S1 Appendix

S1.1 Further details for extracting motifs by mimicking POIMs

Definition S. 1 (SubPPMs). A PPM of length k is modeled as a set of D SubPPMs, $D:=k-\tilde{k}+1$ with length $\tilde{k} \leq k$, where SubPPMs are defined by

$$
\tilde{m}_{d}\left(m_{k}, \tilde{k}\right):=(\tilde{r}, \tilde{\mu}, \sigma), \forall d=0, \ldots, D-1
$$

Here, $\tilde{\mu}:=\mu+d$ and $\tilde{r}:=r[d, d+\tilde{k}-1]$, where $r[d, d+\tilde{k}-1]$ is the d-th until the $(d+\tilde{k}-1)$-th column of the PPMs PWM r.
Notation S.1. Let $\tilde{k} \in \mathbb{N}$ be the value defining the SubPPMs of Def. S.1 and $\mathcal{K} \subset \mathbb{N},|\mathcal{K}|<\infty$ defining the set of motif lengths, so that $\forall k^{\prime} \in \mathbb{N}$ with $k^{\prime}<\tilde{k}: k^{\prime} \notin \mathcal{K}$ and $T \in \mathbb{N}_{0}^{\max (\mathcal{K})}$ be the vector defining the number of motifs of any length in \mathcal{K}.

Given Def. S.1 and Notation S.1, the objective function is as follows:

$$
\begin{equation*}
f(\eta)=\frac{1}{2} \sum_{k \in \mathcal{K}} \sum_{y \in \Sigma^{\tilde{k}}} \sum_{j=1}^{L}\left(\sum_{t=1}^{T_{k}} \lambda_{k, t} \sum_{d=0}^{D-1} R_{y, j}\left(\tilde{m}_{d}\left(m_{k, t}, \tilde{k}\right)\right)-Q_{\tilde{k}, y, j}\right)^{2} \tag{S.1}
\end{equation*}
$$

where λ indicates the motif relevance and $\eta=\left(m_{k, t}, \lambda_{k, t}, \tilde{k}\right)_{t=1, \ldots, T_{k}, k \in \mathcal{K}}$. The associated constrained non-linear optimization problem is thus as follows:

$$
\begin{array}{clc}
\min _{\left(m_{k, t}, \lambda_{k, t}\right)_{t=1, \ldots, T_{k}, k \in \mathcal{K}}} & f(\eta) & \tag{S.2}\\
\text { s.t. } & \epsilon \leq \sigma_{k, t} \leq k, & t=1, \ldots, T_{k}, k \in \mathcal{K} \\
& 1 \leq \mu_{k, t} \leq L-k+1, & t=1, \ldots, T_{k}, k \in \mathcal{K} \\
& 0 \leq \lambda_{k, t} \leq \infty, & t=1, \ldots, T_{k}, k \in \mathcal{K} \\
& \epsilon \leq r_{k, t, o, s} \leq 1, & t=1, \ldots, T_{k}, k \in \mathcal{K} \\
& o=1, \ldots,|\Sigma|, s=1, \ldots, k, \sum_{o=1}^{|\Sigma|} r_{k, t, o, s}=1
\end{array}
$$

S1.2 Extension of Theorem ?? and ?? to Multiple Motifs

Theorem S.1. Given Notation S.1 suppose that the objective function f of the following optimization problem

$$
\begin{array}{ll}
\min _{r} & f\left(\left(m_{k, t}\right)_{t=1, \ldots, T_{k}, k \in \mathcal{K}}\right)=\frac{1}{2} \sum_{k \in \mathcal{K}} \sum_{y \in \Sigma^{\tilde{k}}} \sum_{j=1}^{L-\tilde{k}+1}\left(\sum_{t=1}^{T_{k}}\left(R_{y, j}\left(m_{k, t}\right)-S_{\tilde{k}, y, j}+c\right)\right)^{2} \\
\text { s.t. } & 0 \leq r_{k, t, o, s} \leq 1 \quad t=1, \ldots, T_{k}, k \in \mathcal{K}, o=1, \ldots, 4, s=1, \ldots, k \\
& \sum_{o} r_{k, t, o, s}=1 \quad t=1, \ldots, T_{k}, k \in \mathcal{K}, s=1, \ldots, k
\end{array}
$$

