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Supplementary Methods

Controlling for variable staining and synapse density

We used a machine learning method that uses support vector machines to detect synapses in ethanolic
phosphotungstic acid (EPTA) electron microscopy (EM) images using texture- and shape-based features [1].
The classifier was trained using 3,708 positive examples (synapses) and 39,163 negative examples (non-
synapses) across all ages studied. Overall, the classifier was highly accurate and achieved a precision
of 90.4% with a recall of 50.0% under 10-fold cross-validation. To ensure that synapse densities were
comparable across samples (animals), especially those with variable staining quality, we manually classified
synapses in roughly 20 images per sample, applied the classifier (which was built on training data from all
the other samples) to these images, and then selected the classification threshold that resulted in 50%
recall with 80+% precision (Fig. S1). If precision was < 80% at 50% recall, the sample was removed from
the analysis.

Figure S1. Controlling for image quality in EPTA-EM images. A) First, positive (synapses) and
negative (non-synapses) examples were manually labeled in 20 images in the new sample s. B) Second, the
classifier (trained on images from all other samples, excluding s) was applied to the labeled data for s and the
threshold τ that yielded a recall of 50% with precision > 80% was selected. C) Third, the classifier was applied to
all images in s using τ as the classifier threshold.

To further control for actual variability in synapse density in the tissue itself, four regions were sampled
from within the barrel (Fig. S2) and counts were averaged. For each region, roughly 60 images were taken
(each image is of size 5µm by 5µm) covering a total surface area of 6,000 µm2 per animal. The images
were taken from regions in the same 2D plane.

Figure S2. Electron microscopy imaging within a barrel. To control for variability in synapse density in
different areas in the barrel, 4 regions of the barrel were imaged. Tissue was placed on a mesh copper grid. White
circles depict electron beam residue after images were taken. Approximately 240 images per animal (60 images x 4
regions) were taken covering a total of 6, 000µm2 of tissue per animal.
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Pruning rates and schematics

We divided the developmental pruning period into 10 discrete intervals, and after each interval, some ri
percentage of existing connections were pruned. We considered four pruning rate strategies: increasing,
decreasing, constant, and ending (Fig. S3).

1. Constant rate: r1 = r2 = . . . = r10. Elimination rates are kept constant (i.e. the same percentage
of existing connections are removed in each interval).

2. Increasing rate: r1 < r2 < . . . < r10. Elimination begins very slowly and becomes aggressive
later. This strategy imposes longer-term energetic constraints on the network and results in large
topological changes towards the end of the pruning period; however, it also provides more time to
learn about which connections may be important.

3. Decreasing rate: r1 > r2 > . . . > r10. Elimination begins aggressively and then decelerates over
time. Because many connections are eliminated quickly, this strategy conserves resources overall
and allows greater time for stabilization and reinforcement of important connections while making
relatively minor topological modifications later in development. However, it also forces convergence
to a representative network relatively quickly.

4. Ending rate: r1 = r2 = . . . = r9 = 0 and r10 = B
n(n−1) . Elimination only occurs in the final

interval and immediately reduces the network from a clique to exactly B edges.

To set the ri values for each rate, we do the following: Let E0 be the number of initial edges; then
after the first iteration E0 × (1 − r1) edges remain. After the second iteration, E0 × (1 − r1)(1 − r2)
edges remain, etc. For the constant rate, all ri values are the same and hence can be solved for exactly:
E0(1− rc)I = B, where there are I = 10 pruning intervals and B is the number of final edges.

For increasing rates, we anchor around the constant rate by removing a lower percentage of edges
earlier on and a higher percentage later (Fig. S3). In the first iteration, 10% of edges are removed,
and in the last iteration, the corresponding percentage of edges are removed that would equate to two
pruning iterations at the constant rate. In other words, by setting r1 = 0.1, we can then solve for r10

by: E(1 − rc)(1 − rc) = E(1 − 0.1)(1 − r10), and so r10 = 1 − (1−rc)2
0.9 . In the second iteration, 15% of

the edges are removed, and the second-to-last iteration (r9) is similarly adjusted, etc. Overall, we set
r1 = 0.10, r2 = 0.15, r3 = 0.20, r4 = 0.25, r5 = rc and then solve for r10, r9, r8, r7, r6 = rc, respectively. For
decreasing rates, the sequence of values used for the increasing rate was reversed. While we naturally
observed quantitative differences in efficiency and robustness depending on the exact rate values used for
the increasing and decreasing rates, qualitative results remained the same.

