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Abstract

We present a rectangle-based segmentation algorithm that sets up a graph and performs a graph cut to separate an object
from the background. However, graph-based algorithms distribute the graph’s nodes uniformly and equidistantly on the
image. Then, a smoothness term is added to force the cut to prefer a particular shape. This strategy does not allow the cut
to prefer a certain structure, especially when areas of the object are indistinguishable from the background. We solve this
problem by referring to a rectangle shape of the object when sampling the graph nodes, i.e., the nodes are distributed non-
uniformly and non-equidistantly on the image. This strategy can be useful, when areas of the object are indistinguishable
from the background. For evaluation, we focus on vertebrae images from Magnetic Resonance Imaging (MRI) datasets to
support the time consuming manual slice-by-slice segmentation performed by physicians. The ground truth of the
vertebrae boundaries were manually extracted by two clinical experts (neurological surgeons) with several years of
experience in spine surgery and afterwards compared with the automatic segmentation results of the proposed scheme
yielding an average Dice Similarity Coefficient (DSC) of 90.9762.2%.
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Introduction

Template-based segmentation algorithms are suitable for medical

image processing, because a patient’s data – mostly in the DICOM

(Digital Imaging and Communications in Medicine, available: http://

medical.nema.org, accessed: 2012 Jan 2) format – already offers useful

information, e.g. the patient’s orientation. Combined with a body

landmark detection algorithm [1] that provides a landmark inside a

specific organ, it is possible to choose the organ’s template

automatically and even get rid of a user-defined seed point inside

the organ that is possibly needed by the used segmentation method.

Graph-based approaches have become quite popular during the

last years. In contrast to deformable models [2] and [3] that can

get stuck in local minima during the iterative segmentation

(expansion) process, a graph cut algorithm provides an optimal

segmentation for the constructed graph [4]. In this contribution,

we present a novel graph-based algorithm for segmenting 2D

objects that are rectangle shaped. The algorithm sets up a graph

and performs a graph cut to separate an object from the

background. However, typical graph-based segmentation algo-

rithms distribute the nodes of the graph uniformly and

equidistantly on the image. Then, a smoothness term is added

[5] and [6] to force the cut to prefer a particular shape [7]. This

strategy does not allow the cut to prefer a certain structure,

especially when areas of the object are indistinguishable from the

background. We solve this problem by referring to a rectangle

shape of the object when sampling the graph nodes, i.e., the nodes

are distributed non-uniformly and non-equidistantly on the image.

This strategy can be useful, when areas of the object are

indistinguishable from the background. To evaluate our proposal,

we focus on vertebrae images from Magnetic Resonance Imaging

(MRI) datasets to support the time consuming manual slice-by-

slice segmentation performed by physicians – we identified an

average manual segmentation time for a single vertebra of

10.7566.65 minutes for our spine datasets. The ground truth of

the vertebrae boundaries were manually extracted by two clinical

experts (neurological surgeons) with several years of experience in

spine surgery and afterwards compared with the automatic

segmentation results of the proposed scheme yielding an average

Dice Similarity Coefficient (DSC) [8] and [9] of 90.9762.2%.

Diseases of the spine are quite common, especially due to

degenerative changes of the ligamentary and ossuary structures.

With increasing stenosis of the spinal cord the limitations of the

patients in all-day life worsen and the current development of the

population’s structure leads to a growing part of older patients with

a more frequent insistence for surgical treatment [10], [11] and

[12]. When making the decision for adequate procedure neuro-

imaging plays a main role for estimating the dimension of surgical

treatment. MRI-imaging of course is particularly suitable for the

assessment of spinal structures such as nerve roots, intervertebral

discs and ligamentary constitution without radiation exposure.

