
Supporting information: The microscopic relationships
between triangular arbitrage and cross-currency correlations
in a simple agent based model of foreign exchange markets

Alberto Ciacci1,2,¶,*, Takumi Sueshige3,¶, Hideki Takayasu4,5, Kim Christensen1,2,
Misako Takayasu3,4,*

1 Blackett Laboratory, Imperial College London, London, United Kingdom

2 Center for Complexity Science, Imperial College London, London, United Kingdom

3 Department of Mathematical and Computing Science, School of Computing, Tokyo
Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan

4 Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho,
Yokohama, Japan

5 Sony Computer Science Laboratories, Higashigotanda, Shinagawa-ku, Tokyo, Japan

¶These authors contributed equally to this work

* Corresponding authors

E-mail: alberto.ciacci16@imperial.ac.uk (AC)
E-mail: takayasu.m.aa@m.titech.ac.jp (MT)

S1 Supporting figures1

Fig S1. Mid price patterns. The panels show the dynamics of the mid price
between January 1st 2011 and December 31st 2014 in the EUR/USD (top panels),
USD/JPY (middle panels) and EUR/JPY (bottom panels) markets. Data is provided
by EBS, see Section 2.2.

Fig S2. Dealer Model basics. The market is participated by N = 4 market makers
providing bid bi(t) (blue circles) and ask ai(t) (red circles) quotes, i = 1, . . . , N . The
continuous price grid prevents limit orders to be queued at the same price level. Each
limit order includes one unit of the traded currency. The market making spread
L = ai(t)− bi(t), i = 1, . . . , N is the same for each agent and constant in time, that is,
market makers only manage their dealing price zi(t) = (ai(t) + bi(t))/2, i = 1, . . . , N
(white squares) to dynamically adjust their bid and ask quotes bi(t) = zi(t)− L/2 and
ai(t) = zi(t) +L/2, i = 1, . . . , N . The vertical dashed lines mark the best bid b(t) (blue)
and ask a(t) (red) quotes. The distance between the best quotes is the current spread
s(t) = a(t)− b(t). The current mid price is m(t) = (a(t) + b(t))/2.
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Fig S3. Interactions in the Dealer Model. (a) Market makers are not engaging in
transactions as the best bid price (blue dashed line) is smaller than the best ask price
(red dashed line). (b) The best bid price matches the best ask price, prompting Market
Makers #1 and #2 to exchange one unit of the traded FX rate (green box). The
transaction price is the mid point between the two quotes p = (a1 + b2)/2. (c) This
transaction prompts each market maker to update its dealing price to the latest
transaction price (i.e., z → p).

Fig S4. Interactions in the Arbitrager Model. (a) Market makers are not
engaging in transactions as the best bid price (blue dashed line) is smaller than the best
ask price (red dashed line). (b) The best bid price matches the best ask price,
prompting Market Makers #1 and #2 to exchange one unit of the traded FX rate
(green box). The transaction price is the mid point between the two quotes
p = (a1 + b2)/2. (c) This transaction prompts the two transacting market makers to
re-adjust their dealing prices z to the latest transaction price p.

Fig S5. Exploiting a triangular arbitrage opportunity in the Arbitrager
Model. (a) The states of the three markets before the emergence of an exploitable
triangular arbitrage opportunity. (b) When µI(t) ≥ 1, the arbitrager submits a buy
market order (blue square) in the EUR/JPY market and sell market orders (red
squares) in the EUR/USD and USD/JPY markets, matching the encapsulated limit
orders (i.e., Market Maker # 1 in EUR/JPY, Market Maker # 2 in EUR/USD and
Market Maker # 3 in USD/JPY). (c) The transacting market makers re-adjust their
dealing prices to the quote matched by the arbitrager’s market order (e.g.,
z1,EUR/JPY(t+ dt)→ a1,EUR/JPY(t)), causing a mid price change in each market.

Fig S6. Inverse function sampling in the context of the Arbitrager Model.
(a) The LOB profile is stable if the PDF of r corresponds to the triangular function
ψ`(r) [1]. (b) The CDF Ψ`(r). (c) Schematic of the inverse function sampling applied to
Ψ`(r).

Fig S7. Waiting times statistics in real trading data. Cumulative density
functions (CDFs) of the waiting times between consecutive transactions for EUR/USD
(red), USD/JPY (blue) and EUR/JPY (green) in (a) 2011, (b) 2012, (c) 2013 and (d)
2014. Data is provided by EBS, see Section 2.2.

