
Mathematical Details S1:

The emergence of HIV transmitted resistance in Botswana:

“When will the WHO detection threshold be exceeded?”

Raffaele Vardavas and Sally Blower

Here we present technical details that describes mathematical methodologies and analytical derivations

used for our results presented in the main text and parameter estimates. In section 1 we present our

mathematical model which describes the dynamics of the emergence of acquired and transmitted drug-

resistant HIV in a population. This is followed by a discussion of the parameters used in the model. We

formulate the ordinary differential equations (ODEs) describing the mean-field population dynamics and

describe the initial conditions for the model. In section 2 we formulate the dynamics of the drug-resistant

population using a Markov chain equation and we discuss the approximations required for this formulation

to produce acceptably accurate dynamics. We then show how this can be used to obtain expressions for the

evolution of the mean, variance and skewness of the cumulative transmitted resistance.
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1 The Deterministic model

1.1 The mean-field dynamics

In Fig.1 we show the flow diagram of the compartmental Markov chain model that we used to describe the

dynamics of the emergence of acquired and transmitted drug-resistant HIV in a population. The model

identifies four population groups: sexually-active susceptible adults X , treatment-naive adults infected with

wild-type HIV strains Y U
S , treated adults infected with wild-type HIV strains Y T

S , and adults infected with

drug-resistant HIV strains YR. The drug-resistant group could be subdivided into treated and treatment-

naive classes. In the limit of large population numbers present in all four compartments, the dynamics

Figure 1: Flow diagram illustrating the transmission dynamics of an HIV epidemic in the presence of

antiretroviral therapy (ART).

can be accurately described by mean-field equations. These equations neglect all stochastic aspects present

in the Markov chain model and only focus on the evolution of mean population numbers. The mean-field

population dynamics associated with the continuous time Markov chain compartmental model is described

by the following ODEs:

Ẋ(t) = π − {c[λS(t) + λR(t)] + µ}X(t) , (1.1)

Ẏ U
S (t) = cλs(t)X(t) + gsY

T
S (t) − (σs + vU

s + µ)Y U
S (t) , (1.2)

Ẏ T
S (t) = σsY

U
S (t) − (gs + r + vT

s + µ)Y T
S (t) , (1.3)

ẎR(t) = rY T
S (t) + cλR(t)X(t) − (vR + µ)YR(t) , (1.4)
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where

λS(t) = N−1(t)[βU
S Y U

S (t) + βT
S Y T

S (t)] , (1.5)

λR(t) = N−1(t)βRYR(t) , (1.6)

N(t) = X(t) + Y U
S (t) + Y T

S (t) + YR(t) . (1.7)

1.2 The parameters: definition and estimation

The parameters that appear in Eqs. (1.1)-(1.7) are defined as follows: π is the inflow rate of newly sexually

active adults; µ−1 is the average length of time an adult acquires new sex partners; c is the average number

of new sex partners a susceptible individual acquires per year; σs is the per capita treatment rate per year;

gs is the yearly proportion of patients suspending treatment and r−1 is the average time required for a

patient to develop drug resistance when on treatment. The disease progression rate to AIDS for the wild-

type treatment-naive, wild-type treated and drug-resistant populations are respectively described by the

parameters vU
S , vT

S and vR; the transmissibility (i.e., fitness) coefficients for the wild-type treatment-naive,

wild-type treated and drug-resistant populations are respectively described by the parameters βU
S , βT

S and

βR.

We assume that the expected time that an adult acquires new sex partners in Botswana is on average

34 years. This is exactly the difference in years between the upper (49 years) and the lower (15 years) adult

age group that we consider. The inflow of at-risk susceptible adults, π, is chosen and calculated such that

in the short term the total population is stationary in the absence of HIV. On the assumption that the

population growth can be ignored over the short term, we obtained that π is 49,300 per year. The contact

rate was found to be 1.76 per year on the assumption that HIV prevalence is constant over the short term.