Nevertheless, certain changes of the vertebra due to osteoporosis,

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31064

1



fractures or osteophytes require an evaluation of the bone structures

via Computed Tomography (CT)-scan including radiation exposure

[13] and [14]. With our series of patient datasets we try to illustrate

the capability of MRI-segmentation to reconstruct the vertebral

body without x-ray examination. Consequently, the numbers of

pre-operative examinations can be reduced affecting radiation

exposure costs and time-management.

For vertebrae segmentation several algorithms have been

proposed in the literature. 2D segmentation approaches are

mostly applied to manually identified, best suitable cross-sections

[15], [16], [17] and [18]. Automatic selection of best slice was

done by Peng et al. [19] and independent segmentation of the

vertebral bodies have been done by Michopoulou et al. [15] and

Carballido-Gamio et al. [18]. Thereby, the approach from Huang

et al. [18] uses normalized cut algorithm with Nyström

approximation and achieves Dice Similarity Coefficients for six

patients of about 93%–95%. The method from Michopoulou et al.

[15] uses atlas registration of intervertebral disks, and provides

DSC between 84% and 92%. The methods from Shi et al. [16]

and Peng et al. [19] are both top-down approaches and Shi et al.

use statistical pattern recognition for spinal cord extraction. A

manually defined window is used as initialization for disk

detection, and this window slides along the detected spinal cord.

The authors report 96% detection rate. Peng et al. [19] do a fully

automatic analysis of the whole-spine MR images. Disk clues are

located by convolving a disk model with an entire MR image and

a polynomial line is fit to those clues. The polynomial line has an

intensity profile along which extrema indicate possible disks or

vertebral bodies. It was tested on five datasets, with 100%

vertebral body detection and about 95% vertebral body corner

detection. Huang et al. [17] have performed the segmentation in

three stages: AdaBoost-based vertebra detection, detection refine-

ment via robust curve fitting, and vertebra segmentation by an

iterative normalized cut algorithm. DSC was around 95%. This

method could be called hybrid: it uses bottom-up approach for

detecting vertebral body centers, but then it uses a top-down

approach to segment vertebral bodies.

In contrast to the 2D approaches, 3D approaches mostly rely on

user initialization. To extract the approximate spine position Yao

et al. [20] use Hounsfield values and Klinder et al. [21] use CT rib

cage segmentation method. The methods from Stern et al. [22],

Weese et al. [23] and Hoad et al. [24] segment vertebrae

independently. A very tedious initialization was used from Hoad et

al., and manual corrections applied afterwards. The segmentation

from Stern et al. is performed by optimizing the parameters of a

3D deterministic model of the vertebral body, aiming at the best

alignment of the deterministic model and the actual vertebral body

in the image. The authors estimated a 61% success rate for MRI

and 84% for CT. Weese at al. use polygonal vertebra model and

manual initialization. Internal energy reflects statistical shape, and

external energy relies on image gradients. Method iterations

consist of a surface detection step and a mesh reconfiguration step.

The authors report 0.93 mm as the mean segmentation error.

Top-down approaches are presented by Yao et al. [20], Ghebreab

et al. [25] and Klinder et al. [21], i.e. they start from global

position and approximate shape of the spine, and use that

information to better fit segmentation surfaces to actual vertebrae

in the images. Yao et al. focus on routine chest and abdominal CT

images. The spinal canal is extracted using a watershed algorithm

and directed acyclic graph search. The vertebrae are segmented

by using a four-part vertebra model. The spinal column was

correctly partitioned in 67 out of 69 cases. Ghebreab et al. use

manual initialization for first vertebra and global spine shape. It

uses B-spline surfaces with 12612 control points for surface

representation. It uses statistical spine shape for initializing

segmentation of an adjacent vertebra. The mean shapes of four

different lumber vertebrae are independently constructed. The

method was tested on six CT images, but execution time and

precision were not given. Klinder et al. initialized the global spine

position by an automated rib cage segmentation method. A

statistical constellation model for vertebrae is applied on a global

Figure 1. Principle workflow of a segmentation scheme for Glioblastoma multiforme (GBM) in 3D. A polyhedron (left) is used to set up a
3D graph. Then, the graph is used to segment the GBM in a Magnetic Resonance Imaging (MRI) dataset.
doi:10.1371/journal.pone.0031064.g001

