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A. Single-step tracing

For calculation of the reproduction number R with single-step tracing, we require

the elements k;; of the next-generation matrix
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In the matrix, k;; is the expected number of type-i infecteds produced by one type-j
infected, where an infected of type j is someone with exactly j traceable contacts
backwards in the transmission tree (traceable ancestors). For instance, infecteds of
type 1 were infected through a traceable contact by their infector, who in turn were
infected through an untraceable contact. Type-1 infecteds produce (on average) k;
type-2 infecteds through traceable contacts, and ko, type-0 infecteds through
untraceable contacts. Thus, an infinite-size next-generation matrix is obtained which
can be closed to an (n+1)* matrix as above by choosing 7 large enough and
conjecturing that |kj1 ; — kjio j+1| — 0 as j — oo.

R can be calculated numerically in Mathematica® for the four special cases

discussed in the main text, which will be shown in the next sections. For all other



cases, simulations were used to determine the first few elements, as was done for the

real infections considered in the paper.

Al. Single-step tracing if =1 and 7= 7

If we denote by E the average number of secondary infections caused at 7= 7,

~

given that the infected is not yet isolated or quarantined, then R;™ =e ™ f,

wheree “ is the probability that the infected is not isolated by 7= 7.

Because of the exponential distribution of the incubation period, the hazard of
being quarantined through the infector is time-independent. Therefore, the expected
number of infecteds produced by type-j infecteds are equal for all j > 0, and a 2x2
matrix will suffice for calculation of R.

The element k¢ denotes the number of traceable infectees, produced by an infected

that was itself produced via an untraceable contact:

ki = p.RJ"

which is not affected by contact tracing and quarantine at all, because the
instantaneous production of all infectees ( 7,,= 74) prevents backwards tracing to
reduce transmission.

The element k;, denotes the number of traceable infectees, produced by an infected

that was itself produced via a traceable contact:
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in which e ™ is the probability that the infector is detected before the end of the
latent period.

We use the identity (1-p.) kj+1,; = p. ko, to calculate koo and ko1, and subsequently
determine the largest eigenvalue of the next-generation matrix to obtain the

reproduction ratio

R = R(f’e(l -p.+ pce_r’“f)

and the critical tracing probability (R = 1)
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Adding a tracing delay of duration < 7, changes k;; into k,, = e (7u?) PR,

which results in the following R and p.*:

R
- Ré?re (1 _ ef(rm, 75))
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If 6> 74, tracing is ineffective.



A2. Single-step tracing if ¢ = o and /= 74

If we denote by E the average number of secondary infections produced at 7= 7,

then R/ = E if 7, < 1 (in the absence of contact tracing); otherwise R¢""“ = 0, and

the model is not defined for R > 0.

Because the detection time is fixed and all secondary infections are produced
instantaneously, tracing and quarantine will not be effective if infections are produced
before detection of the infector, which is if 7, <0.5.

If 75, > 0.5 on the other hand, type-1 infecteds will not produce any new infection,
so the only relevant element in the transmission matrix is koo = (1-p.)R”"*, resulting in

the reproduction ratio

R=(1-p.)R{",

and the critical tracing probability

pF=1-1/R/"

With a tracing delay o, the same relation holds for 7, > (1 + 06)/2.

A3. Single-step tracing if ¢ =1 and 7,y= o

If an infected is not isolated before 7, the expected duration of the infectious
period (from 7, to isolation) is 1, so R/ =e "™ 3, where e " is the probability not

to be isolated before the start of the infectious period, and Sis the infection rate.



Because of the exponential distribution of the time to detection, the processes of
quarantine and isolation are Markov processes. Therefore, the rate at which infecteds
are traced trough their infector is equal for all j > 0, and a 2x2 matrix will suffice for

calculation of R.
We first consider the elements ko and k;; for 7, = 0. The probability P'” for a

type-0 infected to produce x traceable infectees is

P(O) — (pcﬂ)x(x+1) ,
C T, (+z+p.8)

which is the probability that the first x events are infection events, and the x+1* event
is an isolation/quarantine event. Because of the Markov property of the
isolation/quarantine process, the probabilities for each next event are due to
competing hazards; each next infection increases the isolation/quarantine hazard by 1

whereas the infection hazard remains constant at p.f3.

The probability P” is used to calculate ki as

ky, = © xPx(O): oy (pcﬂ)x(x+1)
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Similarly, &, is equal to

k” =ZT_0-X (fcﬂ)x(x+2) ,
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where ‘1’ is replaced by ‘2’ because of the possibility of being traced through the
infector. The identity (1-p.) kj+1,; = p. ko; 1s used to calculate ko and ko;.

Incorporation of a latent period into this framework is easy, because the number of
secondary cases will be equal to the expressions above, given that the infected is not
quarantined or isolated during the latent period. Therefore, an adjustment needs to be
made by multiplication by the probability to reach the end of the latent period without

being isolated or quarantined:

k= e Zt—ox (xpcﬂ)x (x+1)
L0+ z+ p.8)

T Zj—ox (xpcﬂ)x (x+2)
© I @rz+p.p)

A numerical evaluation of ko and k;; was done to calculate R and determine p.*.

