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1. Free energy

In the present model, the configuration of the vascularised tissue is represented by an order parameter φ(r) that

distinguishes the two phases of the system, being equal to 1 inside the capillary and -1 outside [1]. To describe

the elastic behaviour we include a displacement field u(r) that represents the local displacement with respect to

the reference unstressed configuration. Akin to what happens in phase separation of elastic blends [2, 3], the order

parameter relaxes much slower than the mechanical environment, and therefore, we consider that all the forces are

constant in time when describing the evolution of φ. Our strategy starts by defining a free-energy functional of the

order parameter and the displacement field. For this specific free energy we will start by obtaining the displacement

as a function of the order parameter. We can then calculate the functional derivative of the free energy with respect

to the order parameter, i.e. the chemical potential of the system. The evolution of the order parameter depends of

this chemical potential in the following manner [1, 4]:

∂φ

∂t
= M∇2

δF

δφ
+ prolif. ,

where M is the mobility coefficient and the last term corresponds to the proliferation of the tissue cells.

The free energy of the system is then the sum of Fφ, the energy associated to the system configuration, with the

elastic free energy associated to the displacements, Fel, and with the free energy related to the forces exerted by the

cells in the system Ff. Therefore:

F [φ(r),u(r)] = Fφ[φ(r)]+Fel [u(r)]+Ff[φ(r),u(r)] =
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In this equation ρφ
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is the contribution to the free energy density that is associated to the

order parameter. This term is responsible for the interface between the two tissues [1], and leads to a Cahn-Hilliard

term [4] in the final equation. In here, ρφ is proportional to the free energy density of a pure phase, a is a constant

and ǫ is the width of the interface, which in phase-field models is also associated to the surface tension. This term

guarantees the existence of two minima in the free energy (corresponding to the two phases) and includes an energy

penalty for spatial variations of the order parameter, i.e. a surface tension.

The elastic contribution for the feee-energy density is given by 1

2
σ : ε, where the strain tensor elements are

εij =
1

2
(∂iuj + ∂jui) .

We consider the tissues to be homogeneous and isotropic for simplicity, though a similar derivation of the model can

be also obtained for other constitutive relations. For isotropic and homogeneous materials the stress tensor elements

are given by

σij = Kδijεkk + 2µ

(

εij −
1

d
δijεkk

)

.

In this equation K is the compressibility modulus, µ the rigidity modulus, d the dimensionality of the system, and

δij the Kronecker symbol.
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The free energy density associated to the force exerted by the cells, −χ∇ · u, will be discussed below.

Since the displacement field relaxes much faster than the order parameter, we can consider a situation of mechanical

equilibrium, i.e. δF
δui

= 0. Calculating the functional derivative of Fel with respect to the displacement we obtain

δFel

δui
= −∂j

[

Kδijεkk + 2µ

(

εij −
1

d
δijεkk

)]

= −∂jσij .

Therefore, since the mechanical equilibrium law states that δF
δui

= ∂jσij + fi = 0, the force density exerted by the cells

has to obey −fi =
δFf

δui
= ∂iχ. And so, the gradient of the field χ(r) if proportional to the force density.

There are two important forces in the system: the traction exerted by the tip cell, fti = −∂iχ
t, and the force

exerted when one cell adheres to its neighbour. This force of adhesion mimics the attraction between neighbouring

cells that is conveyed by the adhesion molecules [5], and can be written as fai = −∂iχ
a = α∂iφ, where α is a constant.

This force points in the direction of increasing φ and has the role of balancing the pulling exerted at the tip during

angiogenesis [6]. The corresponding field χa(r) is then given by χa(r) = −αφ(r). Notice that while the adhesion

χa(r) is a function of the order parameter, we assume that the traction force exerted by the tip cell is not a function

of φ. At the tip, the cell will contract and keep the traction force for some time while the tissue adapts to that force.

During that time, χt(r) is a constant field.

2. Evolution of the order parameter

Considering a small difference between the rigidity moduli of the two phases, such that µ = µ0−µ1φ, with µ1 ≪ µ0,

we will expand the derivative of the free energy with respect to the displacement in powers of µ1. In the same way, the

displacement field u(r) and the free energy function can also be split into components of order zero and components

of order one: u(r) = u0(r) + u1(r) and F [φ(r), w(r)] = F 0[φ(r), w(r)] + F 1[φ(r), w(r)].

Collecting the terms of first order, we obtain:

δF 0
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= −
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d
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∂iju
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∂iju
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= −
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)

∂ijjw = −L0∂ijjw ,

where L0 =
(

K − 2µ0

d + 2µ0

)

is a constant and we define a field w such that u0(r) = ∇w.