Figure 2. Intercolumn arcs that have been constructed with
different delta values: Dr = 0 (left), Dr = 1 (middle) and Dr = 2
(right).
doi:10.1371/journal.pone.0031064.g002

Figure 3. Basic concept of a cut (green) of intercolumn arcs
between two rays for a delta value of one (Dr = 1). Left and
middle: same cost for a cut (2N‘). Right: higher cost for a cut (4N‘).
doi:10.1371/journal.pone.0031064.g003

Square-Cut: A Segmentation Algorithm

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31064



scale to obtain an approximate position of individual vertebrae.

Local adaptations of each vertebra are similar to the approach

from Weese et al. The method was evaluated on ten thoracic CT

datasets. The segmentation error was 1.060.3 (m6s mm).

Some 2D methods avoid usage of computationally expensive

operations and keep execution times within a few seconds [15] and

[17]. Others have longer running times: forty seconds [16] and

one minute [18]. Peng et al. [19] do not provide execution time.

All existing 3D approaches have long running times: 1–15 minutes

[22], 5–10 minutes [24], a few minutes [23] and for [21] similar to

or more than [23] (not explicitly stated). Yao et al. [20] and

Ghebreab et al. [25] do not provide execution time.

The paper is organized as follows. Section 2 presents the details

of the proposed algorithm. Section 3 discusses the results of our

experiments. Section 4 concludes the paper and outlines areas for

future research.

Methods

The proposed segmentation algorithm starts by setting up a

directed graph from a user-defined seed point that is located inside

the object to be segmented. The basic principle was recently

developed and used by the authors for a medical software system

for volumetric analysis of different cerebral pathologies –

glioblastoma multiforme (GBM) [26], pituitary adenomas [27]

and cerebral aneurysms [28] – in MRI datasets [29]. However,

these cerebral pathologies were spherical or elliptical shaped 3D

objects [30] and therefore the segmentation scheme was not

appropriate for our spine datasets. For better understanding of this

paper the overall principle for GBM segmentation with a sphere

template is presented in Figure 1: a polyhedron (left) is used to set

up a 3D graph. Then, the graph is used to segment the GBM in a

Magnetic Resonance Imaging (MRI) dataset.

To set up the graph, points are sampled along rays that are sent

through the contour of a square template. The sampled points are

the nodes n[V of the graph G(V, E) and e[E is the corresponding set

of arcs. There are arcs between the nodes and arcs that connect the

nodes to a source s and a sink t to allow the computation of a s-t cut

(note: the source and the sink s, t[V are virtual nodes). The arcs

,vi,vj.[E of the graph G connect two nodes vi,vj. There are two

types of ‘-weighted arcs: z-arcs Az and r-arcs Ar (Z is the number of

sampled points along one ray z = (0,…,Z21) and R is the number of

rays sent out to the contour of an object template r = (0,…,R21)),

where V(xn,yn) is a neighbor of V(x,y) – in other words V(xn,yn) and

V(x,y) belong to two adjacent rays [31] and [32]:

Az~fSV (x,y),V (x,y{1)Tjyw0g

Ar~fSV (x,y),V (xn, max (0,y{Dr))Tg
ð1Þ

The arcs between two nodes along a ray Az ensure that all nodes

below the contour in the graph are included to form a closed set

(correspondingly, the interior of the object is separated from the

exterior in the data). The arcs Ar between the nodes of different

rays constrain the set of possible segmentations and enforce

smoothness via the parameter Dr. The arcs for different delta

values are presented in Figure 2: Dr = 0 (left), Dr = 1 (middle) and

Dr = 2 (right). The larger this parameter Dr is, the larger is the

number of possible segmentations. In Figure 3 the basic concept of

a cut (green) of intercolumn arcs between two rays for Dr = 1 is

presented. For the graphs on the left side and the middle the costs

Figure 4. The principle graph construction for a square. A: square template defined by four corners. B: nodes set up with the square template.
C: z-arcs Az along the rays. D: r-arcs Ar between the rays (Dr = 0). E: r-arcs Ar between the rays (Dr = 1).
doi:10.1371/journal.pone.0031064.g004
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for a cut (2N‘) are the same. However, for a cut like shown on the

