This multivariate technique determines linear combinations of an m-variate set of random variables that possess a mean
of zero that has a maximum variance, i.e. t; = p1j@1 + pojTo + - +PijTi + - -+ PpjTm = 2111 DijT; = p;fx and E{t?} is a
maximum. By setting the vector p; to be of unit length, the PCA objective function is J(p;) = E{p;rszpj} —Aj (p]ij -1
(Kruger and Xie, 2012). As E{p;ra?prj} = pjTE{ach tp; = p;-fS’mpj, where S, is the covariance matrix of the random vector
x, the maximum of J(p;) is given by the eigenvector associated with the jth largest eigenvector of Sy, [66]. The orthogonal
projection of a sample onto the direction vector p; is given by (p;z)pj and the orthogonal distance of the projection and
the sample is x — (p;fx)pj. The variance of ¢; is equal to the jth largest eigenvalue of S, such that the variance of t; is
larger or equal to that of t5. Generally, ' = {tf} <FE {t? 41}~ Consequently, the eigenvalue plot reveals how many important
principal components the variable set x contains. Moreover, the linear combinations of the dominant principal components
reveal variable interrelationships among the variable set in x. For example, plotting the elements of p; versus the elements of
P2, i.e. the two most important principal components, to produce a scatter diagram yields, graphically, the most dominant
variable interrelationships in form of clusters.
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