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S1A From the biophysics to a stochastic NMDA-spike model

This Section shows that the simplified NMDA-spike model described in the main text
represents a viable approximation of the full conductance-based NMDA model in the
presence of an in vivo-like input scenario. In this scenario the AMPA and GABAA con-
ductances are assumed to be roughly balanced, say with GABA/AMPA ratios varying
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between 1 to 3. This implies that the high voltages where the NMDA-receptors are un-
blocked from the magnesium can only be reached when there is also enough glutamate
present to activate them. As a consequence, the voltage alone becomes the criterium
for triggering an NMDA-spike (see Fig. S1F, top).

S1A.1 Biophysical model of NMDA-spikes

Here we describe the state-of-the art biophysical model of NMDA-spike generation
[1, 2, 3]. The NMDA conductance gN depends on the peak conductance of a unit
NMDA receptor ḡN (= 3.9 [nS], see [4]), the released glutamate, and the postsynaptic
voltage u. The voltage dependence is modeled by the sigmoidal function

σ(u) =
1

1 + exp
(
−
u−V N

1/2

V N
spread

)

with V N
1/2 = −20mV and V N

spread = 12.5mV [1]. The time dependence of the NMDA
conductance on the glutamate released at t = 0, is modeled by the kernel function

εN(t) = Θ(t)BN
(
e−t/τ

N
1 − e−t/τN2

)
where Θ(t) is the Heaviside step function (= 0 for t < 0 and 1 else), the constants
τN

1 = 40ms and τN
2 =3ms determine the rise and fall of the kernel, and the factor

BN = 1.33 that normalizes the peak amplitude of εN [5]. The NMDA conductance
induced by the glutamate release becomes

gN = g◦ ε
N(t)σ(u) .

Since g◦ is proportional to the peak glutamate level and as such will also scale the
AMPA currents, and since in a balanced input scenario it will further be proportional
to the peak inhibitory current, we will term g◦ below as synaptic drive.

Glutamate is also assumed to activate AMPA receptors that generate a total AMPA
conductance proportional to the synaptic drive, gA = α g◦, with proportionality factor
α = 0.05. The AMPA kernel is given by the alpha-function

εA(t) = Θ(t)
t

τA e
e−t/τ

A

with time constant τA =5ms. The total excitatory synaptic input current to the den-
dritic compartment for a given peak glutamate level then becomes the sum of the
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AMPA and NMDA current,

IE
syn(t) = g◦ α ε

A(t)(EA − u) + g◦ε
N(t)σ(u)(EN − u) (S1)

where EA = EN = 0 represent the reversal potentials for the AMPA and NMDA
receptors.

We assume that the excitatory synaptic input to some degree is balanced by inhibitory
synaptic input I I

syn. The GABAergic conductance strength gG is proportional to the
synaptic drive for a specific glutamate level, gG = βg◦, and some balancing factor
β = 0.05. The GABA kernel is given by an alpha function

εG(t) = Θ(t)
t

τG e
e−t/τ

G

with τG =5ms [6]. The inhibitory current then becomes

I I
syn(t) = g◦ β ε

G(t) (EG − u) , (S2)

where EG = −70 is the reversal potential of the GABAA conductance. Note that for a
AMPA/NMDA ratio α = 0.05 and GABA/NMDA ratio β = 0.05 the AMPA/GABA
ration becomes 1.

Besides the synaptic input to the dendritic compartment, its membrane potential is
modulated by a constant leak conductance, ḡL, and an additional voltage-dependent
potassium conductance resulting in the K+ inward rectifying (KIR) current [2, 3].
The KIR voltage-dependence is modeled by a sigmoidal function that monotonically
decreases with increasing voltage, with half activation at V KIR

1/2 = −70mV and spread
V KIR

spread =12.5 [3],

κ(u) =
1

1 + exp
(
u−V KIR

1/2

V KIR
spread

) .
Overall, the membrane potential u of the dendritic compartment is governed by the
dynamics

Cmu̇ = ḡL (EL − u) + ḡKIRκ(u) (EK − u) + IE
syn(t) + I I

syn(t) , (S3)

where EL = −65mV and EK = −80mV denote the leak and potassium reversal po-
tentials, ḡL = 7nS is the leak conductance, ḡKIR = 8 ḡL is the KIR peak conduc-
tance [3], and Cm = 70nF is the membrane capacitance (yielding a time constant of
τm = Cm/ḡL = 10ms).
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S1A.2 Reduced model of the NMDA-spike generation

