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[bookmark: OLE_LINK8][bookmark: OLE_LINK24][bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: _GoBack]Temperature sensitivity of the oscillation period for TCO topologies. Based on the temperature dependence of the reaction rate in Arrhenius form , the condition for temperature-compensated oscillations (TCOs) is mathematically given by the following balance:
 				(S1) 
or simply, 
 ,										(S2) 
where P and T are the oscillation period and temperature, respectively, and ki is the reaction rate of the i-th reaction step with activation energy Ei.  is the control coefficient, which is the sensitivity of the oscillation period to changes in rate . The balance principle requires that activation energies  and sensitivities  satisfy Eq. (1) over the physiological temperature range. Generally, the control coefficient  can depend on temperature, whereas the activation energy  does not change. These feature complicate the analysis of temperature compensation. 

[bookmark: OLE_LINK31]The TCO mechanism for motif C. The dynamical model for motif C is given by the following equations:   
			  		(S4)
							(S5)
For spontaneous oscillations as demonstrated in S6 Fig, a complete cycle can be roughly divided into four stages according to the dynamical concentration of x2: the ascent phase , during which x2 increases from 10% to 90% of its peak concentration (equivalent to approximately ); a short rising-to-falling transition phase , where x2 turns from growth to decay; a descent phase , during which the concentration x2 falls from 90% to 10% of the peak value; and the final transient phase , in which the concentration trend reverses from decay to growth. The trajectory dwells for a much longer time in the ascent and descent phases than in the two transient phases; therefore + contribute the most and determine the oscillation period. The ascent and descent periods  and  can be estimated quantitatively as shown in the following. 

The basal rates  are small and therefore can be neglected for approximation. Consider the situation in which  is not large (this is the case in our simulations). As  in the ascending phase takes generally larger values, the condition is approximately satisfied. In the ascending phase, Eq. (S5) can be simplified to the following form: 
	      					 		(S6)
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Let a and b denote 10% and 90% of the peak value of , respectively. The time span of the ascending phase can be estimated as:
					(S7)
As  is the peak value of ,  indicates that the ascending phase is primarily determined by the decay rate . In the descending phase  takes very small values, and therefore1 is satisfied. Equation (S5) could thus be reduced simply to the following: 
										(S8)
[bookmark: OLE_LINK22][bookmark: OLE_LINK23]Once again, the time period of the descending phase is also . The time period for the two transition phases is relatively rather small and could be considered constant. Rough estimates indicate that the oscillation period is dominated mainly by the decay rate of . Good TCOs in Motif C can be achieved by an insensitive dependence of  on temperature. This is equivalent to a low activation energy for rate constant , which depends on temperature in Arrhenius form. Therefore, the key for motif C to achieve TCOs is that the oscillation period is determined by those rates that are robust against temperature changes and is insensitive to other rates that might vary significantly with temperature. This mechanism for TCOs is abundant in more complex topologies, as demonstrated in 5S Fig. 

[bookmark: OLE_LINK3][bookmark: OLE_LINK33]The TCO mechanism for motif B. The ODEs describing the dynamical behaviors of motif B take the following form: 
							(S9)
When the basal expression level and equilibrium constants are sufficiently small, that is, , the above equation can be simplified as follows:
					 			(S10)
The equations can be reduced and rewritten with rescaled variables, , as in the following form: 
			  	 					(S11)
Where ,  and  are defined as:
						(S12)
						(S13)
						(S14)
()
For oscillations described by Eqs. S11, the oscillation period depends obviously on only three constants: ,  and  When the temperature is varied, the other constants are still affected, but they change only the amplitude of the oscillation because they have been absorbed into the rescaled variables. If the degradation rates ,  and  change rarely with very small activation energies, the oscillation period will be independent of changes in temperature. Based on this mechanism, motif B has more chances than motifs A, C, and D to find appropriate parameter combinations in the random sampling to achieve a TCO. This can be seen in Fig 2a, where the q-value for motif B is the highest among all simplest motifs. However, the feature of rescaled variables is lost when motif B is appended with additional regulations. Consequently, topologies based on motif B, such as motif combinations of AB in Fig 2b, are rare in robust TCO networks. Combinations of BD, BCD, ABD, and ABCD do not occur because the components B and D conflict with each other.