In a similar way the contact parameter, c, is chosen and calculated such that in the absence of treatment

(gs = 0 and σs = 0) Y U
S is stationary in the short term. We calculated the per capita treatment rate per

year (σs) from the projected number of patients that the Botswana ART program plans to treat over the

next four years. The program plans to treat 85,000 patients by 2009 [1] (see Fig. 2). The treatment rate was

found by assuming that it remains constant such that by the year 2009, Botswana will have 85,000 patients

that have received ART. This procedure gave a constant per capita treatment rate of 0.050 per year. For

Botswana, we assumed that µ−1 is 34 years (from 15 to 49 years old). We used the values of 10, 18 and 12

years respectively for (vU
S )−1, (vT

S )−1 and (vR)−1 representing the average progression time to AIDS [2, 3].

Thus, individuals that are on treatment remain sexually active for longer than individuals that are not on

therapy, on average, for an additional 8 years. Since our predictions are valid for the short term to 2009,

our results are robust to the values chosen for the average progression time to AIDS. We assumed that the

yearly proportion of treated cases suspending ART, gS, in Botswana is 0.1[4] and that, on average, drug

resistance would develop in 3 to 5 years [5, 6, 7, 8, 9] (see the Main Text for further discussion).

The untreated and treated wild-type transmissibility (i.e., fitness) coefficients per partnership (βU
S and
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Figure 2: Empirical data from the Botswana’s government treatment program are shown by the filled boxes.

The aim of the Botswana ART program is to reach 85,000 patients by 2009 (black dashed line) [1]. The

treatment used by our model uses the linear fit shown by the dashed gray line, this gives a constant per

capita treatment rate of 0.050 per year.

βT
S ) were calculated to be 0.12 and 0.04 respectively [10, 11, 12]. Our values for βU

S and βT
S are consistent

with those used by Wilson et al. [13] for South Africa for a similar drug regiment. We assume that βU
S lies

in the range 0.1 to 0.15 [11]. We then calculate βT
S from βU

S using the following expression

βT
S = (αT pS + 1 − pS)βU

S , (1.8)

where αT is the reduction in HIV transmissibility (i.e., fitness) due to treatment-induced viral load reduction

and pS is the fraction of treated individuals infected that achieve viral suppression on ART. Following Wilson

et al., the calculation of the drug-resistant transmissibility is obtained using the following expression

βR = αRβU
S , (1.9)

where αR is a proportionality constant. Relatively little is known about the fitness of resistant strains of

HIV in vivo. In our paper we assumed αR to be 0.25, 0.5 and 1.0 in different scenarios.

An alternative way of obtaining the values for transmissibility is to use the relationship that each loga-

rithmic increase in viral load (w) is associated with an increase in the risk of transmission by a factor of 2.45

[12]. Explicitly, this relationship is formalized as

β(w) = β(ν)2.45log
10

w/ν , (1.10)

where β(w) and β(ν) are transmissibilities as a function of viral loads w and ν.
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1.3 The initial conditions

Our model is integrated starting from the initial conditions that no one is on treatment (Y T
S (0) = 0).

Therefore HIV drug resistance has not developed (YR(0) = 0). We assume that the HIV-infected wild-type

population is at equilibrium with the susceptible population for our initial conditions. These equilibrium

population values are given by:

X(0) = X∗ =
π

cβU
S − vU

S

(1.11)

Y U
S (0) = (Y U

S )∗ =
π(vU

S − cβU
S ) + πµ

(vU
S − cβU

S )(vU
S + µ)

. (1.12)

2 Stochastic formulation for the drug-resistant

population dynamics

2.1 Stochastic vs. Deterministic

The ODEs formulated in section 1.1 can be numerically integrated to obtain the mean-field population

evolution. As long as the populations present in each compartment are large, relative stochastic fluctuations

are negligibly small. From the discussed initial conditions (Section 1.3), we are assuming that both the

treated wild-type and the drug-resistant population begin their dynamics from zero. This means that relative

stochastic fluctuations are important in their initial short-term dynamics. However, for the chosen parameters

the initial inflow of individuals into the treated wild-type population is much larger than the inflow into the

drug-resistant population. Thus, the time for which relative stochastic fluctuations are important is much

greater for the drug-resistant population than for the treated wild-type population. Hence, the evolution of

the wild-type population can be approximated by its mean-field dynamics at a much earlier time than the

evolution of the drug-resistant population. For this reason, the forecast of the short-term dynamics of the

drug-resistant population benefits from a stochastic analysis. This analysis provides not only the mean field

evolution of the population numbers, but also the evolution of its variability. Our main interest is in the

variability present in the prevalence and incidence patterns of the drug-resistant population. We therefore

proceed by treating the drug-resistant population stochastically.