We next show how the biophysical model described above can be reduced to a model
in which the generation of an NMDA-spike only depends on voltage (Fig. S1), with the
glutamate dependence being negligible. To justify this simplification we note that for
balanced input the NMDA-spikes are triggered at roughly the same voltage indepen-
dently of the glutamate level. In fact, an NMDA-spike is triggered if the voltage is high
enough to unblock the magnesium, provided enough glutamate is present. Crucially,
for balanced excitation and inhibition this minimal glutamate level is always reached at
the unblocking voltage, and more glutamate only marginally increases the amplitude of
the NMDA-spike. This limited amplitude is due to the saturation of the driving force
at high voltages.

To formalize the reasoning we insert the expressions for the excitatory (S1) and in-
hibitory current (S2) into the dynamics for the voltage (S3). We assume that the
synaptically driven input currents are all proportional to the same synaptic drive g◦
and consider the stationary solutions of

Cmu̇ = ḡL (EL − u) + ḡKIRκ(u) (EK − u) + g◦β(EG − u) +

+ g◦α(EA − u) + g◦σ(u)(EN − u) .
(S4)

Abbreviating the right-hand-side of S4 by I this translates to Cmu̇ = I (with a positive
I leading to a depolarization). For each value of u plugged into the right-hand-side of S4
this gives a total current I(u). When identifying the voltage with the symbol V ≡ u we
obtain the classical I–V curves for different values of synaptic drives g◦. The I–V curves
for the individual, synaptically driven currents AMPA, NMDA and GABAA currents
are displayed in Fig. S1A, top. Together with the leak and KIR current the form a
N-shaped the overall I–V curve (Fig. S1B) that underlies the generation of the NMDA-
spikes (Fig. S1A, bottom; Eq. S3). The zero-crossings of these curves, I(u) = 0, give the
sustained voltage u for a given drive g◦ (i.e. for which u̇ = 0). These stationary voltages
as a function of g◦ form the S-shaped curves in Fig. S1C, with colors indicating different
balancing ratios β of excitation and inhibition. For low and high synaptic drives there
is a unique stable u, but for intermediate values of g◦ two stable solutions with an
intermediate unstable solution coexist.

When plotting the voltage trajectories u(t) of panel A (bottom) against the time-
dependent synaptic NMDA drive, g◦ εN(t), into the (g◦, u) phase plane, the trajectories
showing an NMDA-spike make the turn around the S-shaped steady-state curve (Fig.
S1, D). For a given pair synaptic drive and stationary voltage, (g◦, u), we may ask
for the likelihood that a NMDA-spike is elicited, given some Gaussian noise ξg◦ and
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Figure S1. For balanced synaptic inputs, the NMDA-spike probability becomes a function of
the voltage alone. A: Top: AMPA (full line), NMDA (dashed) and GABAA (dotted) currents,
at the peak conductance level, as a function of u defined in Eqns S1 and S2 (α = β =0.05;
excitatory currents with positive sign). Bottom: Voltage traces u(t) for 6 different synaptic
drives g◦ = 0, 25, 50, 75, 100, 125 nS (curves from light to dark, Eq. S3), with NMDA-spikes
elicited by the 2 strongest g◦. B: I(u) (‘I–V curves’) defined by the right-hand-side of Eq.
S4 for the 6 synaptic drives g◦ used in A. C: Zero crossings I(u) = 0 of the family of curves
parametrized by g◦ and 6 of with shown in B, for different inhibitory-excitatory balancing
ratios β = 0.05 (red), β = 0.10 (blue) and β = 0.15 (green); AMPA/NMDA ratio: α =0.05 .
D: The 6 voltage traces u(t) from A plotted against the glutamate time course at the NMDA
receptors, g◦εN(t), overlaid on the red zero-crossing curve shown in C. E: Whenever the
Gaussian noise (red cloud) added to the mean (g◦, u) on the red line (center of cloud) drops
into the green area, a NMDA-spike is elicited. F: The probability of eliciting a NMDA-spike at
a given voltage (P (spike|u), top) is almost the same for the three different balancing ratios β
that vary by a factor of 3; it is therefore roughly proportional to the instantaneous spike rate
φ(u) ∝ P (spike|u) that is a function of u alone. Yet, because u as a function of g◦ saturates
(C), plotting P (spike|u) versus g◦ may still give deviating curves (bottom).
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ξu) added to g◦ and u, respectively (Fig. S1, E; with standard deviation σu = 8 and
σg◦ = 3). This likelihood is given by the probability that a point (g◦ + ξg◦ , u + ξu) of
the red cloud falls into the green area on the right part in panel E. When plotting the
likelihood for an NMDA-spike as a function of the mean voltage that moves along the
stable branch (and jumps up at the lower knee along the red line in Fig. S1E) we obtain
a sigmoidal function that is roughly independent of the balancing factor β (Fig. S1F,
top). Nevertheless, the same likelihood as a function of the synaptic drive (reflecting
the total glutamate) yield strongly differing curves (Fig. S1F, bottom). Hence, while
different balancing ratios lead to different glutamate concentrations that are required
to trigger an NMDA-spike, these spikes are triggered with roughly the same likelihood
at the same voltages. This justifies the stochastic NMDA-spike generation model that
produces NMDA-spikes with instantaneous rate φ(u), see Fig. S1F top, as a function
of the membrane potential, independently of the glutamate level.

