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Model structure

The analyses are based on a STRV type epidemic model in which individuals
are classified as susceptible (.5), infected and infectious (I3 and I3), recov-
ered and permanently immune (R), and (partially) protected by antiviral
treatment (V). The dynamics of the basic model is determined by ordinary
differential equations for the numbers in the various classes. To streamline
the analyses we assume initially that (i) births and deaths are not necessar-
ily balanced, and (ii) the force of infection is constant. These two feedback
loops are included at a later stage.

The dynamics of the model is governed by the following set of differential

equations:
% = b(S+L+R+V+DL)—puS+pV—(A+0)S
% = —(p+v)[+AS—(v+a) ]
% = —puR+a(l + 1)
‘Z_‘: — —(ut7)V —pV —A(1— AVEg) + 08
% = —(u+v(1—AVE;) L —alb+X(1—AVEg)V .

In compact matrix notation the dynamics of the model can be written as
ij—’; = Ax ,where x = (5,11, R, V,IQ)T is the population state vector. The
matrix A can be decomposed in a matrix F describing the birth of individ-
uals and a transfer matrix T: A = F + T [1]. Notice that the birth rate is
denoted by b, and that all individuals are born in the susceptible class. The

transfer matrix is given by:



—p—A—0 0 0 P 0
A —uw—v—a 0 0 0
T = 0 « — 0 o
o 0 —pu—v—p—A(1-AVEg) 0
0 0 0 A (1—-AVEg) —a—v (1-AVEy)

(A1)

Prevention

In a stationary population the reproduction number determines whether
the pathogen can invade a population where it is not yet present. It is
well known that the reproduction number is given by the largest eigenvalue
of the (nonnegative) matrix R, the elements of which give the number of
type 1/type 2 infections caused by a single type 1/type 2 infection over the
infectious period of a type 1/type 2 infection [2]. R is given by
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R = ptv+a pty+p+o u+v(1—AVE ) +a p+y+p+o (A2)
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where § and (1 — AVE;) denote the infection rates by type 1 and type

2 infected individuals in a population consisting of susceptibles only, and
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class V' in the pathogen’s absence. A straightforward calculation shows that

denote the fraction of individuals in class S and

the reproduction number is given by

Ro=6< 1 p+v+p | (1-AVEg) (1-AVEy) o )

p+v+ap+y+p+o pw+v(1-AVE;)+a p+v+p+o
(A3)

In the case that the rate of antiviral mortality is small in comparison with
either the background mortality p or the recovery rate «, the infectious
periods of type 1 and type 2 infection are almost equal, and the above

equation can be approximated by

B p+v+p+o(l—AVEg)(1—AVE;)

p+ p+y+p+o
In the case of a perfect antiviral drug (AVEg = 1) (A3) simplifies to
Ro B ptote (A5)

:u+u+au+v+p+a



i.e. the reproduction number is given by the product of the reproduction

B
p+r+to

viduals in the susceptible class in the absence of the pathogen (

) times the fraction of indi-

ptY+p )
pt+y+pto/’

number in a fully susceptible population (

Early control

Simulations of the pathogen dynamics in a finite population are based on a
stochastic counterpart of the deterministic model [3]. Briefly, the population
is characterized by a vector describing the number of individuals in the
various classes. Given a population composition at time ¢ an inter-event
time is drawn from an exponential distribution with parameter given by
the sum of the rates of all possible events. Hence, the parameter of this

distribution is given by

uN +~V +v (1 + (1 —AVE;) L) + 0S + pV
+5(S+ (1 —AVEg)V)(I1 + (1 — AVE;) L) + o (I + I2) .

The mean of the inter-event time is given by the reciprocal of the above
number. Subsequently, a specific event is chosen with probability given by
the relative magnitude of the rate of the event. This procedure is repeated
until there are no infected individuals anymore. In small populations, this
approach is the method of choice.

Here, however, because of the large populations that we would like to handle
the method becomes impractical, and we make use of a discrete time-step
approximation. In the approximation, the number of transitions from S to

V, Cs_y, is given by
Cs_y ~ Bin (S, 1-— e_"At) ,

i.e. the number of transitions from S to V in a fixed time interval At is
binomially distributed with parameter 1 — exp (—oAt) (the probability of
transition of a single individual) and binomial totals S. Other transitions
are handled in a similar manner.