right side of Figure 3 the costs are higher (4N‘).

After graph construction, the minimal cost closed set on the graph

is computed via a polynomial time s-t cut [33]. The s-t cut creates an

optimal segmentation of the object under influence of the parameter

Dr that controls the stiffness of the resulting contour. A delta value of

zero ensures that the segmentation result has exactly the form of the

predefined template (square) – and the position of the template

depends on the best fit to the image’s texture. The weights w(x,y) for

every arc between v[V and the sink or source are assigned in the

following manner: weights are set to c(x,y) if z is zero; otherwise they

are set to c(x,y)2c(x,y21), where c(x,y) is the absolute value of the

intensity difference between an average texture value of the desired

object and the texture value of the pixel at position (x,y) – for a

detailed description, see [34], [35], [36] and [37]. The average grey

value that is needed for the calculation of the costs and the graph’s

weights is essential for the segmentation result. Based on the

assumption that the user-defined seed point is inside the object, the

average gray value can be estimated automatically. Therefore, we

integrate over a small square T of size d centered around the user-

defined seed point (sx, sy):

ðd=2

{d=2

ðd=2

{d=2

T(sxzx,syzy)dxdy ð2Þ

The principle of the graph construction for a square is shown in

Figure 4. Image A of Figure 4 shows the square template that is

used to set up the graph. Image B presents the nodes that have

been sampled along the rays that have been sent through the

template’s surface. Note that the distances between the nodes of

one ray correlate with the distances between the template’s center

point (or for a later segmentation, the user-defined seed point) and

the template surface. In other words, for every ray we have the

same number of nodes between the center point and the object’s

border, but the length is different. In the images C, D and E,

different ‘-weighted arcs are shown: C: the z-arcs Az along the

single rays, D: the r-arcs Ar between rays with a delta value of

Dr = 0. E: same as D only with a delta value of Dr = 1.

Setting up the nodes of the graph with the user-defined template

is the most difficult step of the proposed algorithm. Generating the

arcs between the nodes and the source and the sink node is

straightforward: there are the ‘-weighted arcs that depend on the

geometry (intra column arcs) and the delta value (inter column

arcs) used for the graph, and there are arcs that connect the nodes

to the source s and the sink t. These arcs depend on the gray values

of the nodes they connect – or rather they depend on the gray

value difference to an adjacent node. To integrate the user-defined

template into the construction of the graph, we need the

coordinates in 2D describing the object that we want to segment

(e.g. for a square the corner points of the square, see Figure 4 A).

Using these coordinates, the center of gravity of the object is

calculated, and the object is normalized with the maximum

diameter, or rather with the coordinate that has the maximum

distance to the center of gravity. After the user defines a seed point

in the image, the normalized object is constructed with its center of

gravity point located at the user-defined seed point. Then, rays are

sent out radially from the seed point through the contour of the

normalized object. To calculate the intersection points of the rays

with the object, the object’s contour has to be closed. In our

implementation, the user has to provide the object’s contour as 2D

Table 1. Comparison of manual and automatic segmentation
results for nine vertebrae via the Dice Similarity Coefficient
(DSC).