A description of the stochastic dynamics is often obtained via computational integration by means of

Monte Carlo methods [18]. This would involve identifying the stochastic processes affecting the drug-resistant

population dynamics and simulating the evolution discretely starting from the initial conditions. Then, in

order to obtain the variability in the dynamics one would have to average over many independent ensemble

realizations of this evolution. An alternative method is to try to solve the stochastic dynamics analytically by

formulating and solving a Master equation [15, 16]. This is an attractive method for proceeding as it produces
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exact equations to predict the variability in the dynamics. In problems in mathematical epidemiology, this

can not always be done as transition rates present in the Master equation formulation are nonlinear functions

of the population size. By assuming that the stochastic fluctuations have a predefined distribution (e.g.,

Gaussian or Log-Normal) this problem can be overcome to give an approximate solution via the method

of moment closure [19]. However, in some problems the nonlinear transition rates can be approximated to

linear transition rates that remain valid for the time interval of interest. Our stochastic formulation makes

use of this latter approximation and we proceed in obtaining expressions for the variability of the dynamics

given by time dependent functions of the variance and skewness of the process.

2.2 The Master equation

Eq. (1.4) can be used to formulate a birth-death-immigration Master equation [15, 16] for the drug-resistant

population:

∂Pk(t)/∂t = rY T
S (t)[Pk−1(t) − Pk(t)] + βRcX(t)/N(t) [(k − 1)Pk−1(t) − kPk(t)]

− (vR + µ) [kPk(t) − (k + 1)Pk+1(t)] , (2.13)

where Pk(t) denotes the probability that YR(t) = k. The set of equations described by (2.13) can be used

to derive other equations describing the evolution of the moments of the probability distribution of YR(t).

By the standard approach, we multiply Eq.(2.13) throughout by eθk and sum over the k states to obtain the

master equation for the moment generating function M(θ, t). In turn, this can be expressed as an equation

for the cumulant generating function defined as K(θ, t) = log[M(θ, t)].

∂K(θ, t)/∂t = rY T
S (t)(eθ − 1) +

[

βRcX(t)/N(t)(eθ − 1) − (vR + µ)(1 − e−θ)
]

∂sK(θ, t) (2.14)

The solution to the master equation allows us to extract cumulants of YR(t):

〈〈YR(t)n〉〉 = ∂nK(θ, t)/∂θn|θ=0 ; (2.15)

the mean (〈〈YR(t)〉〉), variance (
〈〈

YR(t)2
〉〉

)and the third central moment (
〈〈

YR(t)3
〉〉

) are obtained for

n = 1, n = 2 and n = 3 respectively. The skewness can be obtained from the third central moment

(
〈〈

YR(t)3
〉〉

/
〈〈

YR(t)2
〉〉3/2

). The transition rate βRcX(t)/N(t) is not constant and depends on the evolution

of YR(t). Therefore, as in most epidemic models this makes this transition rate in the master equation a

nonlinear function of the population size. To proceed we note that our interest is in the early stages of the

dynamics when the susceptible population and the HIV-infected wild-type population have only marginally

changed from their initial equilibrium values. Therefore, for the chosen parameters, the approximation

that X(t)/N(t) stays constant at its equilibrium value is acceptable during the early stage of the evolution.

This approximation is expressed as X(t)/N(t) ∼ (X)∗/[(X)∗ + (Y U
S )∗] = (X/N)∗ 1. Making use of this

1By comparing the mean evolution of the drug-resistant population predicted by the solution of the Master equation to the

mean-field evolution given by solving the ODE (1.4), we find that this approximation produces at most a 9% error (see Sec. 2.5)

at the sixth and final year of the predictions.