In our simulations we assumed that o = 365 (yr) once antiviral control is
started, implying that a susceptible individual is on antiviral drugs after
one day on average. In all simulations we used a time-step of one hour.
Doubling the time-step gave identical results, indicating that the time-step

was sufficiently small (results not shown).



The critical force of infection
For a fixed force of infection A, the transfer of individuals over the classes is
described by linear ordinary differential equations:

dp

The solution of (A6) is given by p(t) = S ¢ v; e, where )\; are the
eigenvalues of T (which are all distinct), v; are corresponding (right) eigen-
vectors, and ¢; are constants which are determined by the initial conditions.
Hence, with appropriate initial conditions P (t) = _ p; () gives the proba-
bility that an individual is still alive at time ¢. If thle probability to remain
alive is larger when initially in the susceptible rather than in the protected
class it is better not to take antiviral drugs, while taking antiviral drugs is
the rational strategy if the probability to remain alive is larger when initially
in the protected (rather than the susceptible) class. Figure 3 is based on
this approach.

To obtain some analytical insight in the optimal antiviral control strategies
one may argue as follows. If the horizon ¢ is small, the probability that
an individual is alive can be approximated by a Taylor series of P (t) in ¢
around ¢t = 0. Hence, the probability that an individual is alive given that
it was initially in .S or V is given by

1
Ps(t)=1—ut+ 3 (u2 + 1/)\)2 t* 4+ h.o.t.

and

1
Pv(t):1—(u+’y)t+§(u+v)2t2+h.o.t.,

respectively. Dropping higher order terms, equating Pg (¢) and Py (t) and
solving for A = A, shows that
27 (1 1
der — = —=v— ) AT
R — < Yl u) (A7)
In addition to showing the analysis based on the exact solution of (A6),
Figure 3 in the main text also shows the approximation (A7). It appears
that for the default parameters the approximation (A7) works well if the
horizon t is one week or less. If £ is larger than one week, the approximation
(A7) may substantially underestimate the A., and higher order terms are
needed to reliably approximate the critical force of infection.

At equilibrium, insertion of the force of infection (A = “(B+W) in (A7)
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yields an expression for the critical horizon t = ¢, in terms of the model

parameters:

2y (e +p)
p(B—a—pv+y(a+p)(y+2p) —w?

If t < t. for a given set of parameters, it is better not to take antiviral drugs,

t. ~

(A8)

while the reverse is true if ¢t > ..
As an alternative approach, one could focus on maximization of life ex-
pectancy. A straightforward calculation shows that in this case the critical

force of infection is given by

\ oo plptrta) (A9)

S vp—y(pta)’
Intuitively, (A9) can be understood as follows. The probability that an
individual will die by infection is given by the product of the probability
of infection (W/\;) times the probability of death if infected (;7777). The
probability of death by antiviral treatment, on the other hand, is given by

ﬁ. Hence, the probability of death by infection equals the probability of

death by antiviral treatment if ﬁ—uv = #—M Solving this equation
yields (A9).

Late control

In the long run the distribution of the individuals in the various classes
(w = (ws, wr,, wg, wy,wr,)" ) is determined by a right dominant eigenvector
of A or T. To simplify the equations we will assume that antiviral drugs
provide complete protection against infection (AVEg = 1) and omit the
class of type 2 infecteds. A straightforward calculation shows that with this

assumption

1
A

W X Frutyta , (A10)

Gu)(ztutr+a)
v
where z is the dominant eigenvalue of A. The relative frequencies in the
various classes are given by the normalized dominant right eigenvector u =
w/ [w| = (us, ur,, ug, uv)" .
Now we incorporate population regulation into the model. To this end we

assume that the birth parameter b is not a constant but flexibly adjusted to



ensure that total population size remains constant. The differential equation

that describes the evolution of total population size is given by

N
Cil—t:(b—u)N—ny—l/Il.

Notice that if population size is assumed to be constant (z = 0), the birth

rate cannot be constant but should satisfy

Hence, in a population of constant size the birth rate equals to the natural
death rate (u) plus the antiviral prophylaxis and infection-induced mortal-
ity (v and v2). Insertion of uy = % and u;, = £ (using (A10) with
z = 0) in the above equation yields an expression for b in terms of the force
of infection A.