The derivative of the whole free energy yields δF
δui

= 0, giving −L0∂ijjw + ∂iχ = 0. This equation is satisfied if

L0∇
2w = χ = −αφ+ χt . (2)

Using equation (2), and the definition of w, we can re-write F 0

el[φ(r), w(r)] + F 0

f [φ(r), w(r)] in equation (1) to get:

F 0

el[φ(r), w(r)] + F 0

f [φ(r), w(r)] = −

∫

dr
1

2
χ∇2w = −

∫

dr
χ2

2L0

.

Repeating the process for the first order term in the free energy we observe that all the terms in this order that are

proportional to u1(r) cancel out, giving simply

F 1

el[φ(r), w(r)] + F 1

f [φ(r), w(r)] = −

∫

drµ1φ

(

∂ijw ∂ijw −
1

d
(∇2w)2

)

.
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Putting all together, we can finally calculate the partial derivative of the free energy with respect to the order

parameter:

δF

δφ
= ρφ

(

−φ+ φ3 − ǫ2∇2φ
)

+
αχt

L0

− µ1

(

∂ijw ∂ijw −
1

d
(∇2w)2

)

+
2µ1α

L0

(

[∇]−2∂ij(φ ∂ijw)−
φ

d
∇2w

)

,

where [∇]−2 is the inverse laplacian operator, and the constant a can be set for convenience such that a− α2

L0ρφ
= 1,

such that the two minima of the order parameter fall at φ = 1 and φ = −1.

Finally we can obtain the equation for the evolution of φ by ∂φ
∂t = M∇2 δF

δφ (to which we will add the proliferation

term below), yielding

∂φ

∂t
= M
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(3)

3. Numerical Implementation

In a square domain of 120 × 120 µm, with a lattice unit of 1 µm, we start with a single vessel of width 10 µm,

where φ = 1 inside that vessel and φ = −1 outside. The VEGF initial concentration V (r, 0) is set to have a constant

gradient, with V = 1 at the system’s right boundary, and V = 0 at its left boundary.

The VEGF concentration in the system evolves according to the following diffusion equation:

∂V

∂t
= DV ∇

2V − αV V φΘ(φ) ,

where DV is the diffusion constant of VEGF, αV is the VEGF consumption rate by the endothelial cells, and Θ(φ)

is the Heaviside function. The penetration width of VEGF in the endothelial tissue is given by
√

DV /αV [1]. This

equation is solved by finite differences and with fixed values of V at the left and right boundary conditions.

We start by running the simulation for a sufficient number of time steps until the VEGF field becomes stationary.

Then, at the vessel’s mid-height, on its right surface, we will include the traction force field originated by the tip cell

action.

The evolution of the order parameter, according to equation (3), depends on the zeroth order displacements through

the field w. This field is a function of φ and of the tip cell traction (according to equation(2)), and so we start by

obtaining χt(r) numerically. The tip cell exerts a compressible force [7, 8], and, hence, we consider a putative

compressible traction force with the direction of the gradient of VEGF applied at the vessel tip, ft
1
. We set the

magnitude of this component to decrease exponentially (as a gaussian function) far away from the application point.

In the next figure we plot the magnitude of ft
1
as a function of the position.
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In the way that the model is designed, the traction is proportional to the gradient of a localised field χt. That is not

the case for the putative traction ft
1
, which only has a component in the direction of the VEGF gradient, implying that

the field χt would be constant and different from zero (and therefore, not localised) along the direction perpendicular

to the gradient of VEGF. We correct the traction field ft
1
by adding a small non-constant component in the direction

perpendicular to the gradient of VEGF. This small component is calculated indirectly by first obtaining a field χt(r)

from ft
1
by solving the following equation:

∇2χt = −∇ · ft
1
. (4)

This equation is solved using finite differences with the boundary condition of χt = 0 at the boundaries. In this way,

the χt obtained is localised, and the traction given by ft = −∇χt that we are in fact simulating, is also localised,

compressible, and has a small component perpendicular to its main direction of action (see Figure 2A, main article).

For other more complex force distributions (e.g. the traction fields measured experimentally [7, 8]), the χt(r) can be

also obtained using equation (4), by replacing ft
1
for the traction field of interest.

The field χt(r) is kept constant for a certain number of time steps tcell while the order parameter evolves. After

that time, the capillary wall has moved and the field χt(r) is again calculated using equation (4), but centred at the

new position of the capillary wall.

To simulate the evolution of the order parameter, we solve equation (3) with a term describing proliferation. In this

equation w is obtained by solving equation (2) numerically at every time step. We use periodic boundary conditions

and set the spatial average of w to be equal to zero (notice that the value of the average of w does not affect the

displacement field).

