

Text S2 – Modifications to the Travel Matrix to Account for Multiple Legs of Travel
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To properly account for a passenger who is taking a two-leg trip from city 
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We account similarly for travelers who arrive in a given city after a three-leg journey. A passenger traveling from city 
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Now let 
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 be the probability that a person from city 
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We calculated the elements of 
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Using a sample of U.S. travel itineraries, we fit the following model for the single-leg travel probabilities from each city 
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 for large hubs. Because the proportion of U.S. passengers traveling three or more legs to reach their destinations is less than 0.03, we set 
[image: image86.wmf]02

.

0

,

3

=

i

p

.  Finally, we set 
[image: image87.wmf]i

i

i

p

p

p

,

3

,

1

,

2

1

-

-

=

, and calculated the elements of the matrix 
[image: image88.wmf]D

 as described above.

Figure S1.  Screenshot of the Global Epidemic Model Interface.  A user can select one of three visualization screens:  a world map view, time series plots, or numeric tables for each of the cities. Before running the model, one can choose to produce stochastic or deterministic runs and choose the types of intervention. Each spot on the map corresponds to a metropolitan area. Clicking on a spot will display the city name and a snapshot of the city disease status. Arrows link each infected city with its initial source of infection.
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