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Supplementary Results

Parameter pairs show only weak pairwise associations. I asked whether pairs
of parameters are more useful than single parameters in characterizing circuit behavior.
For example, if it is crucial that a reaction proceed at an intermediate rate for normal
glucose uptake, then increasing values for the parameter determining its forward rate
might be accompanied by decreasing values for the parameter determining its reverse rate,
leading to a negative association between the two. To find out whether such associations
exist, I computed pairwise statistical associations between all pairs of parameters, for
uniform samples of 1000 parameter sets that lead to either normal or reduced glucose
signaling. Figure S2 shows the Spearman rank correlation coefficients between all possible
105(=n(n− 1)/2 for n = 15) parameter pairs. The pairwise associations are quite modest,
none of them exceeding R = 0.4. For circuits with normal signaling behavior, the largest
pairwise association exists between kB,PI45P2 and kB,PKCZP

, but it is below 0.3 in absolute
value (R = −0.24;P = 5.9× 10−15). In circuits with impaired signaling, the forward and
reverse reaction rates kF,PKCZP

and kB,PKCZP
show the strongest association, but it also

is modest (R = 0.3;P < 1.0× 10−22). In sum, pairwise associations do not help identify
circuit components crucial for the signaling phenotype.

Linear combinations of multiple parameters explain a small fraction of vi-
able parameter variation. To find out whether groups of more than two parameters
may be more informative, I used principal component analysis, a widely used technique to
identify linear combinations of variates (here: individual parameters) that can explain most
of the variance in a set of multivariate data (here: viable parameter sets). If any one linear
combination of few parameters cipi was able to explain most of the variance in a set of
parameters {pi} associated with a specific phenotype (normal or reduced glucose uptake),
then these parameters would be especially important determinants of this behavior. Alas,
such a parameter combination does not exist. Specifically, the first principal component of
the data, which accounts for the largest fraction of the variance, explains only 10.3 percent
and 9.9 percent of this variance for parameter sets yielding normal and diseased signaling
behavior, respectively (Figure S3). In addition, the proportionality constants ci (also
known as loadings in principal component analysis) are very different for the two samples.
In sum, no single linear combination of parameters can encapsulate circuit behavior.

The distribution of ranked fdel across parameters shows that parameter
importance varies broadly across parameter sets. To assess how strongly the
fraction of deleterious mutations fdel varies for any one parameter across viable parameter
sets, I ranked parameters within any one parameter set according to fdel. Specifically, I
assigned the lowest possible rank of 15 to a parameter if fdel = 0, and the highest possible
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rank of 1 if mutations in the parameter had the largest fraction of deleterious effects
among all 15 parameters. Judged by the distribution of these ranks across parameter sets,
the importance of parameters varies again broadly (Figure S9). All but two parameters
(fPKCZP and kB,IRS1SP , Figure S9n and S9o) assume the highest rank in some parameter
sets, i.e., their mutation is most likely to cause a deleterious phenotype; they assume
intermediate ranks in others, and the lowest rank (never deleterious) in most data sets.

Logistic and linear regression analysis of glucose uptake phenotype. Analo-
gous to logistic regression, I performed 100 different linear regression analyses, one each
for 100 pairs of two populations of size 1000, where one population in a pair had normal
glucose uptake, and the other had pathologically reduced glucose uptake. I found that
p-values for each of the 15 parameters (predictor variables) vary over an enormous range,
i.e., between 130 (kB,IRS1SP ) and 318 (kB,PPKCZP ) orders of magnitude (Figure S11).
And even though all parameters show extremely low (highly significant) p-values in some
populations, they are non-significant in others (p > 0.05, Figure S11). The fraction of
populations where p > 0.05 ranges from 1 percent (kB,PI45P2) to 26 percent (kB,PI34P2),
with a mean of 12.9 percent. When ranking each of the 15 parameters according to its
p-value for a population, I find that the ranks vary broadly, i.e., they have the maximally
possible range (1-15) for 10 parameters, and only somewhat lower ranges for the others
(kB,IRS1P.PI3K : 4-14; kF,PI34P2: 2-15; kB,AKTP : 2-15; fPKCZP ; and kB,IRS1SP : 5-15; see
Figure S12). In sum, a parameter important to explain changes in glucose uptake in one
population typically has greatly diminished importance in some other population.

Linear regression also allows one to compute the fraction of a population’s phenotypic
variance that can be explained through the sum of the predictor variables xi (

∑
βixi,

where the βi’s are regression coefficients) via the coefficient of determination R2
lin. The

distribution of R2
lin (Figure S13a) shows that in most populations, most phenotypic

variation can be explained additively. Although one might naively conclude from this
observation that an additive model would be useful to explain phenotypic variation, the
extreme variability of parameter importance shows that this interpretation would be
misleading. The relative importance of predictor variables (parameters) in a truly linear
model would be essentially the same in different populations of the size I study, but this is
emphatically not the case in the insulin signaling circuit, where a parameter may have a
high importance in some populations and low importance in others.

A recurrent question in genetic association studies regards the prevalence of epistatic
(non-additive) interactions among pairs of loci. In the insulin signaling circuit there
are sufficiently few such interactions (among parameters) to study the contribution of
all pairwise interactions, and ask whether they are important to predict the phenotype.
To this end, I performed a regression analysis that aims to predict phenotypic variance
through the expression

∑
i βixi +

∑
i<j εijxixj, i.e., it allows multiplicative interactions

among all pairs of parameters. For each of the 100 populations, I computed the fraction
of variance R2

epi explained by this epistatic model (Figure S13b). I found that R2 ranges
between 0.23 and 0.91, depending on the population). By subtracting the linear coefficient
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of determinationR2
lin from it one obtains the fraction of variance explained only by

multiplicative interactions R2
epi − R2

lin. This fraction is generally small (Figure S13c),
explaining between 4.3 and 24.3 percent of the variance, depending on the population. The
remaining variance would have to be explained by non-multiplicative pairwise epistasis
or by higher order interactions. And even though this fraction of remaining variance is
usually not high (Figure S13b), the same caution applies as to linear regression: The high
fraction of explained variance can create the illusion that the contribution of individual
disease determinants to phenotype is well-captured by a simple additive-multiplicative
model, where this contribution would not vary greatly among populations.
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