Supplementary Text S1

1 Derivation of large population limit for Fisher information

Starting from Equation in the main text, assuming uniform coverage with density p for the population
code.
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2 Relation between memory fidelity and Fisher information

In the ‘[Fisher information analysis]’ main text section, we mentioned that the memory fidelity is approx-
imately half of the Fisher information, which is the expected curvature of the log-posterior.




Assume that we store an item with a single feature 6 in a memory comprising M units whose activities
are denoted collectively by y. Storage is noisy. We perform recall by constructing and then sampling
from the posterior distribution p(# | y). The mode of this distribution, ¢ (y) is a function of y, and in the
cases of interest, will often be an an unbiased estimator of 6, saturating the Cramer-Rao bound, so that

Elt(y) [6]=1¢ (3)
1

Var [t (y) | 0] = FI0) (4)

If the prior over 6 is flat, then the posterior distribution, given y, will, in these circumstances, be
well approximated by a Gaussian distribution with mean ¢(y) and the same variance ﬁw). If we take a

sample 6 from this, then we have

E [éW} =F {E [é|y} |9} = E[t(y)|d] =6 Dby iterated expectations (5)

E [(é - 9)2|9} =F {(é —t(y)* + (ty) — 9)2|9} since 0 is sampled independently of y (6)
=F |Var [é|y} 10| + Var [t(y)|6] (7)
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FI(0) T FI(0) ~ FI(0) (8)

as claimed.

3 Stimuli separation analysis for Hierarchical population code

We perform a similar analysis as for the mixed population code in ‘{The canary]’ main text section, in
which the patterns of error were used to make inferences about the underlying size of the receptive fields of
the units in the population (under various assumptions). See Figure in Text S1 for the results. For most
conjunctivity ratios, the separation between target and non-target recall occurs for a minimum distance
of 0.2. However, the performance saturates at a level that depends on the conjunctivity. Hence for a
given hierarchical conjunctivity, moving the stimuli further apart does not improve recall arbitrarily. This
can be interpreted as being caused by the non-locality of the conjunctive information in the hierarchical
code. Increasing the distance between the stimuli does not change the probability that it falls into a
conjunctive receptive field.

4 Relation between conjunctivity ratio and population size

A reviewer noted that our parameterisation of the mixed population code creates a dependence between
the population size M and the ratio of conjunctivity required to achieve a particular precision. For
instance, the fidelity of feature-selective neurons scales as M, while the precision of conjunctive neurons
scales as M? (for two features). Hence from a purely theoretical point of view, the ratio of conjunctivity
should scale with M.

We tested this hypothesis by looking at storage and recall of just a single item in a mixed population
code, modifying the population size M and the ratio of conjunctivity. The results are shown in Figure [2]
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Figure 1. Patterns of errors as a function of stimulus separation for different proportions
of conjunctive units in the hierarchical population code.

This figure is a version of Figure [16]in the main text, but for a hierarchical rather than mixed
population code. It shows the ratios between the target mixture proportion and the sum of the target
and non-target mixture proportions (in blue), or the same for a non-target mixture proportion (in
green) as a function of the separation in radians between stimuli in the diagonal pattern, for three
hierarchical population codes, with 30%, 50% and 80% conjunctive units. See Supplementary
information [3| for analysis.

in Text S1 in terms of the precision (quantified by the memory error since, as explained in the paper, the
circular standard deviation is too sensitive to outliers). This surface is based on an interpolation between
a set of discrete values of M that fit with the homogeneity of the code.

The ratio necessary to achieve a given x = &~ = 580 did indeed scale with M, at least for most values.
Increasing the population size further led to precisions that were too high, even when increasing the
conjunctivity to its maximum value (hence our target & is not reachable).

Note that we kept M fixed almost throughout the paper, and also that it may not be that human
performance is best fit by using the M that achieves the best precision. Indeed, in our ongoing work on
this, it currently seems as if suboptimality holds.

We also reconfirmed the good fit of the Fisher information to (twice) the memory fidelity . Figure
in Text S1 shows the ratio of the Fisher information to the value that corresponds to the same & shown
in Figure [2]in Text S1; it follows exactly the same trend. Unfortunately, as the Fisher information is a
complex function of the ratio of conjunctivity in the mixed population code, its evolution with M does
not follow any simple relationship.

5 Relation between ratio of conjunctivity when increasing num-
ber of features

For similar reasons, the required fraction of conjunctive units for a given « is also linked to the number
R of feature dimensions. As noted in the main text, although N® conjunctive units are required to cover
the space evenly, only IV - R feature units are required. This comes at the cost of misbinding. Hence it
can be expected than the ratio of conjunctive units that keeps « fixed should decrease as R increases.
Figure [4]in Text S1 shows the effect of varying R, keeping the population size M fixed (to M = 356
in this experiment), and adjusting the ratio of conjunctivity. We tried cueing all the features apart from
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Figure 2. Precision as a function of M and the ratio of conjunctivity.

The plot shows the dependence of the precision (measured, for convenience, as the ratio x/& relative to
a specific value & = 580) for a single item as a function of the size of the population code, M, and the
ratio of conjunctivity. White corresponds to a ratio xk/& of 1; we clamped the ratios between 0.5 and 1.5
for visualisation purposes (ratios smaller than 0.5 are visualized as = 0.5, ratios larger than 1.5 are
visualized as = 1.5). This surface is an interpolation between the points that are possible (to maintain
the homogeneity of the population representation). We see that the white equal-ratio ridge does not
reach the top-right corner and instead seems to “reverse”. This is due to the impossibility to match the
specific value of % for large population sizes.

the one to be recalled (hence simplifying the problem to be trivially similar to the situation with R = 2)
and also tried to cue a single feature (doing Gibbs sampling on all the remaining ones). As no clear
qualitative difference was found, except that the single cued feature case was (as expected) less efficient,
we only report our results for the fully cued case.

We found that the overall precision achievable by the network decreases with R. Hence to achieve
a given precision level, it makes it appear as a smaller ratio is required. However, this does not take
misbinding errors into account.

To show how misbinding occurs, we also checked how the mixture proportion associated with on-
target response changed. As shown in Figure [4] in Text S1 (bottom row), responses were on target for
highly conjunctive populations, decreasing as the ratio of conjunctivity decreased. It can also be seen
that increasing the number of features has an effect, requiring a greater degree of conjunctivity as the
number of features increases. There does not seem to be a simple relationship between the probability
of correctly binding the features together and the number of features and conjunctivity.

We found it quite complicated to construct a single metric that would appropriately combine the
statistics shown in the top and bottom of Figure [d] in Text S1. The precision of the errors, however
promising, is too sensitive to outliers, as discussed in the main text. Hence we keep the two metrics
separate for this current work.
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Figure 3. Fisher information as a predictor of memory fidelity

The plot shows the Fisher information calculated using exactly the same parameters and cases as in
Figure [2/in Text S1. The two figures match closely. Unfortunately, the Fisher information is a complex
function of the ratio of conjunctivity in the mixed population code, and it does not follow an obvious
closed-form relationship with M.
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Figure 4. Effect of R > 2 on the precision.

We simulated the model for 1, 2 and 3 items, and for various numbers of features R and ratios of
conjunctivity, for a fixed size of network (M = 356; for illustration). Top row: Ratio of the obtained
memory precision/fidelity x to an arbitrary target precision of & = 580. As the overall precision x
decreases with R, the ratio required to achieve a give precision also decreases with R. Bottom row:
Mixture proportion associated with responses to the target. This decreases dramatically as the number
of items or features increases.
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