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Abstract

We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status
simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated
in estrogen receptor positive (ER+) and negative breast cancer. Total mRNA sequence, gene copy number, and genomic
CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human
genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A), and
methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or
copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was
dominated by ER-associated genes. ER+ and ER2 cell lines formed two distinct, stable clusters, and 1,873 genes were
differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER2 cells and part of chromosome 17
amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were
overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one
or more CpG islands within 5 kb of the 59 end of the gene and for which mRNA abundance was inversely correlated with
CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the
methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island
methylation that contributes to the transcriptome landscape of ER+ and ER2 breast cancer cells and tumors. The role of
gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated
by copy number aberrations.
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Introduction

The advent of massively parallel DNA sequencers has opened

new vistas on cancer genomics. Wide dynamic range and high

signal to noise ratio facilitates sequence-based genomic profiling of

low abundance transcripts, which cannot be reliably detected

using microarrays. Deep sequence analysis of restriction endonu-

clease fragments from bisulfate-treated genomic DNA fragments

makes it possible to quantify changes in CpG island methylation

status, and low depth quantitative DNA sequence analysis

provides a rapid means to identify genes that are either amplified

or deleted during transformation.

However, our ability to generate detailed sequence information

has significantly outstripped the power of the available analytical

pipelines in many cases. A major objective of our studies has been

to produce and to make publicly available a comprehensive

sequence-based dataset that can be used to develop new analytical

pipelines. A more daunting challenge is the development of

quantitative models that describe the relationship between diverse

genomic features such as mRNA abundance, epigenetic modifi-

cation, and gene copy number. It is our belief that such a systems

biology approach will eventually enable the incorporation of

multiple genomic features into a quantitative model of the

genomic landscape of individual tumors, and that such a
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perspective will be clinically useful for stratification of tumors for

prognostic and/or predictive applications. We currently lack the

ability to generate such models, but we submit that the availability

of detailed sequence-based genomic datasets of the sort that we

present below provides a valuable resource for the development of

such analytical pipelines. To this end we have carried out deep

sequence analysis of eight well-characterized human breast cancer

cell lines. These data have been broadly analyzed with a view

towards assessing the extent to which copy number aberration

and/or differences in CpG island methylation account for

differential gene expression in cohorts of cells that model clinically

relevant states. Specifically, we have focused on comparison of a

panel of breast cancer cell lines that either express or do not

express estrogen receptor-a (the product of the ESR1 gene,

hereinafter called ER).

Several studies using cDNA/oligonucleotide microarray or

SAGE (serial analysis of gene expression) have shown that ER+
and ER2 breast cancers have very different gene expression

profiles that can be used for molecular diagnosis and outcome

prediction [1–4]. These findings suggest that a subset of genes co-

expressed with ER could play an important role in establishment

and maintenance of the transformed state and in determining the

hormone-responsive breast cancer phenotype [5]. However, the

underlying mechanisms that account for differential regulation

and function of these genes are largely unknown. In this study we

applied next generation cDNA sequencing technology (mRNA-

seq) to quantify mRNA abundance and identify genes that are

differentially expressed in a panel of well-characterized ER+ and

ER- cell lines at a depth of analysis that has not yet been achieved

by conventional microarray analyses. Low depth DNA sequence

analysis (DNA-seq) was used to quantify gene copy number to a

depth of about 1 sequence tag every 300 bp, with a view towards

determining if there are common patterns of gene amplification or

deletion that underlie aspects of the genomic profiles that are

associated with the ER+ or ER2 phenotypes. Finally, bisulfite-

treated DNA fragments (Methyl-seq) were sequenced to quantify

changes in CpG island methylation and to determine if there are

systematic patterns of methylation that may contribute to

differential gene expression in ER+ versus ER2 cells. These

analyses were carried out simultaneously for 7 commonly used

breast cancer cell lines (MCF7, T47D, BT474, ZR75-1, BT20,

MDA-MB-231, MDA-MB-468) and 1 non-tumor breast cell line

(MCF10A). This dataset represents one of the most comprehensive

genomic portraits of a collection of tumor cell lines reported to

date; and, from an analytical perspective the dataset has

considerable utility for developing analytical pipelines to mine

sequence-based genomic data as well as to evaluate the relative

contributions of promoter methylation and gene copy number

aberrations in defining patterns of gene expression. Our initial

analysis has identified a cohort of genes that are differentially

expressed in ER+ and ER2 cell lines, associated with changes in

gene copy number or CpG island methylation status in such cells,

and differentially expressed in ER+ and ER2 primary human

breast tumors. Several of these genes have been implicated in

hormone responsiveness and disease progression.