[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK32][bookmark: OLE_LINK46][bookmark: OLE_LINK47]Parameters for motifs A, B, C and D depicted in Fig 4. The data are obtained by sampling in our calculations to achieve temperature-compensated oscillation (the unit of activation energy is ): 
Motif A:
Panel a1 in Fig 4:
	
	75.1373
	
	91.3175

	
	4.4017
	
	21.5105

	
	32.3268
	
	70.2810

	
	2.3373
	
	27.2672

	
	3.4795
	
	4.5133

	
	2.5372
	
	5.9500

	
	1.1751
	
	0.4789

	
	0.5592
	
	



 
Panel a2 in Fig 4: 
	
	20.2075
	
	22.0466

	
	32.2602
	
	6.4342

	
	4.3018
	
	54.0131

	
	0.7295
	
	44.9472

	
	2.1761
	
	6.1090

	
	4.6461
	
	7.5286

	
	1.2560
	
	0.0474

	
	0.4205
	
	



Motif B:
Panel b1 in Fig 4: 
	
	72.0327
	
	53.2876

	
	54.4270
	
	40.7005

	
	7.7616
	
	58.5484

	
	3.2657
	
	13.9308

	
	0.7077
	
	40.1097

	
	0.5895
	
	20.7207

	
	1.2442
	
	0.8975

	
	0.1225
	
	



Panel b2 in Fig 4: 
	
	76.3547
	
	97.3001

	
	2.6878
	
	93.8843

	
	35.6883
	
	41.8608

	
	1.0140
	
	5.6923

	
	0.3062
	
	23.7395

	
	0.7384
	
	29.8998

	
	1.0288
	
	3.3588

	
	3.5744
	
	



Motif C: 
Panel c1 in Fig 4:
	
	58.3185
	
	95.7044

	
	22.9047
	
	61.9621

	
	1.3313
	
	23.0470

	
	0.6190
	
	31.4024

	
	0.0773
	
	0.0293

	
	0.9872
	
	



Panel c2 in Fig 4: 
	
	15.5317
	
	49.7462

	
	93.3070
	
	8.2498

	
	1.6079
	
	11.7129

	
	0.1387
	
	10.7176

	
	0.0100
	
	0.0583

	
	0.9734
	
	



Motif D:
Panel d1 in Fig 4: 
	
	59.8371
	
	91.0139

	
	2.7900
	
	4.9611

	
	2.2976
	
	44.1693

	
	0.2757
	
	42.7280

	
	0.1234
	
	31.8613

	
	0.3839
	
	0.0130

	
	56.3680
	
	



Panel d2 in Fig 4: 
	
	88.2806
	
	80.3749

	
	2.4901
	
	54.2136

	
	5.6915
	
	35.7226

	
	8.4083
	
	43.1770

	
	0.2053
	
	13.3548

	
	0.0206
	
	0.0113

	
	9.4021
	
	



Parameters for circuits depicted in Fig 6b. 
	
	58.3185
	
	95.7044

	
	22.9047
	
	61.9621

	
	1.3313
	
	23.0470

	
	0.6190
	
	31.4024

	
	0.0773
	
	0.0293

	
	0.9872
	
	



Parameters for circuits depicted in Fig 6c. 
	
	15.5317
	
	49.7462

	
	93.3070
	
	8.2498

	
	1.6079
	
	11.7129

	
	0.1387
	
	10.7176

	
	0.0100
	
	0.0583

	
	0.9734
	
	




Dynamical ODEs for motif A:

Dynamical ODEs for motif D:

Dynamical ODES for the motif combination A+C in S3 Fig: 

Dynamical ODES for the motif combination B+C in S3 Fig: 


Parameters for Motif C depicted in S6 Fig.
	
	57.4523
	
	99.6706

	
	38.1739
	
	96.8089

	
	0.8537
	
	12.5766

	
	0.2685
	
	11.7727

	
	0.0264
	
	0.0506

	
	1.8065
	
	