While a percentage of edges are removed in each iteration, this can also be implemented in a fully
distributed manner by having edges with usage values below a certain threshold remove themselves with
an appropriate probability (which will change between iterations).

All strategies begin with n = 1000 nodes and end with exactly B edges (which we vary) after seeing
p = 5000 source-target training pairs.

Figure S3. Four pruning rate strategies. Constant rates (red) prune an equal percentage of existing
connections in each pruning interval. Decreasing rates (blue) prune aggressively early-on and then slower later.
Increasing rates (black) are the opposite of decreasing rates. Ending rates only prune edges in the final iteration.
A) Number of edges remaining after each pruning interval. B) Percentage of edges pruned in each pruning interval.
Here, n = 1000.
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Supplementary Results

Pruning in adult mice

To determine whether pruning continued after P40 into adulthood, we imaged 3 additional mice at age
P65. Fig. S4 shows that synapse density at P40 had indeed stabilized to levels observed in adulthood.

Figure S4. Synapse density in adult mice (P65).
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Potential confounding factors in synapse density estimation

Volumetric differences in the brains of developing mice could be one possible confounding factor when
estimating synapse density. Cortical thickness changes substantially from P5–P15 [2,3], but our experiments
were performed at later time-points, and hence we do not expect this to significantly affect our results.
Age-dependent variability may also arise from differences in pruning rates for excitatory and inhibitory
neurons, but the number of inhibitory synapses in the barrel cortex is also believed to stabilize by P15 [4].

Further, to remove some biases in 2D analysis caused by larger synapses, previous works have proposed
formulas to adjust counts based on the average size of synaptic profiles observed in the sample [5]. For
example, a popular measure of adjustment is based on the Abercrombie correction [6, 7]. This adjustment
is computed as follows: NV = NA×T/(D+T ), where NA is the number of synapses per unit area (image),
T is the section thickness (100nm), D is the mean length of synaptic profiles in the sample, and NV is the
estimated number of synapses per unit volume. We inferred profile lengths directly from the images [1]
and applied the adjustment to each sample. Overall, we still observe a decreasing pruning rate (Fig. S5).

Figure S5. Pruning rate with 3D-count adjustment. Adjusted pruning rate per volume of tissue plotted
using A) the raw data (where each point corresponds to a single animal) and B) the binned data (where each
point averages over animals from a 2-day window).
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Potential for multiple decays during developmental pruning

While we assumed a single pruning process, our data indicates that there may be an additional round of
synaptogenesis at P33 followed by a second pruning period. To test the rates implied by this possibility,
we fit two pruning curves split between P19-P32 and P33-P40 (Fig. S6). The first curve continues to
show a decreasing rate of pruning: 24%, 21%, and 12% of synapses are pruned in successive pruning
intervals during this period. The second pruning curve shows an initial decreasing rate of pruning (13%
to 9%), followed by an increase in the last interval (13%). This data, however, is very difficult to interpret
because of the short time interval for the second curve. For such a short duration the differences between
decreasing and constant pruning rates are minimal (since the number pruning intervals and pruning events
is much smaller than for the longer-duration curve). Further, the new synapses may only undergo minor
pruning, and the additional pruning observed may represent continued pruning of the original synapses.
Thus, it is difficult to tease these two rates apart from our data.

We also computed τ , the exponential time decay constant, of the interpolated pruning curve from P19
to P32. We found that roughly two-thirds of the total pruning occurred within the first τ = 5.8 days,
which further suggests that the majority of elimination is occurring quickly.