Results

mRNA expression patterns are associated with ER status
We carried out 50 nt paired end mRNA-seq analysis on 8 cell

lines. Seven cancer cell lines were used in this comparison: 4 ER+
and 3 ER2. The non-tumorigenic cell line MCF10A was excluded

in our initial comparison of mRNA abundance in tumor cell lines.

Initially, we identified and excluded 710 genes that had 0 mapped

reads in all samples, when mapped to the 18,517 annotated genes in

the RefSeq RNA database (release 30, 2008). The reads/million

(RPM) normalized, log2 transformed data for the remaining 17,807

exhibited very similar distribution from sample to sample when

displayed as a box plot (Figure 1A). As expected, genes that were

expressed at low levels were more variable among cell lines, as

shown in the mean versus standard deviation plot (Figure 1B).

Unsupervised clustering using all genes (Figure 1C) demonstrated

that ER+ and ER2 cell lines formed two distinct clusters consistent

with published microarray data from tumor samples [1,4]. Similar

results were obtained when unsupervised clustering was carried out

with a subset of 4450 genes with standard deviation above 75

percentile (data not shown). Because of the small number of

samples, we were concerned that the hierarchical relationship

shown in Figure 1C might be random. To evaluate this possibility,

we carried out 100 iterations in which we perturbed by adding

artificial noise to the dataset as described by McShane and

colleagues [6]. The noise was estimated from the dataset by

calculating the variance of each gene among the cell lines and then

using the median of these variances to define the variance of the

noise, which were then randomly selected and added to the original

data for re-clustering 100 times. At the point of two clusters that

separated ER+ and ER2 cell lines, we obtained an R (Robustness)

index of 1 and a D (Discrepancy) index of 0, suggesting the strong

reliability of the clusters.

We applied two additional filters to eliminate variable genes that

were expressed at low abundance (Figure 1B). Initially, we filtered

the 17,807 genes to eliminate those with average raw counts less

than 50 (mean RPM,#1, corresponding to log2 mean expres-

sion = 0 in Figure 1B) in both ER+ and ER2 groups. We also

required that every gene, in addition to having .50 average raw

counts in one group of samples, must also have at least 5 raw

counts in every sample in that same group. These filters reduced

the dataset to 12,487 genes, of which 1,873 were differentially

expressed in ER+ and ER2 cancer cell lines, as defined by

p,0.05 (FDR q,0.2) from moderated (LIMMA) t-statistics and

fold change greater than 1.5. A ‘volcano plot’ illustrating

differential expression (red symbols) as a function of fold change

and p-value is shown in Figure 1D. Figure 1E illustrates the

frequency distribution of p-values for this dataset, which manifests

a peak frequency in the range of 0#p#0.05. The reference line in

Figure 1E illustrates the p-value distribution that would be

expected if differential expression reflects random chance. The

identities of these 1,873 differentially expressed genes as well as the

LIMMA statistics that support their identification are provided in

Table S1. The heatmap shown in Figure 1F contains the top 100

differentially expressed genes (defined by p-value) and illustrates

the consistency with which this subset of genes were differentially

expressed in the ER+ and ER2 cell lines.

Validation of mRNA-seq data
Initially, we compared the abundance of the three sentinel

markers of our cell lines (ER/ESR1, PR/PGR, and HER2/

ERBB2) using qPCR data that we had originally generated to

confirm the receptor status of the cell lines. As shown in Figure 2A,

there was generally good correlation between the qPCR and

mRNA-seq data for these three transcripts. We then used the

NanoString nCounter and the Cancer Reference codeset to

extend our validation to 236 cancer-related genes. The RPM-

normalized mRNA-seq total counts for each of these genes are

shown in comparison to the nCounter counts in Figure 2B. Very

high correlations were observed between mRNA-seq and Nano-

String data for each of the 7 cancer cell lines (Pearson correlation

coefficients ranging from 0.84 to 0.9).

Gene Expression, Methylation, CNA in Breast Cancer
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The NanoString codeset included 25 genes that were scored as

differentially expressed (p,0.05) in the mRNA-seq data. The

expression data for these genes is plotted as log2 fold change (ER+
versus ER2) in Figure 2C, which shows a very high degree of

correlation (R = 0.97) between the NanoString and mRNA-seq

dataset. The data indicate the quantitative precision of the

sequence-based approach for identification of differentially

expressed transcripts.