is convex and let r_{c}^{*} be the optimal solution, then $\forall c^{\prime} \in \mathbb{R} r_{c^{\prime}}^{*}=r_{c}^{*}$.
Proof. Let r_{c}^{*} be the optimal solution of the objective function f S.3 with the inequality constraints $h_{k, t, o, s, 1}=-r_{k, t, o, s}$ and
$h_{k, t, o, s, 2}=r_{k, t, o, s}-1, k \in \mathcal{K}, t=1, \ldots, T_{k}, o=1, \ldots, 4, s=1, \ldots, k, i=1,2$ and the equality constraints $g_{k}, t, s=\sum_{o} r_{o, s}-1, k \in \mathcal{K}, t=1, \ldots, T_{k}, s=1, \ldots, k$, and let η and ξ be the Lagrangian multipliers, then the Lagrangian function is as follows
$\mathcal{L}(r, \eta, \xi)=f\left(r_{c}^{*} ; \mu\right)+\sum_{k \in \mathcal{K}} \sum_{t=1}^{T_{k}} \sum_{o=1}^{4} \sum_{s=1}^{k} \sum_{i=1}^{2} \eta_{k, t, o, s, i} h_{k, t, o, s, i}+\sum_{k \in \mathcal{K}} \sum_{t=1}^{T_{k}} \sum_{s=1}^{k} \xi_{k, t, s} g_{k, t, s}$.

The Karush-Kuhn-Tucker(KKT) conditions are satisfied for r_{c}^{*} : The primal feasibility conditions $\left(g_{k, t, s}=0, \mathcal{K}, t=1, \ldots, T_{k}, s=1, \ldots, k\right.$ and $\left.h_{k, t, o, s, i} \leq 0, \mathcal{K}, t=1, \ldots, T_{k}, o=1, \ldots, 4, s=1, \ldots, k, i=1,2\right)$ are trivially fulfilled, since r_{c}^{*} is a stochastic matrix. Together with the dual feasibility conditions $(\eta \geq 0)$ the complementary slackness condition
$\left(\eta_{k, t, o, s, i} h_{k, t, o, s, i}=0, \mathcal{K}, t=1, \ldots, T_{k}, o=1, \ldots, 4, s=1, \ldots, k, i=1,2\right)$ are trivially fulfilled as well, which leaves us to show that the stationarity condition

$$
\nabla f\left(r_{c}^{*} ; \mu\right)+\sum_{k \in \mathcal{K}} \sum_{t=1}^{T_{k}} \sum_{i=1}^{2} \sum_{o} \sum_{s=1}^{k} \eta_{k, t, o, s, 1} \nabla h_{k, t, o, s, i}+\sum_{k \in \mathcal{K}} \sum_{t=1}^{T_{k}} \sum_{s}^{k} \xi_{k, t, s} \nabla g_{k, t, s}=0
$$

is satisfied. Therefore we insert the derivations and reorganize for the Lagrange multipliers ξ, which leads to

$$
\begin{aligned}
\xi_{k, t, s}= & -\sum_{k \in \mathcal{K}} \sum_{y} \sum_{j} 1_{\{i \in \mathcal{U}(\mu)\}}\left(\sum_{t=1}^{T_{k}} \prod_{l=1}^{\tilde{k}} r_{c, k, t, y_{l}, j+l}^{*} \prod_{\substack{l=1 \\
l \neq t}}^{\tilde{k}} r_{c, k, t, y_{l}, j+l}^{*}\right. \\
& \left.-\left(S_{\tilde{k}, y, j+\mu}-c\right) \prod_{\substack{l=1 \\
l \neq t}}^{\tilde{k}} r_{c, k, t, y_{l}, j+l}^{*}\right)+\sum_{k \in \mathcal{K}} \sum_{t=1}^{T_{k}} \sum_{i=1}^{2} \eta_{k, t, o, s, i} .
\end{aligned}
$$

With $\xi \in \mathbb{R}$ it holds, that for any $c^{\prime} \in \mathbb{R} r_{c^{\prime}}^{*}=r_{c}^{*}$. The fact that f is convex, h is convex and g is affine denotes the KKT conditions as sufficient and concludes the proof.