S1B Additional analysis and simulation results

S1B.1 Robustness against noise and errors in the voltage readout

We further analyzed the robustness of the suggested reward-modulated synapto-denritic
synaptic plasticity (R-sdSP) based on the classification of the 4 spatio-temporal spike
patterns (as presented in Fig. 2 of the Main Text). As we have shown, the learning
rule is able to classify spike patterns with frozen presynaptic spike timings and random
frozen spike timings which were generated by Poisson processes with specific rates. To
interpolate between these two extreme coding scenarios we also considered presynaptic
spike-patterns that show stochastic spike-timings of varying degrees of stochasticity.
Starting with the 4 frozen spike patterns generated once with a 6 Hz Poisson pro-
cess, we perturbed each of these spike-times by a Gaussian of mean 0 and standard
deviation σ (Fig. S2A, B). The learning performance shows a high robustness against
these perturbations. The mean inter-spike interval for the original and perturbed spike
trains are 167ms. Even when the spike-time jitter has a width of 2σ = 200ms was the
learning rule able to classify the patterns with an average performance of ∼ 90% (Fig.
S2B).

To explore the robustness against a dilution of the backpropagated voltage we low-pass
filtered the somatic voltage us(t) with different time constants up to 40ms. Learning is
still possible, although it slows down with increasing filtering time constant (Fig. S2C).
Note that from the low-pass filtered version ũs of the somatic voltage the synapse could
calculate ρs

\d(t) since it has access to the local NMDA-spike in branch d and hence could
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subtract the contribution from the own branch. Moreover, since the passive backpropa-
gation of the somatic voltage, the synaptic input currents and the NMDA-spikes involve
different changes in ionic concentrations, a synapse sensing these concentrations may
in principle disentangle the various contributions to the local voltage.

S1B.2 Dendritic contribution to R-sdSP and comparison with R-STDP

Next, we investigated the learning based on the individual components of R-sdSP. Re-
call that the weight change ∆wdi of the reward gradient rule R-sdSP is composed of
two components, a somato-synaptic contribution R∆wss

di originating from the forward
propagated subthreshold dendritic potential, and a somato-dendro-synaptic contribu-
tion R∆wsds

di originating from the supra-threshold dendritic plateau potentials sus-
tained by the NMDA-spikes (Eq. 3 in the Main Text). As expected, learning based on
the supra-threshold component R∆wsds

di alone is equally fast as learning based on the
full R-sdSP, but the subthreshold component R∆wss

di alone is considerably slower as it
does not take account of the crucial dendritic spiking (Fig. S2D).

In the Main Text we have shown that ‘classical’ reward-modulated spike-timing de-
pendent plasticity (R-STDP) [7, 8] does not reach the performance of R-sdSP (Fig. 2B
and 3B,C). Here we further show that R-STDP does not perform better in the classifi-
cation of the frozen spike patterns when the time constant τ+ matches the duration of
a NMDA-spike (∆ =50ms, Fig. S2E). In contrast to the gradient rule, R-STDP is not
able to learn more than 75% in the presence of the dendritic spikes. The performance
improves but remains below the gradient rules when the dendritic spikes are suppressed
in the neuronal processing. The wider learning window in R-STDP is neither helping
to improve learning for the XOR-problem that is encoded in mean firing rates (Fig.
S2F).