Differentially expressed genes are involved in ER-
associated pathways

We conducted a pathway analysis for 451 genes with q-value

less than 0.1 (corresponding to p-value less than 0.005) and log2

fold change.61.3. Twenty seven canonical pathways and 25

biological process networks were significantly enriched at p-value

less than 0.05, as listed in Table S2. We noted that several

significantly enriched pathways/networks are linked to ER

function or expression, consistent with the receptor status of the

cell lines.

Global methylation patterns correlate with ER status
The human genome contains 25,328 annotated CpG islands

with overlapping MspI restriction sites. For purposes of analysis, we

required at least 106coverage of each dCMP residue within every

CpG island, and the average of all dCMP residues within each

island was calculated as described in the Materials and Methods.

We analyzed 21,570 CpG islands that met these criteria in all

seven breast cancer cell lines, which represents 85% of the total

MspI-bounded CpG islands in the genome. We conducted

unsupervised clustering using the methylation data of all 21,570

CpG islands. As shown in Figure 3A, three ER+ cell lines BT474,

ZR751, and MCF7, were in the neighboring nodes of the cluster,

and two ER- cell lines BT20 and MDAMB231 clustered.

However, T47D (ER+) and MDAMB468 (ER-) did not cluster

with ER+ and ER2 samples, respectively. The data suggest that

global genomic methylation status varies in a systematic manner

between ER+ and ER2 cell lines; however, the association

between CpG island methylation and ER status is not as robust as

that observed for mRNA abundance (Figure 1C).

Among the 12,487 genes that were included in the mRNA

expression analysis, 9,968 had known CpG islands that mapped

within 5 kb of the genomic coordinates of the 59 end of the longest

known transcript. About 4% of these islands (444) were

differentially methylated (p,0.05) in ER+ versus ER2 cells.

The top 100 differentially methylated CpG islands, determined by

rank order p-value, were visualized in a heatmap (Figure 3B),

which illustrates a very robust methylation signature for these CpG

islands in the ER+ and ER2 cell lines. All significantly methylated

CpG islands and their associated mRNA expression data are

provided in Table S3.

Of the 444 CpG islands that were differentially methylated in

ER+ and ER2 cell lines, 164 islands were located within 5 kb of

the promoters of 162 differentially expressed genes. The

relationship between the mean methylation difference and the

log2 fold change for those 162 genes is shown in Figure 4A

(Pearson correlation coefficient = 20.75 with 95% confidence

interval: 20.81 to 20.68 and regression p-value,2.2e-16). A

strong negative correlation was observed between methylation

status and expression for most of these genes, although there were

a number of outliers (13 genes) in which methylation status

appeared to be unrelated to expression. We observed a strong

inverse correlation between methylation status of 151 CpG islands

and expression of 149 associated genes.

These differentially expressed genes also exhibited an inverse

relationship between the magnitude of differential gene expression

(log2 fold change) and distance of a CpG island to the cognate

transcript start site (Figure 4B) indicating that proximity to the

promoter was a major factor in determining the extent to which

gene silencing was linked to promoter methylation. Analysis of the

distribution of CpG islands with respect to the 59 end of the

differentially expressed transcripts indicates that the median

distance from the differentially methylated CpG islands to the

transcriptional start site is around 300 bp (Figure 4C), consistent

with a role in affecting promoter activity. These 149 genes are

listed in Table 1, with detailed expression data in Table S4. The

strong inverse correlation between methylation status of these

promoter-proximal CpG islands and mRNA abundance of the

cognate transcripts is consistent with the conclusion that a subset

of those genes that define the ER+ and ER2 gene expression

profiles are likely to be regulated by tumor subtype specific

changes in the global pattern of CpG island methylation.

Differential gene amplification and deletion is related to
ER status

DNA-seq analysis was carried out as described in Materials and

Methods to a theoretical coverage of one tag distributed

approximately every 300 across the genome. Copy number

aberrations were identified by comparing the number of sequence

tags that aligned to the genome in each tumor cell line to non-

tumorigenic MCF10A cells. Every cell line exhibited 100–200

statistically significant copy number differences, compared to

MCF10A (Figure 5A). We identified 1,003 genomic regions that

exhibited statistically significant copy number changes (Table S5)

in one or more of the cancer cell lines. We focused our analysis on

799 copy number aberrations that were found in at least two of the

samples; 479 (out of 1,873) differentially expressed genes were

mapped to these regions, suggesting that differential expression, in

some cases, might result from gene copy number differences.