To incorporate the infection feedback loop we let the force of infection de-

pend on the prevalence of infection as follows:
A= B ur, , (Al 1)

where 3 is the transmission rate parameter. Insertion of (All) into (A10)
and solving the resulting equations for u, allows one to obtain an expression

for the prevalence of infection in terms of the parameters of the model:

UHZLO_w(H;)) , (A12)
Bt p B pt+vy+o

unless R < 1 in which case uy, = 0. Explicit expressions for ug, ugr, and uy
are calculated in the same manner.

In the more general case where individuals in the protected class can still
be infected (AVEg < 1), (A11) is replaced by

A=0 [uh + (1 - AVE]) uI2] . (A13)

A procedure similar to the one described above yields a cubic equation for
the force of infection in terms of the model parameters. Solving the equation
yields explicit, though complicated, expressions for the prevalence of type 1
and type 2 infections at equilibrium.

We would like to remark that, from a mathematical point of view, the above
derivation and analysis of the model are not fully rigorous and complete but

based on a number of handwaving arguments. A more rigorous treatment



of epidemic ordinary differential equations models is given in, e.g., [4].
In case of a perfect antiviral drug the mortality incidence at equilibrium D

caused by both infection and antiviral prophylaxis is given by
D= rug, + yuy , (A14)

where uy, and uy are calculated using the procedure described above. In-

sertion of uy, and uy in (Al4) yields

po_plutrvta)(o(pty) + @+ @pty+o) — . (Al5)

op(p+v+a)+ ((p+A)(p+ao)+up)(p+y+p)

If we further insert the explicit equation for the force of infection (using
(A11) and (A12)) in the above equation, we get an expression for D in
terms of the basic parameters of the model. A straightforward but tedious

calculation shows that D is given by

pb—(ptvta))ptytptoptrv+a)(ylpta)—p)

b= B(n+a)(p+y+p)

(A16)
Since all factors in (A16) are positive except for v (1 + «) — pv in the nu-
merator, it follows that D increases with increasing o if v (u + o) — uv > 0.
Otherwise, D decreases with increasing o. This proves equation (2) in the

main text.

The individual versus population perspective

Armed with (A16) we are in the position to determine which antiviral control
rate minimizes excess mortality. In fact, inspection of (A16) shows that if
v < E_’i—au excess mortality is minimal if the pathogen is just unable to
invade. Hence, the optimal antiviral rate is given by the solution of the
equation R =1 (A5), which yields

* p
Tpop = (L + 7+ 1) <m -1/, (A17)
unless v >~ in which case o}, = 0.

To determine the optimal individual control rate we focus on a (vanishingly)
small number of individuals that use a control rate o, in a population where
the (vast) majority of individuals use a control rate o,. Using (A15) we

can calculate excess mortality of the subpopulation of ¢,-individuals in a



population of ¢, individuals. Excess mortality is given by (A15), but with
o replaced with o, and X replaced with A [o,]:

D(0y,00) = plptvta) oy )+ ptAlod) (etyte)

oy (p+v+a)+ (p+Aog]) (k+ ) +pv) (k+v+p)

An expression for the force of infection A [,] in terms of the basic parameters

is obtained by insertion of (A10) and (A11) in the above equation:

D(%%):W(ﬁf (wtvta)pwty+p +ptrvta)loypta) o)
(h+a)(B(p+y+p)+(oy—o2) (p+v+a))

(A18)
Similar calculations allow one to determine excess mortality in case of an
imperfect antiviral drug (results not shown).
In the main text (Figures 5 and 6) we have plotted the local minima of
D(oy,0,) in 0y at oy = 0,. Extrema of (A18) can be found by solving
9D(oy.05) =0 [5]. The calculations yield

Jdo
Yy — %
oy=0z=0%,

gty +p) (v (B—p—a) =By (p+a) —v2p) .

g A19
& (b v+ ) (7 (at ) )
2 *
In generic cases the sign of % determines whether o ;
Yy

Uy:O—;‘nd
minimizes or maximizes (A18)[5]. Notice that o} , corresponds to a Nash

strategy and even an Evolutionarily Stable Strategy if it minimizes (A18).
Numerical inspections indicate that o7 , minimizes (A18) if equation (2) in
the main text holds. If equation (2) does not hold it is best not to take

antiviral drugs (o}, = 0).
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