No. Volume of vertebrae (mm3) Number of voxels DSC (%)

manual automatic manual automatic

1 417.236 378.662 1709 1551 90.78

2 438.721 397.705 1797 1629 90.83

3 461.914 427.49 1892 1751 88.99

4 457.275 439.453 1873 1800 92.02

5 510.498 490.723 2091 2010 93.05

6 430.908 481.201 1765 1971 87.37

7 404.541 402.832 1657 1650 90.35

8 414.795 377.686 1699 1547 90.39

9 247.803 242.92 1015 995 94.93

doi:10.1371/journal.pone.0031064.t001

Table 2. Summary of results: minimum, maximum, mean m
and standard deviation s for manual and automatic spine
segmentation.

Volume of vertebrae (mm3) Number of voxels DSC (%)

manual automatic manual automatic

min 247.803 242.92 1015 995 87.37

max 510.498 490.723 2091 2010 94.93

m+s 420.41+72.22 404.3+72.98 1722 1656 90.97+2.2

doi:10.1371/journal.pone.0031064.t002

Figure 5. Overall workflow of the segmentation algorithm. A rectangle shape is used to set up a graph. The constructed graph is then used to
segment the vertebrae in a Magnetic Resonance Imaging (MRI) scan.
doi:10.1371/journal.pone.0031064.g005

Square-Cut: A Segmentation Algorithm
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Figure 6. Example for smoothing a vertebra segmentation result. Left: 2D vertebra segmentation (red) of a Magnetic Resonance Imaging
(MRI) dataset with a square template (number of rays = 30, number of nodes sampled per ray = 30 and delta value Dr = 4). Right: nodes smoothed with
a [0.25 0.5 0.25] kernel (one iteration).
doi:10.1371/journal.pone.0031064.g006

Figure 7. Segmentation of a rectangle where parts of the border are missing. Left: object to segment (black). Middle: user-defined seed
point for the square-based segmentation (blue). Right: segmentation result (red). Note: even the missing corner in the lower right could be
reconstructed.
doi:10.1371/journal.pone.0031064.g007

Figure 8. Example of a spine dataset and a user-defined seed point inside a vertebra of this dataset. Left: sagittal view of a Magnetic
Resonance Imaging (MRI) spine dataset. Right: location of a user-defined seed point (white) inside a vertebra.
doi:10.1371/journal.pone.0031064.g008

Square-Cut: A Segmentation Algorithm
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coordinates ordered in clockwise direction, so we just have to

connect the points one after the other and finally connect the last

point with the first point to get a closed 2D contour.

The interception point of one ray with the object provides the

distance between the nodes for this ray, because all rays have the

same number of nodes from the center of gravity point to the

intersection with the contour. For intersections that are located

closer to the center of gravity point we get smaller distances, and

for intersections that are located farer away from the center of

gravity point we get larger distances. Calculating the intersection

of a ray with a 2D object is straightforward, since it is simply a

line-line intersection. One line is the actual ray and the other line

is one straight line between two points of the predefined

template.

Results

To implement the presented segmentation algorithm, the

MeVisLab-Platform (available: http://www.mevislab.de, accessed:

2012 Jan 2) has been used; the algorithm has been implemented in

C++ as an additional MeVisLab-module. Although the foci of the

prototyping platform MeVisLab are medical applications, it is

possible to process images from other fields. Even when the graph

was set up with a few hundred rays and hundreds of nodes where

Figure 9. Step-by-step construction of a graph and the segmentation of a vertebra. A: seed point (white) and corners of a square template
(magenta). B: intersection points where the send out rays cut the square template (green). C and D: sampled nodes for the graph (blue). E:
segmentation results (red).
doi:10.1371/journal.pone.0031064.g009
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sampled along each ray, the overall segmentation (sending rays,

graph construction and mincut computation) for our implemen-

tation took only a few seconds on an Intel Core i5-750 CPU,

462.66 GHz, 8 GB RAM, Windows XP Professional x64

Version, Version 2003, Service Pack 2.

For 2D evaluation, we used several synthetic and real images.