As explained in the main text, the proliferation αp[V, φ, w] at a point is the average of the proliferation in an area

the size of a cell, being given by

αp[V, φ, w] =

∫

Ω
p(V,w)Θ(φ)dr
∫

Ω
Θ(φ)dr

,

where Ω is the area of a cell (we consider a circle of radius 5 µm), Θ(φ) is the Heaviside function, and p(V,w) is

the proliferation function used. In the main article, we consider that the proliferation may depend either on V or

on the strain, i.e. on ∇ · u0 + α = ∇2w + α = α(1 − φ) + χt. For the first case we characterise the proliferation,
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i.e. p(V,w) = p(V ), by two constants: the limit VEGF concentration, LV and the maximum proliferation, MP .

Therefore, p(V ) is given by

p(V ) =







2MPV
LV

, V < LV

2MP , V ≥ LV

. (5)

In the definition of p(V ), the maximum cell proliferation MP is multiplied by a factor 2 because the order parameter

has to be increased by two units (from φ = −1 to φ = 1) for a new capillary region to form. Equation (5) is the

dependence for the proliferation used in Figure 6 of the main text. For Figure 7, the proliferation of equation (5) is

multiplied by the Heaviside function Θ(∇2w(r) + α− Sm), where Sm is the minimum strain that is required to exist

proliferation.

When the proliferation depends on ∇2w (Figure 4) the proliferation function used is similar to equation (5) but

with the VEGF concentration replaced by the strain, and the LV replaced by the limit strain LS . For Figure 6 of the

main text we require that the proliferation is only different from zero if there is a minimum concentration of VEGF

Vm present, i.e. p(w) is multiplied by Θ(V (r)− Vm).

In Figures 5 and 7 the values used for Vm and Sm follow the reasoning that a small VEGF concentration (in Figure

5) or a small strain (in Figure 7) is sufficient to trigger endothelial cell proliferation. In this way, the values used for

Vm and Sm are the minimum values tested in Figures 6 and 4 respectively, i.e. Vm = 0.05 and Sm = 0.05.

Having w and αp[V, φ, w], equation (3) is finally integrated using a finite different scheme with periodic boundary

conditions.

4. Parameters

The goal of the present article is to introduce a compact and simple to implement phase-field model for sprouting

angiogenesis able to describe sprout morphology as a function of the mechanical characteristics of the tissue and cells.

The model is also used to provide insight to the possible factors regulating endothelial cell proliferation in the sprouts.

In the present article we are not attempting to model specific experiments, and therefore we will use rough estimates

for the different parameters of the model.

We first present the table of parameters used (denoting the extra-cellular matrix by ECM and the endothelial cells

by EC), and below we discuss the choices made when setting these parameter values.
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Parameter Value Reference/Comment

ECM Young’s Modulus 3.0× 103 Pa see [9]

ECM Poisson Ration 0.13 see [9]

EC Young’s Modulus 4.0× 102 Pa see [10]

EC Poisson Ration 0.49 see [8]

µ0 7.3× 102 Pa Average rigidity moduli

µ1 6.0× 102 Pa Difference between rigidity moduli of EC and ECM

L0 4.74× 103 Pa Given by K + 2µ0 −
2µ0

d , where K is the average compressibility

ǫ 1 µm Order of magnitude of the capillary wall width [1]

ρφ 4.74× 103 J/m3 Free energy density of phase-separation term, equal to L0

M 8.1× 10−18 m/J.s Mobility obtained by setting the timescale of the problem

tcell 4.3 min Time between two calculations of the tip traction field

DV 4.2× 10−13 m2/s Diffusion constant of VEGF, fastest process in the simulation [1, 11]

αV 3.9× 10−3 s−1 So that
√

DV /αV is on the order of the cell diameter [1]

The constants reflecting the mechanical characteristics of the tissues, i.e. the Young’s and rigidity moduli, are

used to calculate the parameters µ0 (average of both rigidity moduli), µ1 (difference between the rigidity moduli), K

(average compressibility modulus) and L0 (given by L0 = K + 2µ0 −
2µ0

d , where d = 2 is the dimensionality of the

system). In the particular choice of parameters used in this example, µ1 . µ0 ≪ L0. Though the terms of higher

order that were disregarded in the derivation of equation (3) could in principle still be large enough to alter some

of the the quantitative results presented, they are not expected to alter the very clear qualitative result of how the

proliferation should be regulated for the generation of well-formed sprouts.