S1B.3 Additional simulation details

In all simulations initial weights were picked independently from a Gaussian distribu-
tion with mean 0. The variance was set such that at least one somatic spike was elicited
for half of the pattern presentations.

Input patterns were defined for 100 afferents. For the tasks involving temporal codes, a
pattern was generated once with a constant Poisson rate of 6Hz for each afferent and the
spike timings were then frozen. For the rate tasks (XOR and direction selectivity, Fig.
3 of the Main Text) each presentation was using a new realization of the pattern. For
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Figure S2. Robustness of R-sdSP against noise and imperfect voltage readout. A, B: When
introducing a Gaussian jitter in the spike timings of the 4 frozen 6 Hz Poisson spike patterns
(A) their classification into a spike / no spike code only smoothly degrades (B). Standard
deviation of spike jitter: 10ms (blue), 20ms (red), 50ms (green) and 100 ms (brown). C: The
classification is still learnable by R-sdSP when the somatic voltage us(t) is low pass filtered
with different time constants: 5ms (blue), 10ms (red), 20ms (green) and 40 ms (brown). D:
The performance barely changes when only considering the somato-dendro-synaptic contri-
bution ẇsds

di of the rule (Eq. 5 in Online Methods, blue dashed). On the other hand, when
learning is only based on the somo-synaptic contribution (ẇss

di, Eq. 4 in Online Methods)
the performance degrades (magenta). Inset: performances over the first 1000 presentations.
E, F: Learning curves for R-STDP when the time constant τ+ matches the NMDA-spike
duration ∆ =50ms. E: Still, R-STDP cannot learn a binary classification of 4 randomized
spatio-temporal spike patterns, both when applied to the presynaptic–somatic spikes (solid
black; dashed: performance when the NMDA-spikes are suppressed) or the presynaptic–den-
dritic spikes (gray). F: Similarly, R-STDP is not able to learn the XOR-problem (curve legend
as in E). Inset: average performance after each of the 20 runs.

8



the XOR problem the afferents had low (5Hz) or high (40Hz) Poisson firing rates that
were again constant during the whole stimulus duration. For the direction selectivity
task afferents had a low background firing rate (5Hz) replaced by a moving high firing
rate interval (100Hz) of 15ms duration. An input pattern had a duration of 500ms for
all tasks except the direction selectivity task which learns patterns with a duration of
100ms.

To obtain a learning curve, a running mean of the performance across presentations
was computed with exponential decay constant 0.2/p, where p denotes the number of
patterns to be learned. These running means were again averaged across 20 runs of the
full learning for different weight and pattern initializations.

S1C Mathematical derivation of the learning rules

S1C.1 Derivation of the error-minimizing supervised learning rule (sdSP)

The aim of the supervised plasticity rule is to learn stimulus-response pairs (x, z) where
x denotes a full set of presynaptic spike trains and z is the somatic spike train as a sum
of delta functions (z(t) =

∑
ts δ(t− ts), denoted as S(t) in the Online Methods). Each

pair (x, z) is drawn from a target distribution P ∗(z,x). Here we show that learning
with the supervised plasticity rule maximizes a cost function. This cost function is a
lower bound on the log-likelihood

L(w) = 〈logPw(z|x)〉P ∗(z,x) =
∫

dxdz P ∗(z,x) logPw(z|x).

Note that maximizing L(w) is equivalent to minimizing the Kullback-Leibler divergence
of the learned distribution P to the target distribution P ∗.

In our 2-layer architecture, the conditional probability Pw(z|x) is not analytically
tractable since the activity of dendritic branches acts as hidden variables. We de-
note by yi the NMDA-spike timings of the i-th branch. In addition, the entire set of
NMDA-spikes trains is denoted by y = (y1, . . . , yN). To compute the log-likelihood, we
marginalize out the hidden variables y in the expression,

L(w) =
〈

log
∫

dyPw(z|x,y)Pw(y|x)
〉
P ∗(z,x)

.
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We apply Jensen’s inequality to show that the cost function

C(w) =
〈∫

dyPw(y|x) logPw(z|x,y)
〉
P ∗(z,x)

= 〈logPw(z|x,y)〉P ∗(z,x)Pw(y|x) .

bounds the log-likelihood from below (L(w) > C(w)). In the sequel, the notation 〈·〉
alone means that the expression is averaged over P ∗(z,x)Pw(y|x). The cost function
C(w) is maximized via a stochastic gradient algorithm. The derivative of C(w) with
respect to the synaptic weight wdi is

∂
∂wdi
C(w) =

〈
∂
∂wdi

logPw(z|x,y)
〉

+
〈
logPw(z|x,y) ∂

∂wdi
logPw(y|x)

〉
. (S5)

As computed in [9], the gradient of the first term on the RHS is expressed as (see Eq.
(4) in Online Methods)

∂
∂wdi

logPw(z|x,y) =
∫ T

0
dt βs (αPSPi(s)) (z(t)− ρs(t))

=
∫ T

0
dt βs α e

ss
di(t).