However, comparison of the log2 fold change of the mRNA

between ER+ vs. ER2 sample groups that corresponds to these

Figure 1. Total mRNA sequence analysis identifies a cohort of genes that are differentially expressed in ER+ and ER2 cell lines.
Panel A: A box plot of total read normalized (RPM) log2 transformed data for 7 breast cancer cell lines. Panel B: RPM mean versus standard
deviation (SD) of 7 cell lines showing variation is much higher in low abundance transcripts. Log2 = 0 corresponds to ,1 RPM or about 50 raw counts.
Panel C: An unsupervised clustering using all genes for 7 cell lines. The graded colors from red, orange, to yellow represent correlation from high to
low among samples. ER+ and ER2 cell lines are in two different clusters. Panel D: A volcano plot for differentially expressed genes identified using
LIMMA statistical model. The red circles indicate genes significant at p,0.05 and fold change .1.5. Panel E: p-value distribution of all genes in the
analysis indicates that p-values are not uniformly distributed, as would be predicted if the distribution of p-values were random. Random frequency
distribution was approximated by assuming that if the distribution were random, the p-values for individual genes would be uniformly (equally)
distributed across the different bins of p-values. From this assumption, we estimated the number of genes that would distribute to each bin by
dividing the total number of genes by 20 bins. This calculation estimates a random frequency of ,624 genes in each p-value bin simply by chance, as
indicated by the dashed line. Panel F: A heatmap showing the strict assortment of ER+ and ER2 tumors based on the top 100 differentially
expressed genes identified using the LIMMA model. Gene expression was standardized by the mean among the samples, red indicating higher
expression and green for lower expression.
doi:10.1371/journal.pone.0017490.g001
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Figure 2. The mRNA-seq data validate in comparison to qPCR and NanoString data. Panel A: A comparison of the abundance of three
transcripts (ESR1, PGR, and ERBB2) measured by mRNA-seq (blue symbols) or qPCR (red symbols). Panel B: A correlation plot between mRNA-seq and
NanoString for 236 cancer reference genes. Log2 RPM data for mRNA-seq and log2 NanoString data were used. R was used to calculate the Pearson correla-
tion coefficient. Panel C: log2 fold change correlation between mRNA-seq and NanoString for 25 differentially expressed genes detected by NanoString.
doi:10.1371/journal.pone.0017490.g002
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479 differentially expressed genes and the log2 ratio copy number

difference of the corresponding genomic coordinated in ER+ and

ER2 sample groups showed only moderate positive correlation

(correlation coefficient = 0.28). This rather weak correlation prob-

ably reflects the fact that most copy number aberrations appear to

be cell specific and not strictly associated with the ER status.

We did identify regions on chromosome 8 and 17 that were

consistently amplified or deleted in either ER+ or ER2 cell lines.

These included a region from 125,504,248 to 126,521,417 on

chromosome 8 wherein all three ER2 cell lines exhibited

statistically significant copy number loss with no chromosome copy

number change in 4 ER+ cell lines. These data are summarized in

Figure 5B, which compares gene copy number in ER+ and ER2

cell lines (blue = deleted in ER2, gray = no change in ER+). Eight

genes mapped to this locus exhibited significantly higher expression

in ER+ cell lines (red = overexpressed in ER+).

All ER+ cell lines exhibited gene amplification in chromosome 17

from 44,246,133 to 63,413,540 with no change in copy number in

any of the ER2 cell lines (Figure 5C, red = amplified in ER+,

gray = no change in ER2). This locus contains 22 genes that were

more abundant in ER+ cell lines (Figure 5C, red = overexpression in

ER+ relative to ER2). A few genes within this locus appeared to be

overexpressed in ER2 (as indicated by blue bars), however none of

these achieved statistical significance at the level of p,0.05. Overall,

some 30 genes appear to be consistently overexpressed as a result of

chromosome 8 deletion in ER2 cells or chromosome 17

amplification in ER+ cells. These genes are listed in Table 2, with

detailed expression and amplification data in Table S6.