The role of the first term in the free energy, Fφ[φ(r)], is the formation of the interface between the capillary and

the extracellular matrix. Small variations in the profile of the order parameter across the interface with respect to

equilibrium are rapidly corrected by this term. The parameter ρφ determines how fast the equilibrium shape of the

interface is achieved. However, if ρφ is very large, the dynamics of the system is governed by the Cahn-Hilliard part of

equation (3) and not by the elastic component or the endothelial cell traction. Therefore, ρφ should be large enough

for the interface to be formed rapidly, but small enough for sprout extension being determined by the mechanical

properties of the tissues and not by the capillary wall surface tension. This balance occurs when the order of magnitude

of Fφ[φ(r)] is the same as the order of magnitude of Fel[u(r)] [2, 3], and therefore, we set ρφ = L0.

The value of the mobility M is chosen to match approximately the timescale of sprout growth ex vivo. In Figure

3 of the main text we observe that individual cells are able to migrate alone in the matrix. The maximum distance

these cells are able to cover in 24 hours is approximately independent of the initial amount of VEGF in the matrix

(provided it is not too large, so that it saturates the cell receptors). All these cells travel at approximately 9.5 µm/hr.

We simulated a single sprouting event, with no proliferation, setting the adhesion to α = 4.7× 102 Pa and maximum

traction force 3.0 × 103 Pa. With these parameters, and according to Figure 2C from the main document, the tip

cell separates from the main vessel and migrates in the direction of increasing VEGF levels. We observed the cells
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migrate at constant velocity and we altered the time scale of our simulation (given by the mobility M) so that the

cell migration velocity matches the value observed experimentally.

Finally, the VEGF diffusion occurs in a faster timescale than endothelial cell rearrangement and migration. The

large value for the VEGF diffusion constant [1, 11] guarantees that the VEGF profile achieves the equilibrium for a

particular sprout morphology. The value of VEGF consumption αV is chosen so that the VEGF penetration width
√

DV /αV is on the order of the cell diameter [1].

5. Experimental Model: Matriplug Assay

Male Wistar rats (6 months old) were obtained from local breeding colonies maintained at the animal facility of

the Faculty of Medicine - University of Coimbra. The animals were subjected to a constant daily cycle of 12 hours of

light and 12 hours dark with constant temperature (22 - 24oC) and humidity (40 - 70%). Rats were given free access

to water and to standard commercial pellet chow diet (AO4; Panlab, Barcelona, Spain).

To model VEGF-driven in vivo angiogenesis, a subcutaneous matrigel plug assay was performed, as previously

described [12], with modifications. Briefly, growth factor reduced Matrigel (BD Biosciences, Bedford, MA, USA) was

thawed at 4oC overnight to become liquid. After anaesthetised, each rat was injected subcutaneously in the back,

1 cm off the midline, with 0.6 mL of liquid Matrigel supplemented with heparin (Sigma, St Louis, MO, USA), with

or without VEGF (R&D Systems, Minneapolis, MN, USA) in the indicated concentrations.

Seven days after implantation animals were anaesthetised and injected through the jugular vein with an Evans Blue

(Sigma-Aldrich, St.Louis, MO, USA) - PBS solution (100mg/Kg of body weight). Evans blue is a dye that combines

with plasma albumin, allowing for detection of functional vessels. Thirty minutes later, the animals were killed by

cervical dislocation and the matrigel plugs were enucleated.

Removed matrigel plugs were fixed in with 4% paraformaldehyde for 10 minutes, washed, embedded in OCT

(Tissue-Tek, Histolab, Sweden) and stored frozen at -80oC until further analysis. Vascular density was determined

by immunofluorescence on 5 µm cryosections. The samples were permeabilized with 1% Triton X-100 (v/v) for

10 minutes and blocked with 5% Bovine Serum Albumin (BSA) for 1 hour prior the incubation with a marker for

endothelial cells, primary antibody rabbit Anti-von Willebrand Factor (vWF) (Dako, Glostrup, Denmark) overnight

at 4oC. The samples were then rinsed three times with PBS and incubated with 1:5.000 DAPI (Invitrogen, Carlsbad,

CA, USA) and 1:100 Alexa Fluor R© 488-conjugated goat anti-rabbit (Invitrogen, Carlsbad, CA, USA) for 1 hour at

room temperature. The samples were then washed with PBS and mounted with Mowiol R© 4-88 Reagent (Calbiochem,

San Diego, CA, USA). The images were collected by confocal microscopy using a Zeiss LSM 710 Confocal microscope

(Carl Zeiss MicroImaging GmbH, Jena, Germany).