Fig S8. Waiting times statistics in the Arbitrager Model. Probability density
functions (PDFs) of the waiting times between consecutive transactions for EUR/USD
(red), USD/JPY (blue) and EUR/JPY (green) in the Arbitrager Model. Simulations are
performed under the same settings of the experiment presented in Fig 5(b), bottom
panel. For an adequate comparison against the theoretical predictions of the average
time between consecutive transactions [1], the PDFs do not account for transactions
triggered by the arbitrager.
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Fig S9. Trading data vs. model based cross-correlations functions. Enlarged
visualization of the cross-correlation functions ρi,j(ω) presented in Fig 5. (a) Real
market data (EBS) in 2013. (b) Arbitrager Model simulations. Contrarily to the
cross-correlation functions displayed in (a), the model-based ρi,j(ω) takes non-zero
values when ω → 0 sec and stabilizes on longer time-scales. Simulations are performed
under the same settings of the experiment presented in Fig 5(b), bottom panel. Details
on the initialization of the model and the conversion between simulation time (i.e., time
steps) and real time (i.e., sec) are provided in S3.2 Section.

Fig S10. Foreseeing a triangular arbitrage opportunity in the Arbitrager
Model. The plot considers the EUR/JPY market. The best bid and ask quotes are
marked by the blue and red dashed lines, respectively. The implied best bid price of
EUR/JPY (i.e., bUSD/JPY × bEUR/USD) is denoted by the green solid line. (a) The
current best ask quote aEUR/JPY (red dashed line) is smaller than the implied best bid
quote bUSD/JPY × bEUR/USD (green solid line). This misprice exposes Market Maker #1
to the risk of transacting with the arbitrage who wants to buy low aEUR/JPY and sell
high bUSD/JPY × bEUR/USD. (b) When χI

1,EUR/JPY ≥ 1 + ζMM, EUR/JPY, Market Maker

#1 adjusts its dealing price z1,EUR/JPY to the mid price mEUR/JPY (i.e., the mid point
between the best quotes in (a)). This action neutralizes the existing triangular arbitrage
opportunity as the new best ask quote aEUR/JPY (red dashed line) matches or exceeds
the implied best bid quote bUSD/JPY × bEUR/USD (green solid line).

Fig S11. Trading data vs. model based cross-correlation functions.
Cross-correlation function ρi,j(ω) for ∆USD/JPY vs. ∆EUR/USD (green),
∆EUR/USD vs. ∆EUR/JPY (blue) and ∆USD/JPY vs. ∆EUR/JPY (red) as a
function of the time-scale ω of the underlying time series. (a) Real market data (EBS)
across four distinct years (2011-2014). (b) Extended Arbitrager Model simulations. The
number of participating market makers (NEUR/USD, NUSD/JPY, NEUR/JPY) are
(30, 33, 20) in the first experiment, see (b) top panel, and (30, 27, 20) in the second
experiment, see (b) bottom panel. Details on the other settings of the simulations are
provided in Fig 5. The risk profile of the arbitrager is λA = 0.01 while the risk profiles
of market makers are λMM, USD/JPY = λMM, EUR/USD = λMM, EUR/JPY = 0.001. The
pegging probability in the EUR/JPY market is γ = 0.01. The insets in (b) provide an
enlarged visualization of the cross-correlations functions ρi,j(ω) on very short time-scales
(i.e. ω < 5 sec). Details on the initialization of the model and the conversion between
simulation time (i.e., time steps) and real time (i.e., sec) are provided in S3.2 Section.

Fig S12. Price trend signs and market states. Simulated price patterns of
EUR/USD (top), USD/JPY (mid) and EUR/JPY (bottom). Periods of negative
(positive) price trends are denoted by a red (green) background. Vertical dashed lines
mark a change in the ecology configuration q(t). Price trends φn,` are calculated over
the most recent n = 15 changes in the transaction price and with scaling constant ξ = 5.
The table below the panels combines the market states to show how the ecology
configuration q(t) evolves in time.
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Fig S13. Complementary cumulative distribution function (CCDF) of the
time between the emergence of the first triangular arbitrage opportunity
and the transition to another configuration. The CCDFs are presented in two
separate panels and each color represents a given configuration: (a) {+,+,+} (violet),
{−,+,+} (cyan), {+,−,+} (green) and {−,−,+} (orange). (b) {−,−,−} (violet),
{+,−,−} (cyan), {−,+,−} (green) and {+,+,−} (orange). The black lines mark the
CCDF of the interval (in sec) between a random point in time and the transition to
another configuration. The y-axis is visualized in the logarithmic scale. Configurations
exhibit different tails of the distribution, suggesting that the probability of observing
large waiting times between the emergence of the first triangular arbitrage opportunity
and the transition to another configuration depends on the current combinations of
market states.