A tracing delay of duration & does not change P,\”, but it does change ko:
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Here, p. ,B(l —e 5)—1 is an extra amount of expected infectiousness for a duration o
X+

(p. S (1 — ) given that the last event was isolation of a contactee and not of the
infected itself (with probability x/(x+1)).

For the element k;;, we also need to take into account the possibility that the
infector is detected before 7, but the tracing step is completed after z,,. Calculation

of the extra infectiousness term depends on whether Jis larger or smaller than 7.



Let 0< 5 and 75 (77, — 0 < T; < 14) be the (stochastic) time that the infector is
detected and isolated (quarantine will take place at 7= 7; + o). The probability

density function f{z) is

The expected number of traceable infectees X, given that the infector is symptomatic

at 7;= 1, 18
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Thus, the expected number of traceable infectees X, given that 7,, — 0 < T5 < 734, 1S

E(Xflat _5<T9 < Tlat):
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A similar calculation can be made for 6> 7, which in the end results in
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Here, e (e5 - 1) and e (ef"” - 1) are the probabilities that the infector gets

symptomatic during the latent period, and the infected itself does not.

A4. Single-step tracing if & = o and 7,y =

The incubation period is fixed at 1, so each (untraced) infected transmits the
infection from 7= 7, to 7= 1, resulting in Ry""* = (1 — 7,)) 3.

By /(7) we denote the expected infectiousness of a type-j infected at time 7 after
infection (of the type-; infected itself). By ¢¥(7), j > 0 we denote the probability
density of a type-j infected being quarantined. A series of subsequent 4”(7) and ¢*(7)

can thus be obtained:
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All elements ;.. ; and ko; can be obtained by calculating the area under 4”(7) and
multiplying by p. and 1 — p. respectively. By calculation of the elements for j =0, 1,
., n an (n+1)? next-generation matrix is obtained, from which R can be obtained as
its largest eigenvalue. We did so for n = 8, because we considered | ko g — k109 | <
0.000064p. small enough.
Tracing delays do not affect A%(7), but ¢”(7) and #”(7) change. The sketches
below make clear what happens if < 7, or if 6> 7. In the latter case, the area

under ¢¥(7) is smaller than 1:
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AS5. Simulations for single-step tracing

For other cases such as all real infections simulations were carried out to obtain the

elements ;. To this end, we reparameterized the model in the following way:

Bo= Ppe
B =41 -po),

so [ is the transmission rate for traceable contacts and £ is the transmission rate for
untraceable contacts.

We took some values for o, 7,, and £ and we simulated transmission through
traceable contacts by type-0 infecteds, by type-1 infecteds, etc. For each type j, k11,
was determined and compared with 4;;.; to check if the matrix could be closed. This
was often the case if j =3 orj = 4.

Then the identity (1-p.) kj+1,; = pc ko; was used to determine p.*. We solved S from
So = fp.*, calculated R, and a (R¢”"*, p.*) pair was obtained.

By choosing a series of /3 values, a series of (Ry”"*, p.*) pairs was obtained for one
specific case of the model (with some o, 7, and 7). Interpolation with the SplineFit

function in Mathematica® was used to determine pc* for any Ry".

B. Iterative tracing

For calculation of the cluster reproduction ratio R,, the cumulative infectiousness

of a cluster of infecteds linked by traceable contacts needs to be determined. This



often requires simulation, though in some of the special cases numerical calculation is

possible.

B1. Iterative tracing if =1 and 7= 7

In this special case a cluster grows in distinct infection generations until one of the
infecteds is isolated, at which time the complete cluster is quarantined. If 7, — 0, we
see that p.* — 1 because clusters will grow very fast and become very large before
they are detected. If 7, > 0, exact calculation of the expected cluster infectivity is not
straightforward because of dependencies between sizes of infection generations,
cluster infectiousness and the cluster quarantine rate. Therefore, simulations were
used to determine p *.

Simulations were carried out as follows. First, the model was reparameterized:

,EO =p, ﬁ ; ﬁl = (1 - p. )ﬁ , where the tilde indicates the instantaneous infection
process. Then, we chose values for o, 7, and ,EO , and we simulated 100,000 clusters,

of which we determined the average infectiousness (a function of ,El ).
From the average cluster infectivity a value for ﬁl was obtained by solving R, = 1.
From f3, and ,51, Sand p.* were calculated to obtain an (Ry”", p.*) pair. After

pre
0

determining a series of (Ry”°, p.*) pairs from simulations with different values of ,50

(while keeping §and 7, constant), the SplineFit function in Mathematica® was used

for interpolation, so that p.* could be determined for any Ry,

B2. Iterative tracing if o= o and /= 74

In this special case a cluster grows in distinct infection generations until isolation

of the cluster index case at 7= 1. The number of infection generations within the



cluster (excluding the cluster index case, generation 0), denoted by #, is equal to the

largest integer smaller than 1/7,,. Thus,

summed for i = 0 to n — 1, because the n™ generation within the cluster is quarantined
before being infectious. By solving R, = 1, p.* can be obtained for any Ry"" and ;.
With a tracing delay 0 < 74, n 1s equal to the largest integer smaller than

(1= 0)/(t1a: — 0). If 0> 14, tracing is ineffective.