(S6)

In addition, we can manipulate the second term of the RHS to exhibit a efficient
gradient estimator [10]. The procedure consists in averaging the term that accounts for
the neuronal output logPw(z|x,y) over the hidden variable yd at each point in time.

Let y\d denote the vector of all NMDA-spike trains but the d-th and w\d the col-
lection of synaptic weights in all but the d-th dendritic branch. Conditioned on the
input stimulus x, each dendritic spike train is generated independently (Pw(y|x) =
Pw\d(y\d|x)Pw·d(yd|x)), thus we write〈

logPw(z|x,y) ∂
∂wdi

logPw(y|x)
〉

=
∫

dxdzdy\d P ∗(z,x)Pw\d(y\d|x) c′d(w·,d)

with c′d(w·d) =
∫

dyd logPw(z|x,y\d, yd) ∂
∂wdi

Pw·d(yd|x) .
(S7)

In the definition of c′d, we can regard x and y\d as fixed and suppress them in the nota-
tion. To shorten the notation we use y, w· and w instead of yd, w·d and wdirespectively.
We now replace the Poisson process generating y (= yd) by a discrete time process
with step-size δ > 0. The time interval [0, T ] is divided into K intervals of length δ.
The probability to trigger a spike in interval k is

Pw·(Yk = 1) = 1− e−δρd(tk) (S8)

where tk = k δ. Here the bold notation Y = (Y1, . . . , YK) denotes the full series of
discrete binary events in the dendritic branch. With this definition, we can recover
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the original Poisson process by taking the limit δ → 0+. We denote by Ỹ the set of
NMDA-spike timings in Y, i.e. Ỹ = {tk|Yk = 1}. Therefore, we can regard c′d(w) as
the limit

c′d(w) = lim
δ→0+

∑
Y

logPw(z|Ỹ) ∂
∂w
Pw·(Y)

where the sum runs over the set {0, 1}K . Since the local firing rate ρd(tk) in eq. (S8) (see
the Online Methods) depends only on the input x (y is generated by an inhomogeneous
Poisson process), each Yk are independently generated. We can express Pw·(Y) as the
product Pw·(Y\k)Pw·(Yk) where Y\k denotes the full set of discrete events (spikes) but
the k-th (k = 1, . . . , K). Therefore, we can express the function c′d(w) as

c′d(w) = lim
δ→0+

K∑
k=1

gradk,

with

gradk =
∑
Y

logPw(z|Ỹ)Pw·(Y
\k) ∂

∂w
Pw·(Yk) .

We analytically compute the average of gradk over the two outcomes Yk = 1, spike at
time bin k, and Yk = 0, stay quiescent at time bin k. We obtain

gradk =
∑
Y\k

Pw·(Y
\k)

∑
Yk

logPw(z|Ỹ) ∂
∂w
Pw·(Yk)

=
∑
Y\k

Pw·(Y
\k)

[
logPw(z|Ỹ ∪ {tk}] ∂∂wPw·(Yk = 1)

+ logPw(z|Ỹ \ {tk}) ∂∂wPw·(Yk = 0)
]

=
∑
Y\k

Pw·(Y
\k)

[
logPw(z|Ỹ ∪ {tk}] ∂∂wPw·(Yk = 1)

− logPw(z|Ỹ \ {tk}) ∂∂wPw·(Yk = 1)
]
,

where the last line follows from the identity ∂
∂w
Pw·(Yk = 1) = − ∂

∂w
Pw·(Yk = 0). We

introduce the notation

γỸ(tk) = logPw(z|Ỹ ∪ {tk})− logPw(z|Ỹ \ {tk}). (S9)

The function γỸ(tk) quantifies the impact that the initiation of a NMDA spike at tk
would lean on the somatic output. Since Yk is a binary variable, the identity ∂