Fig S14. Complementary cumulative distribution function (CCDF) of the
time required for the first triangular arbitrage opportunity to emerge. The
CCDFs are presented in two separate panels and each color represents a given
configuration: (a) {+,+,+} (violet), {+,+,+} (cyan), {+,−,+} (green) and {−,−,+}
(orange). (b) {−,−,−} (violet), {+,−,−} (cyan), {−,+,−} (green) and {+,+,−}
(orange). The y-axis is visualized in the logarithmic scale. Configurations exhibit
different tails of the distribution, suggesting that the probability of observing large
waiting times between the inception of the configuration and the emergence of the first
triangular arbitrage opportunity depends on the current combinations of market states.

Fig S15. Fraction of triangular arbitrage opportunities of the first and
second type in each ecology configuration. Black bars denote the incidence of
type 1 opportunities, see Eq. (4a), while white bars represent the incidence of type 2
opportunities, see Eq. (4b). These statistics suggest that one type appears more
frequently than the other, depending on the considered configuration.

Fig S16. The sequence of transitions between configurations exhibits a
clustered behavior. The x-axis represents an arbitrary time window of the
experiment. The y-axis splits the eight ecology configurations in three groups - from top
to bottom: (1) cluster 1, (2) cluster 2 and (3) {−,−,+} and {+,+,−}, which are the
two configurations that do not belong to any cluster. Details on the concept of
configuration clustering are provided in Section 3.2. At each point in time the current
ecology configuration is identified and a marker is added to the group it belongs to. A
visual inspection of the figure reveals the presence of time windows in which the system
moves between configurations belonging to the same cluster, corresponding to the long,
uninterrupted lines observed in groups 1 and 2, but not in group 3. These peculiar
dynamics favor the appearance of configurations belonging to groups 1 and 2 at the
expenses of those belonging to group 3, see Fig 7(b). Details on the conversion between
simulation time (i.e., time steps) and real time (i.e., sec) are provided in S3.2 Section.
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Fig S17. Price trends and changes in market states. Sample averages of the
normalized absolute value of the price trend 〈|φn,`(t)|/p`(t0)〉 for EUR/USD (orange),
USD/JPY (violet) and EUR/JPY (cyan). Normalizing by the initial center of mass
p`(t0) allows to compare the price trends across markets with different price magnitudes.
The value |φn,`(t)|/p`(t0) is exclusively sampled at the emergence of each triangular
arbitrage opportunity and each configuration is considered independently. As
arbitrager’s market orders alter price trends, the value of |φn,`(t)|/p`(t0), where t is the
time step when µI or µII exceeds the unit, provides an intuitive measure of how
currently hard is to flip the state of the `-th market. For instance, consider {+,+,+}
and observe that 〈|φn,`(t)|/p`(t0)〉 is much higher in EUR/JPY than in EUR/USD and
USD/JPY. This is reflected in the probabilities of transitioning from {+,+,+} to other
configurations. Flipping EUR/JPY before the other two markets, causing a transition
to {+,+,−}, occurs in 22.7% of the cases. However, flipping EUR/USD or USD/JPY
first, causing a transition to {−,+,+} or {+,−,+}, occur in 35.8% and 33.6% of the
cases respectively, see S5 Table.

S2 Supporting tables2

Table S1. Tick sizes adopted in the EBS market.

Initial Month USD/JPY EUR/USD EUR/JPY
2011-03 0.01 0.0001 0.01
2012-09 0.001 0.00001 0.001

- 0.005 0.00005 0.005

EBS has changed the tick size twice in the period between January 1st 2011 and
December 31st 2014. The table reports the initial month (yyyy-mm) of each
implementation period (first column) and the corresponding tick size in the USD/JPY
(second column), EUR/USD (third column) and EUR/JPY (fourth column) markets.
See [2] for further details.