Figure S6. Pruning with multiple periods of synaptogenesis and pruning.
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Comparing pruning vs. growing at higher cost values

To show that differences in efficiency and robustness between growing and pruning persist for denser
final networks, we built networks with 1000 nodes and 10-20,000 edges (i.e. 10-20 connections per node,
compared to 2-5 connections per node shown in the main text). Even in this denser regime, we find
significant benefit of the pruning algorithm (Fig. S7).

Figure S7. Comparing pruning and growing for denser networks.
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Comparing two variants of growing

The growing algorithm starts with a random directed spanning tree of the graph computed as follows:
initially, all nodes belong to their own isolated component and in each step, two random nodes u and
v from two different components are selected, and the edges u→ v and v → u are added. This process
repeats until a single strongly connected component is formed, leading to a graph with 2n− 2 edges.

The remaining B − 2n− 2 edges are added during the training phase. Like the pruning algorithms,
sources are routed to their targets via the shortest path in the graph and edge-usage values are maintained
and updated locally. In particular, after every p/(B − 2n− 2) training pairs are processed, a new edge
is added to the graph as follows: we find the highest-use edge u→ v in the graph and the highest-use
neighbor v′ of v and add a shortcut edge u → v′. Such a shortcut improves the future efficiency of
messages that are routed along this already-popular path. This process produces many feed-forward
directed edges by closing triangles, which is a common mechanism of growth in other types of complex
networks [8].

We tested also another growing algorithm that starts with the minimum number of directed edges
required to ensure connectivity between all pairs of n = 1000 nodes. This network contains 999 edges
(consisting of a chain with a loop from the last node back to the first node). Similar to the original growing
algorithm, we added local edges to the tree along popular routes, as can be implemented in a distributed
fashion. We found that the original growing algorithm was much more efficient than the modified version
(called growingalt) across the entire range of costs (Fig. S8). This gain can be attributed to the fact
that the modified growing algorithm initially may need to traverse n− 1 edges to route a request in the
worst-case. Thus, convergence to more appropriate networks is faster for the original growing algorithm.

Figure S8. Comparing the efficiency and robustness of two growing algorithm variants.
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Performance of pruning algorithms that do not start with cliques

How dependent is the performance of our algorithms on the density of the initial graph? To test this,
instead of starting with a clique, we started with sparser networks. In particular, instead of each edge
existing with probability p = 1, we test initial configurations where p = 0.6 or p = 0.8. In both cases, we
see very similar qualitative results and trends across all algorithms (Fig. S9).

Figure S9. Comparing efficiency and robustness of pruning algorithms that start with variable
initial connectivity. A) Initial density is 60% (i.e. each edge exists independently with probability 0.6. B)
Initial density is 80%.
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Analysis of energy consumption by pruning algorithms

Reducing energy consumption is also important in the brain. If energy consumption is measured as the
cumulative number of edges (synapses) maintained during the training period (development), then because
decreasing rates eliminate many edges early (compared to increasing and constant rates), decreasing rates
also consume the least overall energy during learning (Fig. S10).

Figure S10. Cumulative energy consumed by each pruning algorithm. Energy consumption at
interval i is the cumulative number of edges present in the network in interval i and all prior intervals. Here,
n = 1000 and it is assumed that the network initially starts as a clique.
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Theoretical comparison of different pruning rates

To theoretically analyze the properties of the optimal routing network and to compare such properties
to those obtained by each of the network design strategies we simplified the analysis in the following
ways: (1) we only consider efficiency (routing distance) as the optimization target [9]; (2) we assumed
the 2-patch routing distribution used for the simulation; and (3) we approximated the topology of the
output network using three-parameter Erdős-Rényi random graphs. In these graphs, each edge connecting
two source nodes S or target nodes T exists independently with probability p, each edge from S → T
exists with probability q, and each edge from T → S exists with probability z. First, we show that in the
optimal (sparse) network, where there are O(kn) edges (k � n; for example, in the range 2–6), z = 0.

Theorem 1. In the optimal sparse network, there are no directed edges from T → S, i.e. z = 0.