B3. Iterative tracing if ¢ =1 and 0=

In this special case, an exact calculation of R. can only be done if 6= 0 and 7;,, = 0.
Then, the dynamics within the cluster is a Markov process, consisting of a series of
(traceable) infection events until one isolation event, which is followed by cluster
quarantine. The expected number of untraceable contacts originating from the cluster

between the i-1* and i event is equal to the untraceable contact rate x the expected

time interval between events = Si(l— p, )x1/(i + gip, )= p(1—p.)/(1+ fp.),

independent of i. Thus, R, is equal to this number multiplied by the expected number

of events before cluster quarantine:

_Bl-p) & ()"
¢ 1+ 4, ‘= (1+ﬂpc)

-=pBl-p)=R(1-p,).



This result gives p.* = 1 — 1/R{", which was also found by Miiller et al (2000) for
this specific model.
If 75, > 0 and/or 6> 0, the Markov property is lost, and simulations are required to

obtain p.*. The procedure is described in Section BS5.

B4. Iterative tracing if o = oo and 7,y = o0

R, can be calculated exactly by integration over the expected infectiousness
functions ,B(/)(t) at cluster age ¢ for all infection generations j. The cluster is

quarantined at = 1, when the cluster index case gets symptomatic:
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If a tracing delay o < 7, is taken into account, then the above infectiousness functions

hold for t <1 +jo (instead of # < 1). If 6> 17,4, simulations are required.

B5. Simulations for iterative tracing

All simulation programs were written in Mathematica®, for which we

reparameterized the model (£ = fp.; 1 = A1 — p.)). For any [, 7., and o6, 100,000



clusters were simulated and R. was calculated as the average sum Y of all (partial)
infectious periods, multiplied by fi. Then, £ was solved from the equation R, =1 =
S1Y, and S and S were used to obtain an (R¢"¢, p.*) pair. A series of f values
resulted in a series of (Ry”, p.*) pairs from which (by interpolation with the SplineFit

function in Mathematica®™) p.* could be determined for any Ry"".

B6. Relations between p.*, 7,, and d with iterative tracing

Figure S1 shows the relation between 7, and p.* with iterative tracing, in the
absence of delays, with approximate positions of the four real infections indicated.
The major difference between Figure S1 and Figure 2 (for single-step tracing) is
observed for small 7,,, when single-step tracing is often ineffective. Iterative tracing
is always effective if all contacts are traced (p. = 1), because in that case the first
detection event will instantaneously result in quarantine of all infecteds.

Figure S2 shows the relation between 7;,, and o with iterative tracing for the four
special cases, with approximate positions of the four real infections indicated. No
p.* =1 contour is plotted, because this is impossible to obtain through simulations:
the simulated clusters become very large, which takes too much time. Instead, a p.* =
0.95 contour is drawn.

Comparison of Figures 3 and S2 clearly indicates that iterative tracing is more
effective than single-step tracing only if 7, and o are such that tracing is on the brink
of being effective at all (p.* = 1). For specific infections this means that iterative

tracing allows for an extra tracing delay of one or two days.



Figure S1. The effectiveness of iterative contact tracing without tracing delays.
Effectiveness is expressed as the minimum proportion of contacts that need to be
traced for effective control (critical tracing probability p.*). The plots show p.* as a
function of the latent period relative to the mean time to detection (7). There are four
special cases: (A) short infectious period and variable time to detection, (B) short
infectious period and fixed detection time, (C) long infectious period and variable
time to detection, and (D) long infectious period and fixed detection time. The three
curves denote p.* for different values of the pre-isolation reproduction ratio Ry”"“.
Indicated by dashed lines are the average 7, for four infections, in the panels with
closest correspondence to the actual parameter values (Table 2). Influenza appears in
two panels with long and short infectious period, because it corresponds to both

parameter sets equally.
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Figure S2. The effectiveness of iterative contact tracing with tracing delays, with the

pre-detection reproduction ratio Ry”"

= 1.5. Effectiveness is expressed as the
minimum proportion of contacts that need to be traced for effective control (critical
tracing probability p.*). The contour plots show p.* as a function of the tracing delay
o and the latent period 7;,,, measured relative to the mean detection time, for four
special cases: (A) short infectious period and variable incubation period, (B) short
infectious period and fixed incubation period, (C) long infectious period and variable
incubation period, and (D) long infectious period and fixed incubation period. Dark
grey shadows indicate areas where tracing is almost ineffective (almost, because the
black lines do not indicate p.* = 1), light grey shadows indicate areas where p.* =

0.33. Indicated by dashed lines are the average 7;,, for four infections, in the panels

with closest correspondence to the actual parameter values (Table 2).
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