From the clinical routine we had more than 14 datasets from over

12 patients available for testing. The overall workflow of the

introduced segmentation algorithm is presented in Figure 5 (from

left to right): a rectangle shape is used to set up a graph and the

constructed graph is used to segment the vertebrae in a Magnetic

Resonance Imaging scan.

The ground truth of the vertebrae boundaries were manually

extracted by two clinical experts (neurological surgeons) with

several years of experience in spine surgery and afterwards

compared with the automatic segmentation results of the proposed

scheme yielding an average Dice Similarity Coefficient of

90.9762.2% (Table 1 and Table 2). The Dice Similarity

Coefficient is a measure for spatial overlap of different segmen-

tation results and is commonly used in medical imaging studies to

quantify the degree of overlap between two segmented objects A

and R, given by:

DSC~
2:V (A\R)

V (A)zV (R)
ð3Þ

The Dice Similarity Coefficient is the relative volume overlap

between A and R, where A and R are the binary masks from the

automatic A and the reference R segmentation. V (:) is the

volume (in mm3) of voxels inside the binary mask, by means of

counting the number of voxels, then multiplying with the voxel

size. Tables 1 and Table 2 provide detailed results for several

vertebrae areas of a MRI spine dataset that have been

segmented with the presented algorithm. Table 1 shows the

segmentation results for: volume of vertebrae (mm3), number of

Figure 10. 3D visualization of a Magnetic Resonance Imaging (MRI) spine dataset with a graph that has been used to segment one
vertebra: intracolumn arcs (blue) and intercolumn arcs (red) with 20 rays, 20 sampled nodes per ray and a delta value of two
(Dr = 2).
doi:10.1371/journal.pone.0031064.g010

Figure 11. 2D vertebrae segmentation (yellow) of a Magnetic Resonance Imaging (MRI) dataset with a square template (number of
rays = 30, number of nodes sampled per ray = 30 and delta value Dr = 4).
doi:10.1371/journal.pone.0031064.g011
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voxels and Dice Similarity Coefficient for nine vertebrae areas.

In Table 2, the summary of results: minimum, maximum, mean

m and standard deviation s for the nine vertebrae from Table 1

are provided. For the automatic segmentation we used the same

parameter set for all vertebrae: 30 rays, 30 nodes sampled per

ray and a delta value of four (Dr = 4).The maximal length of the

rays that have been sent out from the user-defined see point has

been 35 mm. Furthermore we used a [0.25 0.5 0.25] kernel (one

iteration) to smooth the resulting nodes that have been

calculated (Figure 6).

Figure 13. Direct comparison of an automatic segmentation with a manual segmentation. Upper right: manual segmentation mask of a
vertebra (green). Lower left: automatic segmentation mask (red). Lower right: superimposed segmentation masks (manual and automatic).
doi:10.1371/journal.pone.0031064.g013

Figure 12. 2D vertebrae segmentation (red) of a Magnetic Resonance Imaging (MRI) dataset with a square template (number of
rays = 30, number of nodes sampled per ray = 30 and delta value Dr = 4).
doi:10.1371/journal.pone.0031064.g012
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In Figure 7 the segmentation of a rectangle where parts of the

border are missing is presented. On the left side of Figure 7 the

object that has to be segmented (black) is shown. In the middle

image the user-defined seed point (blue) for the square-based

segmentation has been placed. The segmentation result (red) is

shown in the rightmost image, whereby even the missing corner –

in the lower right – has been reconstructed by the segmentation

approach. For the segmentation we used the following parameter

set: the number of rays was set to 30, the number of nodes sampled

per ray was 100 and the delta value Dr was set to one.