The methylation/expression signature defined in cell
lines is significantly enriched in a cohort of breast cancer
samples

A recent genomic methylation analysis of 12 ER+ and 12 ER2

tumors [7] identified 5 loci that are consistently hypermethylated

in one or the other tumor type (MANEAL, PER1, NAV1,

FAM124B, and ST6GALNAC1). Among these only MANEAL,

NAV1, and PER1 had CpG islands within 5 kb of the 59 end of the

gene, and only the CpG island associated with the NAV1 promoter

was differentially methylated (p = 0.019, difference in percent

methylation = 52.3%) in our cell lines. NAV1 was also differentially

expressed (log2 fold change = 4.1); however, the increased NAV1

mRNA was observed in cells in which this CpG island was

hypermethylated, so this gene is unlikely to be regulated by

methylation of this particular site.

The published global methylation data are consistent with our

results on global CpG island methylation in cell lines (Figure 3A);

the differences in global methylation patterns are not as robust as

the differential expression data, and it is generally difficult to

predict gene expression patterns in ER+/ER2 tumor samples

based on overall genomic methylation patterns. However, a much

more robust methylation/expression signature emerges when one

combines differential expression and differential CpG island

methylation data. Our analyses identified a cohort of 149

methylated genes that contribute to the genomic profiles of ER+
and ER2 breast cancer cell lines. We organized 148 of these

methylation signature genes into a geneset. [One methylation

signature gene, LRCC26, was not represented on the Affymetrix

and was not included in our analysis.] This geneset was then used

to carry out geneset enrichment analysis (GSEA) of an open source

dataset derived from Affymetrix microarray analysis of 76 ER+
and 53 ER2 primary breast tumors [8] (GEO accession number:

GSE5460). The 148 gene methylation geneset was significantly

enriched between ER+ and ER2 tumors, as evidenced by a

normalized enrichment score = 1.95, p,0.001, with FDR

q = 0.063. By way of comparison, a geneset of 30 known ER

target genes [9] exhibited a normalized enrichment score = 2.01,

p = 0.002, FDR q = 0.037 in this dataset from ER+/ER2 tumors.

A heatmap representing the expression of the 148 methylation

signature genes plus 30 CNA candidate genes (identified as

Figure 3. ER+ and ER2 cell lines exhibit differential CpG island methylation. Panel A: Unsupervised clustering of cell line data using 21,570
CpG islands, filtered for CMP methylation coverage as described in Materials and Methods. The graded colors from red, orange, yellow, to white
represent correlation from high to low among samples. Panel B: A heatmap of the top 100 differentially methylated CpG islands identified using the
LIMMA model. The methylation data for each CpG island were standardized by mean among the samples where red represents hypermethylation
and green hypomethylation. Genes associated with these CpG islands are indicated on the right of the figure.
doi:10.1371/journal.pone.0017490.g003
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described above) in the tumors samples reveals the extent to

which our focus genes are differentially expressed in ER+/ER2

primary tumors (Figure 6). We identified 67 genes that were i)

overexpressed in ER+ cell lines, ii) hypermethylated in ER2 cell

lines, and iii) overexpressed in primary ER+ tumors. In addition,

17 genes were i) overexpressed in ER2 cell lines, ii) hyper-

methylated in ER+ cell lines, and iii) overexpressed in ER2

primary tumors (Table 1). We conclude that combining CpG

island methylation and expression data is a powerful way to

identify a robust methylation/expression signature that defines at

least part of the transcriptome landscape of ER+ and ER2

breast cancer cells and tumors. Many of these genes are

potentially important for establishment and/or maintenance of

the tumor phenotype.

Figure 4. There is an inverse correlation between methylation status of promoter-proximal CpG islands and mRNA abundance.
Panel A: A scatter plot and trend line between fold change of gene expression and mean difference of methylation between ER+ and ER2 cell lines.
The Pearson correlation coefficient R is 20.75 [95%CI: 20.81, 20.68] with p-value,2.2e-16. Panel B: The distance from the start of each of the CpG
islands that exhibited inverse correlation with mRNA abundance, illustrated in Figure A, to the start of the corresponding gene plotted against log2
gene expression fold change between ER+ and ER2 cell lines. Panel C: A histogram representing the distribution of differentially methylated CpG
islands in 149 differentially expressed genes.
doi:10.1371/journal.pone.0017490.g004
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Figure 7 shows examples of two genes (C6orf97 and GATA3) that