6. Experimental Model: Aortic Ring Assay

Reagents. Unless otherwise stated, all reagents were purchased from Merck Darmstad (Germany), Sigma-Aldrich

(EUA) or Pancreac Qumica SA (Spain).
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Animal models. In this work were used 8-12 weeks old Wistar rats, from our breeding colonies at the Faculty of

Medicine, University of Coimbra. The animals were kept (2 per cage) under standard ventilation, temperature (22-

24oC), humidity (50-60%) and light (12 hours light/ 12 hours darkness) with free access to water and food (standard

diet AO4, Panlab, Barcelona). The experimental protocol was approved by the local Institutional Animal Care and

Use Committee and all the procedures were performed by licensed users (FELASA).

Ex vivo study of angiogenesis: growth of sprout-like structures. Animals were sacrificed by cervical dislocation and

the aorta was harvested and washed twice in Opti-MEM (31985-047, Gibco, United kingdom), without serum and

supplemented with 1X Penicillin-Streptomycin (10378-016, Gibco, United kingdom). The aorta was cut in rings of

∼0,5 mm using a scalpel blade and the rings were incubated in a petri dish (35 mm) with Opti-MEM without serum

and supplemented with 1X Penicillin-Streptomycin, overnight at 37oC 5% CO2. The aortic rings were embedded

in a collagen matrix (08-115, Millipore, USA) in different plates: 96 wells (counting experiences); 4 and 8 wells

(immunohistochemistry). After polymerization, Opti-MEM growth medium supplemented with 2.5% FBS (10082-

147, Gibco, United kingdom), 1X Penicillin-Streptomycin and recombinant rhVEGF (293-VE, R&D Systems, USA)

was added (200 and 500 µL, respectively) and half of the volume was replaced every second day until the end of the

experience.

Ex vivo study of angiogenesis: live confocal imaging. Live imaging of growing sprouts was performed using zeiss

confocal microscopy (633 nm) with 10x of magnification and at stable temperature. The acquisitions were made at

different time points of the experience and always in the same position to allow sprout follow.

Statistical analysis. Results are presented as mean ±SEM. One way ANOVA-test was used to determine statistical

differences. Post-hoc Tukey test was performed to assess the differences between groups. P < 0.05 was considered

significant.

7. Examples of Single Runs

In this section we include the some graphics of single runs for different parameters.

First we analyse the growth of a single sprout for different values of the proliferation rate. In our model there is

a balance between the force of the tip cell and the surface tension term (the first term of equation (1) of the main

text). If there is no proliferation, the growth becomes sub-linear and it is effectively arrested. In the next picture we

plot the position of the tip cell as a function of time for the case where there is arrest of vessel growth (α = 0.37 KPa

and traction 2.7 KPa). We present four lines that correspond to different maximum proliferation rates (we use the

case of proliferation proportional to VEGF concentration and triggered by strain).
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In this figure we observe that when there is no proliferation the vessel grows very slowly (proportional to ∼ t1/2).

After 12 hours the tip cell is already moving at a very slow speed: only 10 µm in 8 hours, and it is still slowing down.

Though the vessel does not effectively stop, the velocity decreases so much that in an experiment the cell would end

up moving less than its length per day. Compare with what occurs when there is proliferation, where the vessel is

able to maintain a constant growing velocity. The proliferation is always able to increase the velocity of the growing

sprout.

Then we observe the sprout length for different values of ρφ. As we increase ρφ the surface tension increases and

the vessel’s final length will be shorter. Lower values of ρφ would make easier for the tip cell to leave the growing

sprout.
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In this figure we show the position of the tip cell for a sprout with no proliferation as a function of time for 3 values

of ρφ: equal to the value used in the paper, two times larger (resulting in a shorter vessel) or three quarters of the

initial value (the tip cell starts moving faster and eventually breaks apart after 8 hours). The value of the adhesion

and the traction is the same as in the previous figure.

Finally we show the length of the sprout for different values of the ECM’s Young’s modulus. The ability of

endothelial cells to migrate and orient depends on the value of the Young’s modulus in a non-monotonous manner [6]

(i.e. there is an optimal value for the Young’s modulus for network formation). In the figure below we present the
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growth in time of the position of the front of a growing sprout with no proliferation for four different values of the

Young’s modulus of the ECM: E = 0.2E0, E = 0.6E0, E = E0 and E = 1.5E0, with E0 = 3.0 KPa, the value used in

the article. The values for the adhesion and traction are the same used in the previous two figures.
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In this figure we observe the non-monotonous behaviour expected: the sprout achieves the faster growth at the

intermediate Young’s modulus E = 0.6E0 (the tip cell even splits from the main vessel after approximately 9 hours).

High values and low values of the Young’s modulus lead to shorter vessels, as expected.
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