Figure 8 shows on the left side a sagittal view of a MRI spine

dataset. On the right side of the Figure 8 an user-defined seed

point (white) has been set inside a vertebra. Figure 9 presents now

step-by-step the construction of a graph and the segmentation of

the vertebra of Figure 8:

A: seed point (white) and corners of a square template

(magenta)

B: intersection points where the send out rays cut the

square template (green)

Figure 14. Example how the ‘-weighted arcs Ar (controlled via the delta value Dr) affect the segmentation performance. A: initial
seed point (white) and corners of the square template (yellow). B–H: segmentation results (red) for different delta values Dr = 0,…,Dr = 6 (number of
rays = 30, number of nodes sampled per ray = 40 and diameter = 40 mm).
doi:10.1371/journal.pone.0031064.g014

Square-Cut: A Segmentation Algorithm
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C and D: sampled nodes for the graph (blue)

E: segmentation results (red)

A 3D visualization of a MRI spine dataset with a graph that has

been used to segment one vertebra is displayed in Figure 10. The

intracolumn arcs of the graph are drawn in blue and the

intercolumn arcs are drawn in red. The following parameter

settings have been used for graph construction: 20 rays, 20

sampled nodes per ray and Dr = 2.

The segmentation results for several vertebrae of patients are

shown in Figure 11 and Figure 12. The segmentations have been

performed in 2D with a standard square template. Although most

sides of the vertebrae are curved inwards and some vertebrae are

rotated in Figure 11, the segmentation results for a square

template are already reasonable. Furthermore, we have used the

same parameter set for all vertebrae in Figure 11 and Figure 12,

which means that the same number of rays (30), the same number

of nodes sampled per ray (30) and the same delta value (Dr = 4) for

all segmentations have been used for both datasets.

Figure 13 shows the segmentation results in form of a mask for a

vertebra. The original dataset is presented in the upper left of Figure 13.

The manual segmentation mask of a vertebra (green) is shown in the

upper right image. The lower left image presents the result of the

automatic segmentation (red). Finally, the lower right image shows the

superimposed manual and automatic segmentation masks.

Figure 14 shows an example how the ‘-weighted arcs Ar

(controlled via the delta value Dr) affect the segmentation

performance. Image A in Figure 14 presents the initial seed point

in white inside a vertebra of a MRI spine dataset. Image A also

presents the corners of the square template in yellow that has been

set up with a diameter of 40 mm around the seed point. The images

B-H of Figure 14 show the segmentation results in red for different

delta values Dr = 0,…,Dr = 6 whereby the number of rays (30) and

the number of nodes sampled per ray (40) have not been changed.

Figure 15. Vertebrae segmentation with the GrowCut approach. The images on the left side (A, C and E) show examples for a manual
initialization of the algorithm: vertebra (green) and background (yellow). The images on the right side (B, D and F) present the corresponding
segmentation results (green).
doi:10.1371/journal.pone.0031064.g015
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In image B the delta value is zero (Dr = 0) and therefore the resulting

contour is a square, because the cut has to be on the same node

level. The position of the square depends only on the gray values

and edges of the image. The delta value in image C was set to one

(Dr = 1) and therefore the cut has more options and must not be on

the same node level. As you can see in image C the resulting contour

(red) already fits to the lower and upper border of the vertebra.

However, the delta value is still too small – and therefore the

possible resulting contours are to stiff – to segment the whole

vertebra (see the left and right border of the vertebra). With a delta

value of two (Dr = 2) used to get the segmentation result in image D,

the flexibility is high enough to segment also the left and right

border of the vertebra. For the next three images E, F and G the

delta values have even been increased: Dr = 3 (E), Dr = 4 (F) and

Dr = 5 (G). These higher delta values enables the cut to return a

more ‘‘detailed’’ contour like the bulge in the upper left corner of

image G. But higher delta values also increase the risk for an over-

segmentation. That happened for a delta value of six (Dr = 6) in the

last image H, where the upper border of the segmentation result

already returns the lower border of an adjacent vertebra.

As stated in the background paragraph, there have been

published several methods – like deformable models and statistic

approaches – for vertebra segmentation in the literature. All

papers present detailed segmentation results and in almost all cases

the computational time for their algorithms is also provided, which

seem both – segmentation and time – to be similar to our results.