∂w
Pw·(Yk =
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1) = (2Yk − 1) ∂
∂w
Pw·(Yk) holds independently of the value of Yk. We deduce

gradk =
∑
Y\k

Pw·(Y
\k)γỸ(t) (2Yk − 1) ∂

∂w
Pw·(Yk)

=
∑
Y\k

Pw·(Y
\k)γỸ(t)

1

2

∑
Yk

(2Yk − 1) ∂
∂w
Pw·(Yk)

=
∑
Y

Pw·(Y)
γỸ(t)

2
(2Yk − 1) ∂

∂w
logPw·(Yk),

and
K∑
k=1

gradk =
∑
Y

Pw·(Y)
K∑
k=1

γỸ(t)

2
(2Yk − 1) ∂

∂w
logPw·(Yk).

From the definition (S8), we have

∂
∂w

logPw·(Yk = 1) =
d

dud
ρd(tk)

ρd(tk)
PSP(tk) +O(δ)

∂
∂w

logPw·(Yk = 0) =−δ d
dud

ρd(tk)PSP(tk).

So, taking the limit δ → 0+ and the original notation (the calculation is for the i-th
synapse located in the d-th dendritic branch, see Eq. S7), we obtain

c′d(w, z) =
∫

dyd Pw·d(yd|x)

T∫
0

dt
[

1
2
γyd

(t) d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)
]

︸ ︷︷ ︸
eSL
di

(t):=

, (S10)

where yd(t) denotes the δ-function representation of the set yd, yd(t) =
∑
s∈yd δ(t−s). We

obtain a gradient estimate where hidden variables are partially averaged. In particular,
the second term of the RHS in the equation (S5) is (see Eq. S7)

〈
logPw(z|x,y) ∂

∂wdi
logPw(y|x)

〉
=

〈∫ T

0
dt eSL

di (t)

〉

and it follows that

∂
∂wdi
C(w) =

〈∫ T

0
dt
(
βs α e

ss
di(t) + eSL

di (t)
)〉

. (S11)

This term in the brackets is our unbiased gradient estimate for the cost function C(w).
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S1C.2 Online version of the gradient estimate

Here we show how an approximated version of the gradient estimate (S11) can be
computed online. The central idea is to rewrite the exact gradient estimate (Eq. (S11))
with integrals that could then be implemented by low-pass filtered version. We therefore
replace the rectangular integration window in the Eq. S11 by an exponential one.
First, we introduce the inactivation function Ψyd(t) that depends on the dendritic
spike timings yd and that is 0 during an ongoing NMDA-spike and 1 elsewhere. Note
that Ψyd(t) is related to the NMDA-spikes response function NMDAd(t) via NMDAd(t) =
a (1−Ψyd(t)). As computed in [10], the function γyd

(t) (Eq. S9) is given by

γyd
(t) = aα βs

min(T,t+∆)∫
t

dsΨ
y
\t
d

(s)
(
z(s)− ρs

\d(s)
)

where y\td is the set yd with no spike timing at t (y\td = {s ∈ yd|s 6= t}). In its current
form, it is impossible to compute eSL

di (t) (Eq. S10) online, since the integration of γyd
(t)

extends from the current time t into the future up to t+ ∆. We therefore permute the
integration order to turn the integration into the future to an integration across the
past (see Appendix),

∫ T

0
dt eSL

di (t) =

T∫
0

dt d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)

min(T,t+∆)∫
t

dsΨ
y
\t
d

(s) fd(s)

=

T∫
0

ds fd(s)

s∫
max(0,s−∆)

dtΨ
y
\t
d

(s) d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t)

︸ ︷︷ ︸
ξN
di

(s):=

,
(S12)

with

fd(t) = aαβs
2

(
z(s)− ρs

\d(t)
)
.

Here the stimulus started at 0, therefore the synaptic signal PSPi(t) vanishes for t < 0
and we can set s−∆ instead of max(0, s−∆) as a lower bound for the second integral.
Our aim is to encode each integral by a low pass filter (see below). Since the function
Ψ
y
\t
d

(s) depends on the variables t and s, the function ξN
di(s) is generally not computable

by an online procedure. In the sequel, we will see that we can drop the dependence
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with respect to t in the function Ψ
y
\t
d

(s). We start to decompose ξN
di(s) as follows:

ξN
di(s) =

s∫
s−∆

dtΨ
y
\t
d

(s) d
dud

d

ρd
d(t) PSPi(t)

+

s∫
s−∆

dtΨ
y
\t
d

(s) yd(t)
d

dud
d

log ρd
d(t) PSPi(t) .