are hypermethylated in ER2 cells and overexpressed in ER+ cells

and tumors. Among this cohort, the greatest difference in

methylation status was exhibited by C6orf97 (Figure 7A). All three

ER2 cell lines exhibited almost complete methylation (mean

difference %CpG methylation ER+ minus mean difference

%CpG methylation ER2 = 286%) of a single CpG island located

adjacent to the C6orf97 promoter (p = 6.1E-05); and C6orf97

mRNA was very significantly overexpressed in ER+ tumors

(p = 2.9E-12). The function of C6orf97 is unknown. However, two

recent large scale genome-wide association studies identified single

nuclear polymorphisms (SNPs) in or near this locus which are

associated with increased breast cancer risk [10,11]. SYNE1,

located near C6orf97 on chromosome 6, also exhibited hyper-

methylation in ER2 cell lines, but this gene was not differentially

expressed in the tumors analyzed in this study. C6orf97 also resides

adjacent to ESR1, which did not exhibit a statistically significant

difference in methylation status in our cell lines (Figure 7A).

High level expression of GATA3 in ER+ tumors has been

reported in a series of tissue-based studies [1,3,12]; and GATA3

overexpression is associated with favorable clinical outcomes,

including response to endocrine therapy [13,14]. GATA3 mRNA

is significantly overexpressed in ER+ tumors (p = 2.10E-30). As

shown in figure 7B, there is a cluster of CpG islands within the

GATA3 gene that was highly methylated in ER2 cells, with little or

no evidence of methylation in ER+ cells (p = 2.54E-06). An

uncharacterized locus (FLJ45984) resides immediately upstream of

GATA3 (Figure 7B), and this gene also showed evidence of

differential methylation and differential expression in cell lines.

Some of the CpG islands in this vicinity appear to overlap the

Table 1. 149 genes differentially expressed and inversely correlated with CpG island methylation.

Genes overexpressed in ER+ cell lines and hypermethylated in ER2 cell lines (117)

Genes overexpressed in ER2

tumors and hypermethylated in
ER+ cell lines (32)