6



approximation allows us to solve for Y T
S (t) exactly:

Y T
S (t) =

σS(eαt − 1)

α
(Y U

S )∗ =
I

r
(eαt − 1). (2.16)

where α = −(gs + r + vT
s + µ) and I = rσS(Y U

S )∗/α. Making use of this solution and using X(t)/N(t) ∼

(X/N)∗ = (vU
S + µ)/(cβU

S ) we can solve Eq. (2.14) analytically. By using the method of characteristics [17]

we obtain three equations:

τ = t, θ̇ = −{β(eθ − 1) − γ(1 − e−θ)}, K̇ = I(eαt − 1)(eθ − 1), (2.17)

where β = βRc(X/N)∗ and γ = (vR +µ). Solving for θ and letting our initial constant characteristic f = θ(0)

we obtain

ef =
γ(eθ − 1) − (βeθ − γ)e(γ−β)t

β(eθ − 1) − (βeθ − γ)e(γ−β)t
, (2.18)

which can be re-written in the form

eθ − 1 =
(γ − β)(ef − 1)e(γ−β)t

β(ef − 1)e(γ−β)t − efβ + γ
. (2.19)

Substituting this expression in the equation for K̇ (in (2.17)) gives us

K(θ, t) − K(θ, 0) = I

∫ t

0

(eαs − 1)
(γ − β)(ef − 1)e(γ−β)s

β(ef − 1)e(γ−β)s − efβ + γ
ds. (2.20)

This integral can be evaluated by appropriate substitutions. Finally, we use our initial condition of Pk(0) =

δk,YR(0) which gives K(θ, 0) = fYR(0) and we obtain our solution as

K(θ, t) = YR(0) log

[

γ(eθ − 1) − (βeθ − γ)e(γ−β)t

β(eθ − 1) − (βeθ − γ)e(γ−β)t

]

+
I

β
log

[

(β − γ)e(γ−β)t

β(eθ − 1) − (βeθ − γ)e(γ−β)t

]

(2.21)

+ I
(β − γ)e(β−γ)t

(α + γ − β)(eθβ − γ)

{

e(α−β+γ)t(eθ − 1)F1(θ) − (eθ − 1)F2(θ, t)
}

.

Here,

F1(θ) = F

[

α

(γ − β)
+ 1, 1,

α

(γ − β)
+ 2,

β(eθ − 1)

(eθβ − γ)

]

, (2.22)

F2(θ, t) = F

[

α

(γ − β)
+ 1, 1,

α

(γ − β)
+ 2, e(β−γ)t β(eθ − 1)

(eθβ − γ)

]

, (2.23)

where F [a, b, c, d] is the hypergeometric function.

2.3 Solution for the Mean, Variance and Skewness

By using Eq. (2.15), Eq. (2.21) and our initial condition of no drug-resistant cases (YR(0) = 0) we obtain

all the cumulants of YR(t). The mean is given by

∂θ[K(θ, t)]|θ=0 = Ie(β−γ)t

(

e−(β−γ)t − 1

(γ − β)
−

e(α−β+γ)t − 1

(α + γ − β)

)

, (2.24)
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our second central moment (variance) is given by

∂2
θ [K(θ, t)]

∣

∣

θ=0
=

Ie(β−γ)t

(β − γ)2

{

[

γ(e(α−β+γ)t − 1) + β(e(β−γ)t − 1)
]

+
α

(α + γ − β)(α − 2β + 2γ)
×

[

e(α−β+γ)t[β2 + βγ − γ(α + 2γ)] − [(2 − e(β−γ)t)β + 2γ](β − γ) −α[(e(β−γ)t − 1)β − γ]
]}

; (2.25)

and our third central moment is given by

∂3
θ [K(θ, t)]

∣

∣

θ=0
=

Ie(β−γ)t

(α − 2β + 2γ)(α − 3β + 3γ)

{

e(α−β+γ)t[α2 + 6γ(β + γ) + α(β + 5γ)]−

(β − γ)−2
[

6(β − γ)2[β2(1 − 3e(β−γ)t + 2e2(β−γ)t) − βγ(3e(β−γ)t − 4) + γ2]+

α2[β2(1 − 6e(β−γ)t + 6e2(β−γ)t) − 2βγ(3e(β−γ)t − 2) + γ2] − (2.26)

α(β − γ)[β2(5 − 24e(β−γ)t + 18e2(β−γ)t) − 4βγ(6e(β−γ)t − 5) + 5γ2]
]}

.