Proof. By contradiction, consider a path that uses such an edge. This path will consist of at least 4 nodes:
s1 → t1 → s2 → t2. Clearly, this path can be made shorter by replacing the intermediate edge t1 → s2
with s1 → s2 or equivalently, by replacing t1 → s2 with t1 → t2. Hence, in the optimal network, there
should be no edges of this type.

Next, we show that different p/q ratios result in different expected path lengths between random
source-target pairs (step 1), and then we show that decreasing pruning rates get closer to the optimal
ratio of p/q than either increasing or constant rates (step 2).

Step 1: source-target connectivity in two-parameter Erdős-Rényi random graphs

Each edge in the network exists independently, thus on average we expect 2pn(n− 1) total directed edges
between nodes in S and T , respectively and qn2 edges from S to T .

Consider the shortest-path distance between a fixed source node s ∈ S and target node t ∈ T . Let Fd

be the probability that dist(s, t) > d, i.e. the shortest-path distance between s and t in G is greater than
d. This is equivalent to the probability that there is no path of length ≤ d from s to t. Below, we derive a
recurrence relation that allows us to compute Fd for any value of d following Blondel et al. [10].

The relation dist(s, t) > d holds if t is not connected to any node at distance < d from s. Because
of the different connection probabilities depending on whether the node is in S and T , we split this
probability into two pieces:

Fd =

n−1∑
k=1

P [nSd = k](1− q)k
n−1∑
k=1

P [nTd = k](1− p)k, (1)

where nSd is the number of nodes in S at distance < d from s, nTd is the same for nodes in T , and P [nd = k]
denotes the probability that nd = k. We approximate each nd distribution by its expectation so that nd
equals the probability a node is distance < d multiplied by n.

nSd = (1− FS
d−1)n (2)

nTd = (1− FT
d−1)n. (3)

Putting these together:

Fd =(1− q)n
S
d (1− p)n

T
d (4)

=(1− q)(1−F
S
d−1)n(1− p)(1−F

T
d−1)n. (5)

The terms FS
d and FT

d correspond to the Fd probabilities with respect to nodes in S and T , respectively.
To calculate these, consider a random node in S. This node is at distance > d from s if it is not the
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Figure S11. Theoretical results for network optimization. (A) Example edge-distribution using
decreasing pruning rates and the 2-patch distribution. (B) Prediction of final network p/q ratio given a
pruning rate. Bold bars indicate simulated ratios, and hashed bars indicate analytical predictions. (C)
Prediction of source-target efficiency given a p/q ratio.

source itself, which happens with probability (1− 1/n), and if it is not connected to any node that is at

distance < d from s, which happens with probability (1− p)(1−F
S
d−1)n. Similarly, consider a random node

in T . This node is at distance > d from s if it is not connected to any node in S (via an edge across the
cut, existing with probability q) nor T (via a lateral edge, existing with probability p) that is distance
< d from s. Thus:

FS
d = (1− 1/n)(1− p)(1−F

S
d−1)n (6)

FT
d = (1− q)(1−F

S
d−1)n(1− p)(1−F

T
d−1)n. (7)

The base case for these recurrences are: FS
0 = 1− 1/n (i.e. a random node in S is at distance > 0 from s

only if it is not s itself) and FT
0 = 1 (i.e. every node in T is at least one hop from s).

The probability that s and t are exactly d hops away is given by fd = Fd−1−Fd. From these relations,
we can compute the expected distance between s and t as:

∑n
d=1 d× fd.

To test the correspondence between theory and practice, we generated random two-parameter Erdős-
Rényi graphs with various ratios of p/q such that the expected number of edges is approximately m = 6000
with n = 1000. For each ratio, we computed the average distance between random s-t pairs and compared
these values with those predicted by our theoretical results above and found very close correspondence
(Fig. S11C).

Step 2: predicting p/q ratios for different pruning strategies

In step 1, we established a link between the p/q ratio and the expected source-target connectivity. Next,
we derive a recurrence to compute the p/q ratios for any given pruning rate.