Table S2. Parameters governing the dynamics of the Arbitrager Model

Name Symbol Dimension Section
Initial center of mass p`(t0) price S3.2.2

Market making spread L` price S3.2.2
Number of market participants N` dimensionless S3.2.3

Volatility of dealing price updates σ` price/
√

time S3.2.3
Average time between transactions Γ time (sec) S3.2.3

Discretized time step ∆t time (sec) S3.2.3
Price changes accounted in φn,`(t) n dimensionless S3.2.4

Scaling of the weight function in φn,`(t) ξ dimensionless S3.2.4
Trend-following strength c` price/time S3.2.5

The evolution of the Arbitrager Model ecology is controlled by 9 parameters. For each
parameter, the table reports its nomenclature, symbol, dimension and the section which
provides details on how its value is set in the simulations presented in Fig 5.
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Table S3. Initial center of mass and market making spread in each market

Exchange Rate p(t0) L
EUR/USD 1.25 0.05
USD/JPY 110 0.05×(110/1.25)
EUR/JPY 137.5 0.05×(137.5/1.25)

Values of p`(t0) and L` for EUR/USD, USD/JPY and EUR/JPY.

Table S4. Approximate equivalences between real and model time

sec time steps
1 100
10 1000
60 6000

The results of Kanazawa et al. [1, 3] are used to establish an approximate equivalence
between real and model time. Assuming ∆t = 0.01 sec, the table shows how many time
steps roughly equate to 1 sec, 10 sec and 1 min.

Table S5. Transition rates between two configurations

Configuration {+, +, +} {-, +, +} {+, -, +} {-, -, +} {+, +, -} {-, +, -} {+, -, -} {-, -, -}
{+, +, +} 0.358 0.336 0.010 0.227 0.028 0.026 0.014
{-, +, +} 0.375 0.027 0.218 0.011 0.329 0.014 0.026
{+, -, +} 0.364 0.026 0.217 0.012 0.014 0.341 0.026
{-, -, +} 0.035 0.302 0.295 0.006 0.028 0.030 0.305
{+, +, -} 0.304 0.030 0.028 0.007 0.294 0.302 0.035
{-, +, -} 0.026 0.340 0.014 0.012 0.220 0.026 0.363
{+, -, -} 0.028 0.013 0.330 0.011 0.217 0.027 0.374
{-, -, -} 0.015 0.027 0.027 0.226 0.010 0.335 0.359

Rows (Columns) indicate the departed (reached) configuration. These transition rates
correspond to the total number of transitions between two specific configurations
normalized by the total number of transitions from the departed configuration. The two
grey portions of the matrix mark the first (upper-left) and second (lower-right) clusters
discussed in Section 3.2.

S3 Supporting sections3

S3.1 The Dealer Model (Yamada et al. 2009)4

The Dealer Model [4] introduces a simple market ecology in which N agents interact5

in a single inter-dealer market where trading is organized in a LOB. For simplicity, the6

model assumes a continuous price grid, neglecting the role played by the tick size in real7

financial markets. Agents act as market makers by maintaining buy and sell limit orders8

through which they provide a bid and an ask quote to the market, see S2 Fig.9

Transactions occur when the i-th market maker is willing to buy at a price that10

matches or exceeds the ask price of the j-th market maker (i.e., bi ≥ aj). Trades are11

settled at the transaction price p(gt) = (aj(t) + bi(t))/2, where gt is the number of12

transactions occurred in [0, t[. It is important to stress that the mid-price m(t) and the13

transaction price p(gt) are two different quantities. The former, being the mid point14
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between the best quotes, is the center of the LOB and can be tracked at any time step.15

The latter is sampled whenever two market makers engage in a trade.16

The Dealer Model assumes that a transaction prompts the entire market to17

immediately update their dealing prices zi(t+ dt), i = 1, . . . , N to the latest transaction18

price p(gt), see S3 Fig. In the absence of interactions, market makers independently19

update their dealing prices by adopting a trend-based strategy20

dzi(t)

dt
= c〈∆p〉n + σεi(t), i = 1, . . . , N (S1)

where σ > 0 and εi(t) is a Gaussian white noise. The term21

〈∆p〉n =
2

n(n+ 1)

n−1∑
k=0

(n− k)(p(gt − k)− p(gt − k − 1)), (S2)

is a weighted average of the last n < gt changes in the transaction price p.22

The real-valued parameter c controls how the current price trend 〈∆p〉n influences23

market makers’ strategies. For instance, c > 0 represents a market maker that tends to24

adjust its dealing price z(t) in the direction of the price trend (i.e., trend-following).25

Conversely, c < 0 characterizes a market maker that tends to adjust its dealing price in26

the opposite direction of the price trend (i.e., contrarian).27

S3.2 Initialization and dynamic control of the Arbitrager Model28

S3.2.1 Introduction29

Kanazawa et al. [3] have recently introduced a microscopic model of the interactions30

between high frequency traders (HFTs) and investigated its theoretical aspects by31

adapting Boltzmann and Langevin equations to this specific context. The results of this32

work have been further formalized in a parallel study from the same authors [1]. The33

dealing price updates in the HFT model are driven by the following dynamics34

dzi,`(t)

dt
= c∗` tanh

(
p`(gt,`)− p`(gt,` − 1)

