
S1 Appendix
S1.1 Further details for extracting motifs by mimicking POIMs

Definition S.1 (SubPPMs). A PPM of length k is modeled as a set of D SubPPMs,
D := k − k̃ + 1 with length k̃ ≤ k, where SubPPMs are defined by

m̃d(mk, k̃) := (r̃, µ̃, σ), ∀ d = 0, . . . , D − 1 .

Here, µ̃ := µ+ d and r̃ := r[d, d+ k̃ − 1], where r[d, d+ k̃ − 1] is the d-th until the
(d+ k̃ − 1)-th column of the PPMs PWM r.

Notation S.1. Let k̃ ∈ N be the value defining the SubPPMs of Def. S.1 and K ⊂ N, |K| <∞
defining the set of motif lengths, so that ∀k′ ∈ N with k′ < k̃ : k′ /∈ K and T ∈ Nmax(K)

0 be the
vector defining the number of motifs of any length in K.

Given Def. S.1 and Notation S.1, the objective function is as follows:

f(η) =
1

2

∑
k∈K

∑
y∈Σk̃

L∑
j=1

( Tk∑
t=1

λk,t

D−1∑
d=0

Ry,j(m̃d(mk,t, k̃))−Qk̃,y,j

)2

, (S.1)

where λ indicates the motif relevance and η = (mk,t, λk,t, k̃)t=1,...,Tk,k∈K . The associated
constrained non-linear optimization problem is thus as follows:

min
(mk,t,λk,t)t=1,...,Tk,k∈K

f(η) (S.2)

s.t. ε ≤ σk,t ≤ k, t = 1, . . . , Tk , k ∈ K
1 ≤ µk,t ≤ L− k + 1, t = 1, . . . , Tk , k ∈ K
0 ≤ λk,t ≤ ∞, t = 1, . . . , Tk , k ∈ K
ε ≤ rk,t,o,s ≤ 1, t = 1, . . . , Tk , k ∈ K

o = 1, . . . , |Σ|, s = 1, . . . , k ,

|Σ|∑
o=1

rk,t,o,s = 1 .

S1.2 Extension of Theorem ?? and ?? to Multiple Motifs

Theorem S.1. Given Notation S.1, suppose that the objective function f of the following
optimization problem

min
r

f((mk,t)t=1,...,Tk,k∈K) =
1

2

∑
k∈K

∑
y∈Σk̃

L−k̃+1∑
j=1

( Tk∑
t=1

(
Ry,j(mk,t)− Sk̃,y,j + c

))2

s.t. 0 ≤ rk,t,o,s ≤ 1 t = 1, . . . , Tk, k ∈ K, o = 1, . . . , 4, s = 1, . . . , k ,∑
o

rk,t,o,s = 1 t = 1, . . . , Tk, k ∈ K, s = 1, . . . , k ,

is convex and let r∗c be the optimal solution, then ∀c′ ∈ R r∗c′ = r∗c .

Proof. Let r∗c be the optimal solution of the objective function f (S.3) with the inequality
constraints hk,t,o,s,1 = −rk,t,o,s and
hk,t,o,s,2 = rk,t,o,s − 1, k ∈ K, t = 1, . . . , Tk, o = 1, . . . , 4, s = 1, . . . , k, i = 1, 2 and the
equality constraints gk, t, s =

∑
o ro,s − 1, k ∈ K, t = 1, . . . , Tk, s = 1, . . . , k, and let η and ξ

be the Lagrangian multipliers, then the Lagrangian function is as follows

L(r, η, ξ) = f(r∗c ;µ) +
∑
k∈K

Tk∑
t=1

4∑
o=1

k∑
s=1

2∑
i=1

ηk,t,o,s,ihk,t,o,s,i +
∑
k∈K

Tk∑
t=1

k∑
s=1

ξk,t,sgk,t,s .
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The Karush-Kuhn-Tucker(KKT) conditions are satisfied for r∗c : The primal feasibility
conditions (gk,t,s = 0, K, t = 1, . . . , Tk, s = 1, . . . , k and
hk,t,o,s,i ≤ 0, K, t = 1, . . . , Tk, o = 1, . . . , 4, s = 1, . . . , k, i = 1, 2) are trivially fulfilled,
since r∗c is a stochastic matrix. Together with the dual feasibility conditions (η ≥ 0) the
complementary slackness condition
(ηk,t,o,s,ihk,t,o,s,i = 0, K, t = 1, . . . , Tk, o = 1, . . . , 4, s = 1, . . . , k, i = 1, 2) are trivially
fulfilled as well, which leaves us to show that the stationarity condition