Our idea is to predict, in each iteration, how many S → S, T → T , and S → T edges will be used to
route source-target requests. This will allow us to calculate how many edges in each class will be pruned,
which will allow us to estimate the values of p and q after each iteration. By repeating this procedure for
each pruning iteration, we can estimate the final values of p and q.

Say we can calculate the values of p and q in iteration i; then from step 1 above we can estimate the
expected path length li for all source-target requests in the following iteration. In every such s-t path,
exactly one S → T edge will be used (because no backwards T → S edges exist) and the remaining li − 1
edges will be split evenly amongst S → S edges and T → T edges. Initially, p0 = q0 = 1 (we start with a
clique) and the expected path length is 1 and only S → T edges will be updated.

For simplicity, assume that if an edge is used once, it will be safe from being pruned in all subsequent
pruning iterations. (Though this assumption can be relaxed, it will likely be the case anyways for
sufficiently large B.) Then, our goal is to keep track of 0-use edges in each edge class (S → S, T → T ,
and S → T ) and prune edges from this set proportionally.

Let fp(0, i) be the number of edges with weight ≥ 0 from S → S (or equivalently, T → T ) after
iteration i, and let fq(0, i) be the same quantity for S → T edges. The total number of 0-use edges in

the network in iteration i is: f(0, i) = 3n2 − fp(1, i)− fq(1, i)−
∑i

k=1 r
′
k. There are approximately 3n2

total edges to start; the second and third terms are the number of edges amongst the S → S and S → T
classes that have been used at least once, and the fourth term is the number of edges pruned thus far (r′k
is the number of edges pruned in the kth interval). Initially, fp(0, 0) = fq(0, 0) = n2.
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In the ith iteration:

fq(0, i) = fq(0, i− 1)− ri
(fq(0, i− 1)− fq(1, i)

f(0, i)

)
. (8)

The first term on the RHS is the current number of 0-weight edges from S → T . From this, we subtract a
proportion ri of the total number of edges that we want to prune in iteration i. This proportion is equal
to the new (reduced) number of 0-weight edges from S → T divided by the total number of 0-weight
edges in the entire network. A similar equation is used to calculate fp(0, i).

To calculate fq(1, i) (the number of edges used at least once from S → T ) we start with the base case:
fq(1, 0) = p/10, i.e. prior to the first iteration, exactly p/10 direct S → T edges have been used, and none
others. The base cases for the S → S edges are: fp(1, 0) = 0 (again, all routes are initially direct because
we start with a clique) and fp(1, 1) = (li − 1)/2× p/10. Here, li is the expected s-t distance derived from
step 1 given the current values of p and q. In this path, exactly one edge will be used to go from S → T
and the remaining edges will be split evenly amongst S → S and T → T edges.

In the ith iteration:

fq(1, i) = fq(1, i− 1) + hyper(N = fq(0, i− 1),m = fq(1, i− 1), n = p/10) (9)

The first term on the RHS is the number of ≥ 1-weight edges in the previous iteration. Some of the
edges used in the next round may overlap with these edges. The function hyper() calculates the expected
number of new edges that were previously of 0-weight but now have weight ≥ 1 using the hypergeometric
formula.

After iteration 10, the final values of p and q are fp(0, 10)/n2 and fq(0, 10)/n2, respectively. The only
variable are the ri values that change depending on the pruning rate.

Given these recurrence formulas, we can compute the ratio of p/q for the final networks for each of the
three pruning strategies (Fig. S11B). We find very close correspondence between the theoretically-derived
ratios and the ratios obtained by the simulations. Decreasing rates produce networks with near-optimal
p/q ratios, whereas increasing rates tend to have larger values of q due to over-fitting to the training data.

Given a specific value for n (number of nodes) and the final connectivity (total number of edges), our
theoretical analysis can estimate which pruning rate leads to the best network efficiency (shortest-path
routing distance). By first applying Step 2, we can determine the expected p/q ratio for each rate. Then
by applying Step 1, we can determine the expected efficiency of the network given this p/q ratio. This
analysis may be useful for several of the applications we outline in the Introduction.
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