∆p∗`

)
+ σ`εi,`(t), i = 1, . . . , N` (S3)

where ∆p∗` , c∗` are constants while the other variables and constants have the same35

meaning as in Eq. (5). It can be shown that setting ∆p∗` � p`(gt`)− p`(gt` − 1) allows36

for a linear approximation of Eq. (S3) that resembles the dynamics of the dealing price37

updates in the Arbitrager Model, see Eq. (5). This correspondence allows to exploit the38

theoretical results of [1, 3] to achieve a satisfactory control of the dynamics of the39

Arbitrager Model. For instance, S8 Fig shows that the average time between40

consecutive transactions in simulations of the Arbitrager Model is in strong agreement41

with its theoretical value estimated in the framework of Kanazawa et al. [1, 3]. The42

following sections provide details on how the parameters governing the evolution of the43

Arbitrager Model, see S2 Table, have been set in the simulations discussed in this study.44

S3.2.2 Initial state of the LOB45

To initialize the `-th LOB, the first step consists in fixing its initial center of mass46

p`(t0) and the constant market making spread L`. The former is set arbitrarily to a47

value with the same magnitude of the mid-price patterns observed in real trading data,48

see S1 Fig. Following the analysis of [3], the market making spread in the USD/JPY49

market is fixed to LUSD/JPY = 0.05. For simplicity, the market making spread in other50

markets is set such that it becomes proportional to the size of p`(t0), that is51

L` = LUSD/JPY × (p`(t0)/pUSD/JPY(t0)).52
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At this point the values in S3 Table are used to obtain the initial dealing prices for53

each trader and market, thus revealing the initial profile of the LOBs54

zi,`(t0) =

{
L`

2

(√
2ui,` − 1

)
+ p`(t0), if 0 < ui,` ≤ 0.5.

L`

2

(
1−

√
2(1− ui,`)

)
+ p`(t0), otherwise,

(S4)

where ui,` ∼ U(0, 1) is an uniformly distributed random variable. The expression in55

Eq. (S4) is derived from the inverse function sampling procedure, see S6 Fig. Let56

r ≡ (z(t0)− p(t0)) be the relative distance between an initial dealing price z(t0) and the57

initial center of mass price p(t0). The LOB profile is stable when the probability density58

function (PDF) of r is59

ψ`(r) =

{
2
L`

(
1− | 2rL`

|
)
, if |r| ≤ L`

2 .

0, otherwise.
(S5)

It follows that the cumulative density function (CDF) of r is60

Ψ`(r) =

{
1

2L2
`

(L` + 2r)
2
, if − L`

2 < r ≤ 0.

− 1
2L2

`
(L` − 2r)

2
+ 1, otherwise.

(S6)

Then, the inverse function of Eq. (S6) is computed61

Ψ−1
` (y) =

{
L`

2

(√
2y − 1

)
, if 0 < y ≤ 0.5.

L`

2

(
1−

√
2(1− y)

)
, if 0.5 < y ≤ 1.

(S7)

Finally, assuming that y = u ∼ U(0, 1), Eq. (S7) is used to obtain the value of the62

initial dealing price zi,`(t0), see Eq. (S4).63

S3.2.3 Relationships between simulation time and real time64

Kanazawa et al. [1] found that the average time between two consecutive65

transactions is66

Γ =
L2
`

2N`σ2
`

. (S8)

For the sake of simplicity, the Arbitrager Model relies on the assumption that the three67

markets moves at the same pace, on average. This implies that Γ is the same in each68

market and constant in time. The parameter Γ is derived from real trading data. First,69

the average waiting times between consecutive transactions are calculated in each70

market and for each trading year. This leads to 12 averages (i.e., 4 years × 3 FX rates).71

Finally, the median of these averages is computed to obtain a common value for Γ. In72

the dataset employed in this study it turns out that Γ ≈ 0.7 sec, see S7 Fig. To ensure73

that simulations of our model maintain Γ ≈ 0.7 sec, the remaining free parameters N`74

and σ` must be fixed such that Eq. (S8) is satisfied. The number of market makers75

participating each market is set heuristically by considering several combinations76

(NEUR/USD,NUSD/JPY,NEUR/JPY) and examining how well the model-based77

cross-correlation function ρi,j(ω) replicates the same function built on real trading data.78