∇f(r∗c ;µ) +
∑
k∈K

Tk∑
t=1

2∑
i=1

∑
o

k∑
s=1

ηk,t,o,s,1∇hk,t,o,s,i +
∑
k∈K

Tk∑
t=1

k∑
s

ξk,t,s∇gk,t,s = 0

is satisfied. Therefore we insert the derivations and reorganize for the Lagrange multipliers ξ ,
which leads to

ξk,t,s = −
∑
k∈K

∑
y

∑
j

1{i∈U(µ)}

( Tk∑
t=1

k̃∏
l=1

r∗c,k,t,yl,j+l

k̃∏
l=1
l 6=t

r∗c,k,t,yl,j+l

−(Sk̃,y,j+µ − c)
k̃∏
l=1
l 6=t

r∗c,k,t,yl,j+l

)
+
∑
k∈K

Tk∑
t=1

2∑
i=1

ηk,t,o,s,i.

With ξ ∈ R it holds, that for any c′ ∈ R r∗c′ = r∗c . The fact that f is convex, h is convex and g is
affine denotes the KKT conditions as sufficient and concludes the proof.

Theorem S.2 (Convexity for multiple motifs). Given Notation 1, let D be a convex set,
mk ∈ D a probabilistic motif, S a gPOIM, such that Sk̃,y,j ∈ R for y ∈ Σk̃ and
j = 1, . . . , L− k̃ + 1, µ ∈ [1, L− k + 1], c ∈ R and Sb the element wise minimum of S then, if
c ≥ 1{Sb<0}Sb + 1{Sb<Tk}Tk it holds that

f((mk,t)t=1,...,Tk,k∈K) =
1

2

∑
k∈K

∑
y∈Σk̃

L−k̃+1∑
j=1

(
Tk∑
t=1

Ry,j(mk,t)− (Sk̃,y,j + c)

)2

is convex.

Proof. We have to proof the following inequality to show convexity of f(mk)

||
Tk∑
t=1

R(Φrk,t + (1− Φ)sk,t;µ)− (S + c′)||22 ≤ Φ||
Tk∑
t=1

R(rk,t;µ)− (S + c′)||22

+(1− Φ)||
Tk∑
t=1

R(sk,t;µ)− (S + c′)||22

which is, for the case j /∈ 1{i∈U(µ)}, trivially fulfilled for c′ ∈ R. This, due to the fact, that a
sum of convex functions is convex, leaves us with showing the following inequality

( Tk∑
t=1

Φat + (1− Φ)bt − (Sk̃,y,j + c′)
)2 ≤ Φ

( Tk∑
t=1

at − (Sk̃,y,j + c′)
)2

+(1− Φ)
( Tk∑
t=1

bt − (Sk̃,y,j + c′)
)2
, (S.3)
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where we replaced the PWM products
∏k+j
l=j rk,t,yl,l and

∏k+j
l=j sk,t,yl,l by at and bt for more

transparency. After resolving and transforming Eq. (S.3) shortens to

Φ2
Tk∑
t=1

a2
t + 2Φ

Tk∑
t=1

atbt − 2Φ2
Tk∑
t=1

atbt ≤ Φ

Tk∑
t=1

a2
t + 2Φ(Sk̃,y,j + c′)2. (S.4)

Since −2Φ2
Tk∑
t=1

atbt ≤ 0 and Φ2
Tk∑
t=1

a2
t ≤ Φ

Tk∑
t=1

a2
t , Eq. (S.4) reduces to

Tk∑
t=1

atbt ≤ (Sk̃,y,j + c′)2. The fact that the maximum of
Tk∑
t=1

atbt is Tk, concludes the proof for

c ≥ c′ with c′ = 1{min(S)<0}Sb + 1{Sb<Tk}Tk.
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