Theorem S. 2 (Convexity for multiple motifs). Given Notation 1, let D be a convex set, $m_{k} \in D$ a probabilistic motif, S a gPOIM, such that $S_{\tilde{k}, y, j} \in \mathbb{R}$ for $y \in \Sigma^{\tilde{k}}$ and $j=1, \ldots, L-\tilde{k}+1, \mu \in[1, L-k+1], c \in \mathbb{R}$ and $S_{\lfloor }$the element wise minimum of S then, if $c \geq \mathbb{1}_{\left\{S_{\mathrm{L}}<0\right\}} S_{\mathrm{L}}+\mathbb{1}_{\left\{S_{\mathrm{L}}<T_{k}\right\}} T_{k}$ it holds that

$$
f\left(\left(m_{k, t}\right)_{t=1, \ldots, T_{k}, k \in \mathcal{K}}\right)=\frac{1}{2} \sum_{k \in \mathcal{K}} \sum_{y \in \Sigma^{\tilde{k}}} \sum_{j=1}^{L-\tilde{k}+1}\left(\sum_{t=1}^{T_{k}} R_{y, j}\left(m_{k, t}\right)-\left(S_{\tilde{k}, y, j}+c\right)\right)^{2}
$$

is convex.
Proof. We have to proof the following inequality to show convexity of $f\left(m_{k}\right)$

$$
\begin{array}{r}
\left\|\sum_{t=1}^{T_{k}} R\left(\Phi r_{k, t}+(1-\Phi) s_{k, t} ; \mu\right)-\left(S+c^{\prime}\right)\right\|_{2}^{2} \leq \Phi\left\|\sum_{t=1}^{T_{k}} R\left(r_{k, t} ; \mu\right)-\left(S+c^{\prime}\right)\right\|_{2}^{2} \\
+(1-\Phi)\left\|\sum_{t=1}^{T_{k}} R\left(s_{k, t} ; \mu\right)-\left(S+c^{\prime}\right)\right\|_{2}^{2}
\end{array}
$$

which is, for the case $j \notin \mathbb{1}_{\{i \in \mathcal{U}(\mu)\}}$, trivially fulfilled for $c^{\prime} \in \mathbb{R}$. This, due to the fact, that a sum of convex functions is convex, leaves us with showing the following inequality

$$
\begin{array}{r}
\left(\sum_{t=1}^{T_{k}} \Phi a_{t}+(1-\Phi) b_{t}-\left(S_{\tilde{k}, y, j}+c^{\prime}\right)\right)^{2} \leq \Phi\left(\sum_{t=1}^{T_{k}} a_{t}-\left(S_{\tilde{k}, y, j}+c^{\prime}\right)\right)^{2} \\
+(1-\Phi)\left(\sum_{t=1}^{T_{k}} b_{t}-\left(S_{\tilde{k}, y, j}+c^{\prime}\right)\right)^{2} \tag{S.3}
\end{array}
$$

where we replaced the PWM products $\prod_{l=j}^{k+j} r_{k, t, y_{l}, l}$ and $\prod_{l=j}^{k+j} s_{k, t, y_{l}, l}$ by a_{t} and b_{t} for more transparency. After resolving and transforming Eq. (S.3) shortens to

$$
\begin{equation*}
\Phi^{2} \sum_{t=1}^{T_{k}} a_{t}^{2}+2 \Phi \sum_{t=1}^{T_{k}} a_{t} b_{t}-2 \Phi^{2} \sum_{t=1}^{T_{k}} a_{t} b_{t} \leq \Phi \sum_{t=1}^{T_{k}} a_{t}^{2}+2 \Phi\left(S_{\tilde{k}, y, j}+c^{\prime}\right)^{2} . \tag{S.4}
\end{equation*}
$$

Since $-2 \Phi^{2} \sum_{t=1}^{T_{k}} a_{t} b_{t} \leq 0$ and $\Phi^{2} \sum_{t=1}^{T_{k}} a_{t}^{2} \leq \Phi \sum_{t=1}^{T_{k}} a_{t}^{2}$, Eq. S.4) reduces to $\sum_{t=1}^{T_{k}} a_{t} b_{t} \leq\left(S_{\tilde{k}, y, j}+c^{\prime}\right)^{2}$. The fact that the maximum of $\sum_{t=1}^{T_{k}} a_{t} b_{t}$ is T_{k}, concludes the proof for $c \geq c^{\prime}$ with $c^{\prime}=\mathbb{1}_{\{\min (S)<0\}} S_{\llcorner }+\mathbb{1}_{\left\{S_{L}<T_{k}\right\}} T_{k}$.