Having fixed N`, the volatility of the dealing price updates79

σ` =
L`√
2N`Γ

(S9)

is found by rearranging Eq. (S8). Finally, the amplitude of a discretized time step in the80

model simulation ∆t should be set such that ∆t� Γ. Therefore, this parameter is fixed81
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to ∆t = 0.01 sec and used in the discrete approximation of Eq. (5). S8 Fig shows the82

distributions of the time between consecutive transactions in simulations of the83

Arbitrager Model. The average waiting time is Γ̃ ≈ 0.65 sec (65 time steps), which is84

very close to the theoretical value Γ ≈ 0.7 sec. Acknowledging the simplifications that85

characterize the Arbitrager Model (e.g., Γ is the same in each market), the approximate86

equivalence ∆t = 0.01 sec is used to convert simulation time steps in real time, see87

S4 Table, and compare the stabilization of the data-based and model-based88

cross-correlation functions ρi,j(ω), see Fig 5 and S11 Fig.89

S3.2.4 Parameters involved in the calculation of the current price trend90

The calculation of the price trend process φn,`(t), see Eq. (6), relies on two91

parameters: the number of accounted transaction price changes n and the scaling92

constant of the exponential weighting function ξ. In the simulations presented in Fig 593

and S11 Fig these are arbitrarily set to n = 15 observations and ξ = 5. These choices94

allow to model a scenario in which trend-following market makers do not exclusively95

rely on the latest change in the transaction price to determine the current direction of96

the market. Instead, they compute a weighted average of the most recent price changes97

where weights are calculated according to an exponential function.98

S3.2.5 Trend-following strength parameter99

The trend-following strength parameter c determines how the sign and value of the100

current price trend φn,`(t) affect the strategic decisions of the participating market101

makers. When c > 0, market makers are likely to update their dealing prices z(t)102

upward when the price trend is positive and downward when the price trend is negative.103

Conversely, c < 0 indicates that market makers are more likely to update their dealing104

prices in the opposite direction of the price trend sign.105

Recently, Sueshige et al. [5] have classified the strategic behavior of FX traders by106

examining EBS data covering the trading activity in the USD/JPY market during the107

week starting from June 5th 2016. They found that a significant fraction of traders108

adopt trend-following strategies (i.e., c > 0). This observation is consistent with the109

model of Yura et al. [6].110

Relying on these studies, the assumption that market makers populating the111

Arbitrager Model ecology adopt trend-following strategies (i.e., c > 0) is enforced. For112

simplicity, c is the same for every market maker and across markets. This parameter is113

fixed according to Eq. (91) in [1]114

∆p̃∗ = 1/(cΓ), (S10)

where ∆p̃∗ is a non-dimensional parameter. Furthermore, ∆p̃∗ shall take values that are115

not far from 2 for the model to produce the marginal trend-following behavior, which116

successfully replicated various statistical properties of real trading data in [1]. This117

allows to set c = 0.8, thus obtaining ∆p̃∗ ≈ 1.79.118

S3.3 An extended version of the Arbitrager Model119

S3.3.1 Motivations120

The Arbitrager Model qualitatively replicates the shape of the cross-correlation121

functions ρi,j(ω) and provides important insights on how the microscopic interactions122

between market makers and arbitragers entangles the dynamics of different FX rates.123

However, the cross-correlation functions ρi,j(ω) reproduced by this extremely simple124

model present two features that are not found in real trading data. First, on extremely125
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short time-scales (i.e., ω → 0 sec) the model-based ρi,j(ω) does not approach zero as the126

same function built on real trading data. Second, the model-based ρi,j(ω) flattens when127

ω ' 30 sec while the data-based ρi,j(ω) flattens when ω ' 10 sec, see S9 Fig.128

It is plausible that these differences stem from the extreme simplicity of the129

Arbitrager Model. To verify this assertion, a modified version of the model which130

mimics more features of real FX markets is introduced in this section. This extended,131

more realistic framework retains the same fundamental rules of the Arbitrager Model,132

that is, i) market makers continuously provide liquidity in a single market and ii) the133

arbitrager is the only agent allowed to operate across markets through the submission of134

predatory market orders. However, it also adds three distinct features inspired by real135

markets practices. First, agents’ responses to triangular arbitrage opportunities emerge136

from a more rational decision making process in which they take into the account the137

risks associated to the implementation of this strategy. Second, market makers foresee138

predatory market orders and re-adjust their quotes in advance, reducing the likelihood139

of being matched by arbitragers’ orders. Third, market makers operating in the140