ACOT4 CUX2 MPPED2 SEPT5 ACN9

ADAMTS13 CXCL12 MPV17L SIDT2 ADORA2B

ADAMTS19 CXXC5 MSI1 SLC16A6 AKR1B1

ADCY1 DNAJA4 MYRIP SLC16A9 ALDH1A3

AMPH DSCAML1 NAAA SLC1A2 ANKH

AMZ2 ENTPD2 NKD2 SLC29A4 CAV2

AR FGFR4 NOVA1 SLITRK4 CHST11

ASCL2 FKBP4 NPEPL1 SPATA2L CPNE8

ASTN2 FSCN2 NPNT SPATA7 EGFR

ATP2A3 GATA3 NPTXR SPNS1 EPHB2

ATP8B2 GFRA1 P2RX2 SRMS FMNL2

BTG2 GHR PALM ST6GALNAC2 FOSL1

C16orf14 GJD3 PATZ1 STK32B GPX1

C17orf28 GPR160 PAX9 STOM HS3ST1

C20orf134 GRIK3 PCP4L1 SYCP2 IGF2BP2

C3orf57 HS6ST3 PDZRN3 TMEM47 IGF2BP3

C6orf154 ID2 PGR TRPV4 KIFC3

C6orf97 IFT140 PLCB1 VPS37D LYN

CA8 IGFBP2 PRKCZ ZNF396 MALL

CACNA1H IGSF9B PRKG1 ZNF512B MSN

CACNA2D2 IL17RB PRUNE2 ZNF703 NEXN

CADM1 JAM2 PSTPIP2 NPAS2

CAMK2B KCNH1 PTGER3 PLAC8

CASKIN1 KCNK6 RAPGEFL1 PPARG

CELSR1 KCNMA1 RHBG RIN3

CGREF1 KIF12 RHOT2 SEMA7A

CHDH KIFC2 RICH2 SLC19A3

CHST1 KLHDC9 RND2 TEC

CLUAP1 LMX1B RNF40 TXNRD1

CNTNAP2 LRRC26 SAMD11 UPP1

CPLX1 MAPK8IP2 SDC2 VLDLR

CRIP2 MMP17 SEMA6A ZNF502

Genes in bold face were also differentially expressed between 76 ER+ and 53 ER2 breast tumors and were consistent with cell line expression and methylation data.
Among these, 67 were overexpressed in ER+ tumors and 17 were overexpressed in ER2 tumors. Detailed gene expression and methylation data for the 149 genes (153
CpG islands) in the cell lines can be found in Table S4.
doi:10.1371/journal.pone.0017490.t001
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Figure 5. Gene copy number aberrations are associated with differential gene expression. Panel A: A histogram of the number of
statistically significant CNAs identified in each cell line. Panel B: IGV (Integrative Genomics Viewer) view of copy number aberrations for the region of
chromosome 8 that is deleted in all three ER2 cell lines. Panel C: Genomic view of copy number aberrations for the regions of chromosome 17 with
amplification in all four ER+ cell lines. The symbols and abbreviations in Panels B and C are as follows: CNA - the copy number aberration track for
each individual cell line; red represents amplification, blue deletion, and gray no change. Gene expression – the differential gene expression track; red
represents overexpression in ER+ cells, blue represents overexpression in ER2 cells, shown as log2 fold change.
doi:10.1371/journal.pone.0017490.g005

Gene Expression, Methylation, CNA in Breast Cancer

PLoS ONE | www.plosone.org 9 February 2011 | Volume 6 | Issue 2 | e17490



GATA3 promoter and may be of regulatory significance to that

promoter.

We identified 17 genes that exhibited hypermethylation in ER+
cell lines and were overexpressed in ER2 cell lines and tumors.

CpG island methylation status of two such genes (LYN and CPNE8)

is shown in Figure 7. LYN (Figure 7C) exhibited preferential

methylation of a promoter-proximal GpG island in ER+ cell lines

(p = 0.036), and LYN mRNA was consistently overexpressed in

ER- tumors (p = 1.05E-09). High level expression of LYN, a

member of the SRC family of non-receptor tyrosine kinases, has

been associated with epithelial/mesenchymal transition and

invasion by breast cancer cells and with poor survival of breast

cancer patients [15]. Our data suggest that suppression of LYN

expression in ER+ tumors may be linked to an epigenetic program

that limits metastasis and favors better clinical outcome.

Figure 7D shows differential methylation of CPNE8 (p = 0.007)

in ER2 cells. Among the genes that exhibited differential

methylation, CPNE8 exhibited the greatest difference in hyper-

methylation status in ER+ cell lines. A single promoter-proximal

CpG island was highly methylated in the ER+ cell lines, with no

evidence of methylation in the ER2 cells (mean difference 77%).

CPNE8 is a member of the copine family of calcium-dependent

phospholipid-binding proteins. The function of CPNE8 is un-

known, although other copine family members have been

implicated in HER2 signaling and invasion in breast cancer

[16]. CPNE8 was differentially expressed in ER2 tumors

(p = 4.95E-04); and, given that our data suggest that CPNE8 is a

very strong component of the methylation signature of ER2 cells,

the function of this gene warrants additional consideration.

Combination of copy number aberration and expression
data defines a CNA/expression signature that is partially
reflected in ER+ and ER2 tumors

A recent array comparative genomic hybridization study of 103

breast tumors identified a number of loci that exhibit copy number

aberration at a significant frequency in tumor samples [17], and a

Table 2. 30 differentially expressed genes in the consistent CAN.

Gene expression Copy number (log2 ratio relative to MCF10A)