(S13)

For a given s, the functions Ψ
y
\t
d

(s) and Ψyd(s) are equal on the set [s−∆, s]\yd. Since
yd is a set of zero measure, we can replace Ψ

y
\t
d

(s) by Ψyd(s) in the first integral in
Eq. S13. The inactivation function Ψyd(s) vanishes if there is an ongoing NMDA spike
at time s and so does the first integral in Eq. S13. Otherwise we have Ψyd(s) = 1
which implies that the second integral in Eq. S13 vanishes since this integral runs only
over the different NMDA-spike timings in the interval [s − ∆, s]. We introduced the
function yd(t) as the δ-function representation constructed from the set of individual
spike times yd and hence, if the inactivation function is 1, no NMDA-spike was initiated
in [s−∆, s]. These two observations allow us to rewrite ξN

di(s) as

ξN
di(s) =


∫ s
s−∆ Ψ

y
\t
d

(s) d
dud

d

log ρd
d(t) yd(t) PSPi(t)dt if s within a NMDA-spike,

∫ s
s−∆

d
dud

d

ρd
d(t) PSPi(t)dt else .

(S14)

In our model, spikes are triggered by point processes, a point event is called a spike
timing. When two NMDA-spikes are triggered in a short interval they do not add up in
amplitude but instead the second one extends the duration of the first one (see Online
Methods). This renders the evaluation of Ψ

y
\t
d

(s) complicated. In order to simplify the
calculation, we assume that NMDA-spike timings are sparse. More precisely, we assume
that each rectangular NMDA spike is triggered by a unique point event. Therefore, if
we assume the presence of a NMDA-spike at time s which was initiated at tdd then the
top integral in (S14) is d

dud
d

log ρd
d(t

d
d) PSPi(t

d
d) since the inactivation function Ψ

y
\td

d
d

(s) is

1 when the unique point event which causes the current dendritic spike is removed. To
summarize, we showed that

ξN
di(s) =


d

dud
d

log ρd
d(t

d
d) PSPi(t

d
d) if s within a NMDA-spike triggered at tdd,∫ s

s−∆
d

dud
d

ρd
d(t) PSPi(t)dt else .

(S15)
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Note that in the Online Methods we put Dend ∗ PSPi(s) = ξN
di(s). Therefore, Eq. (S11)

becomes (see Eq. (S12))

∂
∂wdi
C(w) =

〈∫ T

0
dt
[
aαβs

2

(
z(s)− ρs

\d(t)
)

Dend ∗ PSPi(t) + βs α e
ss
di(t)

]〉

=

〈
αβs

∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]〉

.

In a stochastic ascent algorithm, the term in brackets defines the synaptic update

∆wdi = η
∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]
,

where η denotes the learning rate. We could eliminate the constants α and βs in the
plasticity rule since as a multiplicative constant it can be absorbed by the learning rate
η. The previous update is roughly equivalent to the sdSP plasticity rule in the Main
Text since the low-pass filter Edi(t) (Eq. 8 in Online Methods) at time t represents the
integration of a

2
esds
di (t) + α ess

di(t) from the past to t with an exponential window (the
time constant is τE).

S1C.3 Derivation of the gradient-based reinforcement learning rule (R-sdSP)

Here we show that the rule R-sdSP approximates an online estimate of the gradient of
the expected reward

R̄(w) =
∫

dxdz Pw(z,x)R(z,x)

We maximize R̄ through a stochastic gradient ascent algorithm. We start to marginalize
out y

R̄(w) =
∫

dxdydz Pw(z,x,y)R(z,x)

=
∫

dxdydz Pw(z|x,y)Pw(y|x)P (x)R(z,x) .

The derivative of R̄ with respect to the synaptic weight wdi is

∂
∂wdi

R̄(w) =
〈
R(z,x) ∂

∂wdi
logPw(z|x,y)

〉
Pw(z,x,y)

+
〈
R(z,x) ∂

∂wdi
logPw(y|x)

〉
Pw(z,x,y)

.

(S16)
The first term on the RHS of (S16) is computed in Eq. (S6) and represents the classical
reward maximizing rule [9]. As previously introduced [10], we consider an alternative
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gradient estimator based on the following identity

〈
R(z,x) ∂

∂wdi
logPw(y|x)

〉
Pw(z,x,y)

=

〈
R(z,x)

T∫
0

dt eR
di(t)

〉
Pw(z,x,y)

where
eR
di(t) = tanh

(
1
2
γyd

(t)
)

d
dud

d

log ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t).