EUR/JPY market peg their quotes to the implied best bid and ask prices with141

probability γ. This introduces an additional toy (i.e., unrealistic) mechanism through142

which the dynamics of different FX rates become entangled.143

S3.3.2 The arbitrager144

In the original model, see Section 2.3, the arbitrager automatically submits145

predatory market orders as soon as Eqs. (4a) or (4b) exceeds the unit. In real FX146

markets this decision is far less trivial as these orders might not be executed at the147

prices used in the calculation of Eqs. (4a) and (4b). For instance, faster traders could148

have already exploited the existing opportunity, pushing back Eqs. (4a) or (4b) below149

the unit. As a result, the profitable misprice evaporates, exposing slower arbitragers to150

the risk of generating losses. To address this limitation, the extended Arbitrager Model151

introduces a more realistic decision making process in which the arbitrager takes into152

the account the risks associated with this trading strategy. In particular, the arbitrager153

submits market orders if one of the following conditions is satisfied154

µI(t) ≥ 1 + ζA(t), (S11a)

155

µII(t) ≥ 1 + ζA(t), (S11b)

where ζA(t) ∼ exp(λA). The parameter λA represents the risk profile of the arbitrager.156

The higher the value of λA, the more profitable the gap between real and implied prices157

must be to convince the arbitrager to exploit the current opportunity.158

S3.3.3 Market makers159

The submission of predatory market orders ensures immediate execution, forcing the160

matched market makers to either sell too low or buy too high. In the original Arbitrager161

Model, see Section 2.3, market makers remain indifferent to triangular arbitrage162

opportunities, that is, they do not attempt to anticipate the arbitrager to avoid163

predatory market orders. However, it is plausible that such a simplifying assumption164

does not adequately describe the behavior of liquidity providers acting in real FX165

markets. In this extension of the Arbitrager Model the strategic behaviors of market166

makers are enhanced by allowing them to foresee the arbitrager’s moves and re-adjust167

their quotes accordingly. Their dealing price updates are driven by Eq. (5), however,168

they also track the likelihood of engaging in an unfavourable transaction with the169

arbitrager. For instance, the i-th market maker operating in the EUR/JPY market170
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monitors its exposure to predatory market orders by calculating the following ratios171

χI
i,EUR/JPY(t) =

bUSD/JPY(t)× bEUR/USD(t)

ai,EUR/JPY(t)
, (S12a)

172

χII
i,EUR/JPY(t) =

bi,EUR/JPY(t)

aUSD/JPY(t)× aEUR/USD(t)
, (S12b)

where bi,`(t) and ai,`(t) are the current bid and ask limit prices of the i-th market173

maker and b`(t) and a`(t) are the current best quotes in the `-th market. Clearly,174

Eqs. (S12a) and (S12b) can be straightforwardly rewritten for market makers operating175

in the USD/JPY or EUR/USD markets.176

The more Eqs. (S12a) or (S12b) exceeds the unit, the larger the discrepancy177

between the current quote of the i-th market maker and the implied best cross FX rate.178

In the former case, the i-th market maker is underpricing EUR/JPY, facing the risk of179

selling too low. In the latter case, the i-th market maker is overpricing EUR/JPY,180

facing the risk of buying too high. As the implied cross FX rate is the same for every181

agent, the market maker with the highest value of χ is always the one who is offering182

the best quote, hence the first to be matched by predatory market orders.183

In the same spirit of Eqs. (S11a) and (S11b), the i-th market maker, perceiving a184

high risk of interacting with the arbitrager, deletes and re-adjusts its current quotes if185

one of the following conditions is satisfied186

χI
i,EUR/JPY(t) ≥ 1 + ζMM, EUR/JPY(t), (S13a)

187

χII
i,EUR/JPY(t) ≥ 1 + ζMM, EUR/JPY(t), (S13b)

where ζMM, EUR/JPY(t) ∼ exp(λMM, EUR/JPY). The parameter λMM,EUR/JPY represents188

the average risk profile (i.e., is the same for every market maker) in the EUR/JPY189

market. The lower the value of λMM,EUR/JPY, the less market makers tolerate their190

exposure to predatory market orders.191

When Eqs. (S13a) or (S13b) is satisfied, the i-th market maker sets its dealing price192

to the current mid price mEUR/JPY(t) = (aEUR/JPY(t) + bEUR/JPY(t))/2, rejecting the193

update imposed by Eq. (5) to reduce the risk of engaging in a transaction with the194

arbitrager, see S10 Fig. This mimics real traders deleting their limit orders queued in195

the very first levels of the LOB to replace them with new orders lying farther away from196

