that we are aware
that our method produces an unrealistically high extend of prefix sharing.
We still think the test has relevance, though. In table 1 there is an overview
of the set of test files we used.

2.1.2 The PWM set

The performance of a search with a PWM is highly dependent on the size and
composition of the sequence set that is searched. It is also dependent on the
contents of the sequence, the length of the PWM and on the threshold chosen.
We therefore chose to look at the average performance of fifty randomly
picked PWMs from the TRANSFAC database. For each of them, we chose a
threshold that gave us around 1 hit per 10,000 bases in the our master file.
In this way we sought to approximate typical queries.

2.1.3 Performance measures

The performance tests were run on a machine equipped with a 2.4 GHz Intel
Pentium 4 processor with 1.5 GB of memory running Linux. We used the
sum of the user and sys times as reported by the Linux time as the running
time measure as opposed to using the real time running time.

2.1.4 Testing different suffix sorting algorithms

We first tested a number of other suffix sorting algorithms, namely copy,
cache, qsufsort, a homemade radix sort and the original ds. All of them

3

File size File type copy cache qsufsort cr ds our ds
' 36 MB single 33.94 46.40 45.13 323.38 22.53 22.55
' 36 MB double T/O T/O 259.46 311.40 418.00 22.72
' 18 MB single 15.27 20.97 20.80 158.70 10.41 10.18
' 18 MB double T/O 477.83 115.10 151.12 114.74 10.08
' 4 MB single 2.47 3.55 4.00 30.57 1.76 1.72
' 4 MB double T/O 29.66 21.03 28.86 8.78 1.72
' 1 MB single 0.38 0.53 0.75 4.41 0.26 0.26
' 1 MB double 67.39 0.98 4.13 4.35 0.87 0.27

Table 2: The results from time testing the 6 different sorting algorithms.
They are average running times measured in seconds. T/O stands for timeout
and means that the sorting took more than ten minutes on one or more file
of the given size and type.

besides the homemade radix sort are C implementations made by Manzini
and are available from his homepage:

http://www.mfn.unipmn.it/~manzini/lightweight/index.html

It should be noted that when compiling copy, cache and qsufsort there was
a single function that all three algorithms used, which gcc warned that it
was not able to inline. Hence the running times of these might have suffered
a bit. The results from running these and our own sorting algorithm can be
seen in table 2.

What can be seen is that ds and our modified version of ds are the fastest
algorithms on all the single files and that our algorithm is the fastest on all the
doubled files. This suggests that the algorithm we use is indeed competitive
to other algorithms available. Especially when the extend of prefix sharing
is very high.

2.2 Testing of the lcp algorithms

Next we tested the naive lcp-algorithm and the lcp-algorithm by Kasai. It
should be noted that we implemented the naive algorithm ourselves, but that
we used an implementation the Kasai-algorithm made by Manzini:

http://www.mfn.unipmn.it/~manzini/lightweight/index.html

The results of the test can be seen in table 3.
As can be seen the naive lcp algorithm is actually at least 3 times as

fast on the single files and at least twice at fast on the double files as the
Kasai-algorithm. Hence on our datasets the naive lcp is preferable.

4

File size File type Naiv Lcp Kasai
' 36 MB single 8.65 28.20
' 36 MB double 10.06 24.20
' 18 MB single 4.17 12.45
' 18 MB double 4.79 10.81
' 4 MB single 0.79 2.58
' 4 MB double 0.95 2.19
' 1 MB single 0.12 0.57
' 1 MB double 0.15 0.51

Table 3: The results from time testing the two different lcp algorithms. The
results are measured in seconds and they are average times.

File size File type Our ESAsearch Naive w. lookahead Searches
' 36 MB single 0.20 2.44 15
' 36 MB double 0.13 2.44 16
' 18 MB single 0.13 1.22 14
' 18 MB double 0.08 1.22 15
' 4 MB single 0.04 0.27 12
' 4 MB double 0.03 0.27 14
' 1 MB single 0.01 0.07 8
' 1 MB double 0.01 0.07 9

Table 4: The results from time testing the two different search algorithms.
The search times are specified as average times measured in seconds.

2.3 The number of searches required

Finally we assessed how many searches that are required for ESAsearch to
be preferable over the naive algorithm with lookahead when taking the ESA
building time into account. We simply ran our two search algorithms on all
the test files in our test file set using the entire PWM set. The results can
be seen in table 4. In the last column in the table the number of searches for
reaching “break-even” is indicated.

What can be seen is that for the bigger files in our data set, around 15
searches are required for the enhanced suffix array to be preferable. For the
smaller files the number is slightly lower. In general about one more search
was required for the double files than for the single files.

5