More precisely, we have shown in [10] that eR
di(t) is an appropriate gradient estimator

for the second term on the RHS of (S16). Thus, the gradient of the expected reward
can be written as

∂
∂wdi

R̄ =

〈
R(z,x)

∫ T

0
dt
(
αβs e

ss
di(t) + eR

di(t)
)〉

Pw(z,x,y)

,

We observe that if we perform a linear approximation of the hyperbolic tangent then
we obtain eR

di(t) ≈ eSL
di (t). As a result, we can apply the calculation of the previous

section (see Online version of the gradient estimate), it leads to

∂
∂wdi

R̄ ≈
〈
R(z,x)

∫ T

0
dt
(
eSL
di (t) + αβs e

ss
di(t)

)〉
Pw(z,x,y)

=

〈
αβsR(z,x)

∫ T

0
dt
(
a
2
esds
di (t)(t) + ess

di(t)
)〉

Pw(z,x,y)

.

(S17)

and the update rule

∆wdi = η (R−R0)
∫ T

0
dt
[
a
2
esds
di (t)(t) + ess

di(t)
]
,

where η is the learning rate and R0 is a baseline. The constant R0 can be introduced
since the update is roughly a gradient rule [11] and so the following identity holds〈
R0 αβs

∫ T

0
dt
(
a
2
esds
di (t)(t) + ess

di(t)
)〉

Pw(z,x,y)

≈ R0

〈∫ T

0
dt
(
eR
di(t) + αβs e

ss
di(t)

)〉
Pw(z,x,y)

= R0

∫
dxdydz ∂

∂wdi
Pw(z,x,y)

= R0
∂
∂wdi

∫
dxdydz Pw(z,x,y)︸ ︷︷ ︸

=1

= 0.

where the approximation sign accounts for the linear approximation of tanh in the
definition of eR

di(t). As observed at the end of the previous section, the integral of the
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update rule is roughly equal to the value of the low pass-filter Edi(t) (Eq. 8 in Online
Methods) at time T , yielding the plasticity rule cited in the Main Text.

Overall, we made two approximations: (1) The NMDA spikes were supposed to be
sparse in time such that they do not overlap and we could neglect the voltage saturation.
With an NMDA spike duration of 50ms the approximation error is small if the NMDA
spike rate is smaller than 20Hz. (2) The symmetric tanh has been linearized around 0.
Importantly, both approximations never change the sign of any component of the true
gradient vector. Hence, although after the approximations the learning rule may deviate
from the true gradient, it will still be hill climbing. Note that both target functions, the
lower bound of the log-likelihood for supervised learning and the expected reward for
reinforcement learning, are everywhere continuous (in fact differentiable, but in general
not convex), so that learning with these approximations still smoothly maximizes these
target functions (locally).

S1D Appendix

Here we detail the steps from the first to the second line in the formula (S12).

We rewrite the equation (S12) in a form that allows the permutation of the integration
order,

T∫
0

dt eSL
di (t) =

T∫
0

dt ζdi(t)

T∫
0

ds χ[t,t+∆](s) Ψ
y
\t
d

(s) fd(s),

with
ζdi(t) = d

dud
d

ρd
d(t)

(
yd(t) + ρd

d(t)
)

PSPi(t),

and where χ[t,t+∆](s) denotes the indicator function

χ[t,t+∆](s) =

1 if s ∈ [t, t+ ∆]

0 else
.

Now we change the integration order

eCaus

di (z,y,x) =

T∫
0

ds fd(s)

T∫
0

dt χ[t,t+∆](s) Ψ
y
\t
d

(s) ζdi(t).

The inequalities s 6 t 6 s+∆ is equivalent to t−∆ 6 s 6 t, therefore the two functions
χ[t,t+∆](s) and χ[s−∆,s](t) too. As initially, the action of χ[s−∆,s](t) is equivalent to change
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the boundaries of the second integral, we deduce

T∫
0

dt eSL
di (t) =

T∫
0

ds fd(s)

T∫
0

dt χ[s−∆,s](t) Ψ
y
\t
d

(s) ζdi(t)

=

T∫
0

ds fd(s)

s∫
max(0,s−∆)

dt Ψ
y
\t
d

(s) ζdi(t).
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