the current best quotes.197

S3.3.4 An additional price-entangling mechanism198

The law of one price states that in frictionless markets the prices of two assets with199

the same cash flows must be identical [7]. The law of one price is maintained by two200

distinct mechanisms, triangular arbitrage and shopping around, which promptly correct201

temporary gaps between the prices of two identical assets [7]. The former has been202

extensively described in Section 2.1.2 and it is the only way to enforce the law of one203

price in the standard version of the Arbitrager Model, see Section 2.3. The latter204

mechanism relates to the fact that rational traders, having detected two assets with205

identical cash flows but different prices, always buy the one with lower price and sell the206

one with higher price. This alters the demand and supply in the markets in which these207

assets are exchanged, thus closing the gap between their prices [7]. Reproducing the208

shopping around mechanism in the Arbitrager Model requires market makers to operate209

in multiple LOBs. To avoid a complete overhaul of the fundamentals of the Arbitrager210

Model, its extension includes a simpler stylized mechanism which retains the basic211

feature that distinguishes shopping around from triangular arbitrage, that is, the212
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absence of a round trip (e.g. JPY → EUR → USD → JPY) [7]. Market makers213

operating in the EUR/JPY market peg their bid and ask quotes to the implied best bid214

and ask prices with constant probability γ, thus rejecting the dealing price update215

imposed by Eq. (5). For instance, the quotes of the i-th market maker that decides to216

peg its prices to the implied best quotes at time t are217

bi,EUR/JPY(t) = bEUR/USD(t)× bUSD/JPY(t), (S14)

ai,EUR/JPY(t) = aEUR/USD(t)× aUSD/JPY(t). (S15)

This introduces an additional, simplistic mechanism through which the price of218

EUR/JPY is pushed towards its implied FX cross rate EUR/USD×USD/JPY.219

S3.3.5 Cross-correlation functions and discussion220

The inclusion of additional features of real FX markets improves the replication of221

the characteristic shape of ρi,j(ω). In particular, both the data-based and model-based222

cross-correlation functions ρi,j(ω) approach zero on extremely short time-scales (i.e.,223

ω → 0 sec), see insets of S11(b) Fig. Furthermore, the model-based ρi,j(ω) flattens on224

much shorter time-scales when compared to the standard Arbitrager Model, see Fig 5(b)225

vs. S11(b) Fig. This rapid stabilization is indeed observed in cross-correlation functions226

derived from real trading data, see S11(a) Fig.227

These results suggest that the discrepancies between model-based and data-based228

cross-correlation functions stem from the extreme simplicity of the Arbitrager Model229

which neglects several features and practices of real FX markets. Nonetheless, the230

standard Arbitrager Model succeeds in providing a comprehensive and intriguing231

explanation on how the dynamics of different FX rates are entangled at a microscopic232

level. This result is remarkable, considering the limited number of input parameters and233

straightforward settings that characterize this model.234

The effort of extending the Arbitrager Model provides few important insights. First,235

the inclusion of reacting market makers corrects the behavior of ρi,j(ω) when ω → 0 sec,236

that is, the model-based cross-correlation function collapses to zero as in real trading237

data. The key difference between arbitragers and market makers reactions to triangular238

arbitrage opportunities is that the former prompt simultaneous transactions, causing239

mid price changes in each market, while the latter cause a sequence of asynchronous240

mid price changes and eventually transactions. The characteristic shape of ρi,j(ω)241

presented in S11(b) Fig is based on a set of risk profile parameters that gives market242

makers a predominant role at the expense of the arbitrager. This means that a large243

fraction of triangular arbitrage opportunities are neutralized by market makers before244

the arbitrager can place predatory market orders. This result should not be interpreted245

as an estimate of the fraction of opportunities that are destroyed by market makers or246

exploited by arbitragers in real FX markets. However, it suggests that the entanglement247

of the dynamics of FX rates starts at different times in each market, depending on the248

current state of the LOB.249

The second insight emerging from S11 Fig is that the interdependencies among250

currencies stem from the interplay of several agents’ behaviors. While the interactions251

between triangular arbitrage and trend-following strategies retain a primary, necessary252

role in the entanglement of FX rates dynamics, the introduction of a second,253

complementary mechanism (i.e., shopping around) to close the gap between real and254

implied prices allows the model based ρi,j(ω) to stabilize on shorter time-scales ω,255

obtaining a characteristic shape that is strongly compatible with the same function256

derived from real trading data. This suggests that in real FX markets additional257

strategies are likely to interact with triangular arbitrage and trend-following behaviors258

to shape the features of cross-currency correlations.259
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