2.4 Solution for the Cumulative Incidence

From the solution of the Master equation we can also extract the cumulant generating function for the

cumulative incidence of transmitted drug resistance (T (θ, t)). To obtain this we need to solve the following

partial differential equation that relates the rate of change in transmitted incidence to the prevalence of drug

resistance in the population:

∂tT (θ, t) = βRc(X/N)∗(eθ − 1)∂θK(θ, t). (2.27)

Therefore, the generating function for the cumulative transmitted drug resistance incidence between times

t1 and t2 is given by:

T (θ, t2) − T (θ, t1) = βRc(X/N)∗(eθ − 1)

∫ t2

t1

∂θK(θ, t)dt. (2.28)

By taking the first, second and third derivatives of (2.28) with respect to θ and evaluating these at θ = 0

we obtain expressions for the dynamics of the mean, variance and skewness of the cumulative transmitted

drug-resistant population in the interval t2 − t1. We use these expressions in our main article to produce the

probabilistic forecasts in the growth of the newly infected transmitted drug-resistant population for different

parameter sets. In our manuscript we used time intervals tn+1 − tn each equal to three months.

2.5 Solution of the Master Equation versus the numerical integration

of the ODEs

We mentioned in Sec. 2.1 that in our stochastic formulation we make use of an approximation whereby

the nonlinear transition rates describing the infectious process is replaced by a linear transition rate. This

approximation will stay valid initially and only for a short period. Therefore, it is of interest to check how the

mean-field predictions obtained by solving the Master equation compare to those obtained by a numerical
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integration of the ODE dynamics of Eqs.(1.1) - (1.4) for the duration of the dynamics of interest. The

percentage error (Er[S]) made by the mean-field solution is given by

Er[S] =
Sstochastic − Snumerical

Snumerical
, (2.29)

where Sstochastic represents the mean-field solution of the dynamic variable S obtained from the master

equation and Snumerical represents the corresponding numerical solution. Fig. 3 shows a plot for Er[YR(t)]

(shown in blue) and Er[YR(t)/N(t)] (shown in red). Therefore, we compute the percentage difference of both

the mean-field solution for YR(t) and YR(t)/N(t) to that obtained by numerical integration of the ODEs. The

numerical integration was done using Mathematica 5.1 by the default method that automatically switches

between backward differentiation formulas and Adams multistep methods, depending on stiffness of the

ODEs. We see from Fig. 3 that the error in YR(t) (shown in blue) increases linearly with time from zero

to 6% by 2009. This means that our predictions for the adult drug-resistant population overestimate the
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Figure 3: Percentage error of the mean-field solution for the prevalence of the drug-resistant adults obtained

via the Master equation compared to the numerical integration of the deterministic equations of the model

(Eqs.(1.1) - (1.4)). The red curve shows the error made by the drug-resistant prevalence expressed as a

percentage of the total population (the error of YR(t)/N(t)). The blue curve shows the error in terms of

absolute number drug-resistant adults (the error in YR(t)).

numerical solution by at most 6% in terms of absoulte numbers. However, since the numerical solution for

N(t) is a increasing function with time during the period (2003 to 2009) the error made by our predictions

for the prevalence of drug-resistant adults underestimates the numerical solution by 9% by 2009. These error

may seem large. However, considering parameter uncertainty that enter Eqs.(1.1) - (1.4), this is acceptable

for obtaining an idea of the magnitude of stochastic fluctuations in the short-term dynamics.
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