Therefore, we decided to compare and discuss our approach with

an interactive multi-label N-D image segmentation method called

GrowCut from Vezhnevets and Konouchine [38]. To the best of

our knowledge there has nothing been published about using

GrowCut for spine segmentation. For testing GrowCut with our

datasets we used an implementation that is freely available as an

module for the medical platform 3DSlicer [39] and [40]. 3DSlicer –

or Slicer – is a free, open source software package for visualization

Figure 16. As for Figure 15, vertebrae segmentation with the GrowCut approach. The images on the left side (A, C and E) show examples
for a manual initialization of the algorithm: vertebra (green) and background (yellow). The images on the right side (B, D and F) present the
corresponding segmentation results (green).
doi:10.1371/journal.pone.0031064.g016
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and image analysis primarily used in the medical domain and has

been developed by the Surgical Planning Laboratory (SPL) of the

Brigham and Women’s Hospital in Boston. To use GrowCut for

vertebra segmentation the user has to label a part of the vertebra

and a part of the background with a simple brush tool.

Figure 15 and Figure 16 present vertebrae segmentations with the

GrowCut approach. The images on the left side (A, C and E) show

examples for a manual initialization of the algorithm with the

vertebrae in green and the background in yellow. The images on the

right side (B, D and F) present the corresponding segmentation

results in green. As you can see in Figure 15 the GrowCut algorithm

can provide very precise results for a careful initialization. However,

for a rougher initialization it can provide not satisfactory results as

you can see in Figure 16 – at least for Figure B and F. We did not do

an exact evaluation with the Dice Similarity Coefficient for the GrowCut,

because the segmentation results depend on the user initialization.

But we can already tell that for someone who knows the algorithm

and knows how to deal with the initialization, the DSC will be around

ninety percent compared with a pure manual segmentation. A big

advantage of the GrowCut – at least for the implementation we tested

– is that a user doesn’t have to define any parameters. In contrast,

our approach has parameters which you have to deal with, but for

someone who is used to the algorithm that can be handled. A

disadvantage for the GrowCut is the time consuming and precise

initialization you sometimes need to archive good results. In contrast,

our approach only needs one centered seed point inside the vertebra.

Discussion

In this contribution, we have presented a template-based

segmentation scheme for 2D objects. To the best of our

knowledge, this is the first approach where the nodes of a

graph-based algorithm have been arranged according to a

predefined square template in a non-uniform and a non-

equidistant manner on an image. Using this new type of

segmentation algorithm, it is even possible to reconstruct missing

corners in an object. In addition, the scaling of an object is

irrelevant for the presented method. Experimental results for

several 2D images based on Magnetic Resonance Imaging datasets

consisting of vertebrae have indicated that the proposed algorithm

requires very less computing time and gives already reasonable

results even for a very simple cost function.

There are several areas of future work. For example, the cost

function for the weights can be improved. Another possibility is to

increase the sampling rate for the nodes near an object’s border,

because with an equidistant sampling rate (along the rays), there are

more nodes near the user-defined seed point and less nodes going

farther out. The user-defined seed point position that is located

inside the object is also an issue that has to be analyzed in the future,

e.g. for some images the seed point has to be chosen very carefully.

In general, the presented approach provides better results if the seed

point is located closer to the center of the vertebra and our method

will fail or perform bad if the seed point is located very close to the

border of the vertebra. One option to improve the presented

algorithm is performing the whole segmentation iteratively: after

segmentation has been performed, the center of gravity of the

segmentation can be used as a new seed point for a new

segmentation and so on. This might lead to more robustness with

respect to the initialization. Furthermore, we plan to integrate our

manual refinement method that takes advantage of the basic design

of graph-based image segmentation algorithms [41] and [42].

Moreover, we want to enhance our segmentation algorithm to 3D.

Possible is a cube template like shown in Figure 17.
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