Chr Genes log2 FC* p value BT474 MCF7 T47D ZR751 BT20 MDAMB231 MDAMB468

8 TRMT12 1.732 0.012 0 0 0 0 21.216 22.166 21.326

8 RNF139** 1.997 0.003 0 0 0 0 21.216 22.166 21.326

8 TATDN1 1.620 0.031 0 0 0 0 21.216 22.166 21.326

8 NDUFB9 1.608 0.004 0 0 0 0 21.216 22.166 21.326

8 MTSS1 3.582 0.009 0 0 0 0 21.216 22.166 21.326

8 KIAA0196 1.317 0.010 0 0 0 0 21.216 22.166 21.326

8 NSMCE2 1.368 0.027 0 0 0 0 21.216 22.166 21.326

17 ATP5G1 1.187 0.046 2.032 1.062 0.650 0.697 0 0 0

17 UBE2Z 1.425 0.044 2.032 1.062 0.650 0.697 0 0 0

17 B4GALNT2 4.600 0.010 2.032 1.062 0.650 0.697 0 0 0

17 PHOSPHO1 3.221 0.003 2.032 1.062 0.650 0.697 0 0 0

17 NXPH3 3.520 0.004 2.032 1.062 0.650 0.697 0 0 0

17 SPOP 1.357 0.049 2.032 1.062 0.650 0.697 0 0 0

17 SLC35B1 1.162 0.019 2.032 1.062 0.650 0.697 0 0 0

17 TOM1L1 1.902 0.026 2.616 0.912 0.650 0.697 0 0 0

17 HLF 3.270 0.021 2.616 0.912 0.650 0.697 0 0 0

17 MKS1 1.884 0.004 1.204 1.551 0.650 0.937 0 0 0

17 SUPT4H1 1.285 0.025 1.204 1.551 0.650 0.937 0 0 0

17 MTMR4 1.037 0.040 1.204 1.551 0.650 0.702 0 0 0

17 RAD51C 1.668 0.017 2.287 3.534 0.650 0.702 0 0 0

17 TRIM37 2.080 0.048 2.287 3.534 0.650 0.702 0 0 0

17 C17orf71 2.607 0.020 2.717 1.984 0.650 0.702 0 0 0

17 DHX40 1.586 0.021 2.717 1.984 0.650 0.702 0 0 0

17 CLTC 1.458 0.025 2.717 1.984 0.650 0.702 0 0 0

17 TUBD1 1.945 0.033 2.717 3.914 0.650 0.702 0 0 0

17 RPS6KB1 2.202 0.037 2.717 3.914 0.650 0.702 0 0 0

17 APPBP2 2.577 0.019 2.372 3.914 0.650 0.702 0 0 0

17 GNA13 1.110 0.041 1.633 1.489 0.650 0.702 0 0 0

17 PITPNC1 1.569 0.020 0.698 1.489 0.650 0.702 0 0 0

17 BPTF 1.439 0.014 0.698 1.489 0.650 0.702 0 0 0

*mRNA-seq log2 fold change between 4 ER+ and 3 ER2 cell lines.
**Genes in bold face are significantly up-regulated (p#0.05) in ER+ tumors in the set of 129 breast tumor samples.
doi:10.1371/journal.pone.0017490.t002
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significant number of these mapped to chromosome 8 or 17.

Overall, 112 genes exhibited copy number aberration in 50 or

more tumors. We carried out a meta-analysis to determine if the

products of these 112 genes were differentially enriched in ER+ or

ER2 tumor samples. GSEA analysis, using the tumor dataset

described above, revealed no significant enrichment (normalized

enrichment score = 20.81, NOM p-value = 0.625, FDR q-val-

ue = 0.77). Overall, the array comparative genomic hybridization

data and our sequence-based analysis of copy number aberration

suggest that CNA varies widely from tumor to tumor and from cell

line to cell line such that only a small subset of genes that

consistently define the ER+ and ER2 states are likely to be

regulated by amplification or deletion.

In contrast, we were able to combine our CNA and expression

data to identify 30 genes that were overexpressed in ER+ cell lines

as a result of chromosome 17 amplification in ER+ cells or

chromosome 8 deletion in ER2 cells. Nine of these genes were

overexpressed in ER+ tumors (at p#0.05), as one would anticipate

if these genes were deleted in ER2 tumors or amplified in ER+
tumors. Two of these genes are on chromosome 8q24.13 (RNF139

at 125,487,008 and KIAA0196 at 126,036,502 ). RNF4 , a nuclear

receptor coregulator with ubiquitin ligase activity [18] [19], is

known to be translocated in renal tumors [20] and has been

implicated in ovarian cancer [21]. NXPH3, SPOP, TOM1L1, HLF,

CLTC, APPBP2, and BPTF are located within 20 Mbp of each

other on chromosome 17 between 46,970,127 and 65,821,640

(start to pter). NXPH3 and SPOP are adjacent to each other on

chromosome 17q21.33, and the observation that both are

overexpressed in ER+ tumors suggests that these two genes may

be co-amplified in most ER+ tumors, as is the case in ER+ cell

lines. NXPH3 encodes neurexophilin-3, which is overexpressed in

ER+ tumors (p = 0.0006). Neurexophilin-3, a postulated alpha-

neurexin ligand, has never been implicated in cancer, to our

knowledge. However, other neurexophilin family members have

been implicated in neuroblastoma [22], prostate [23], ovarian

[24], and breast [24] [25] cancer. SPOP, located within 0.5 Mbp

of NXPH3 on 17q21.33, encodes speckle-type POZ protein. Like

NXPH3, SPOP is also significantly overexpressed in ER+ tumors

(p = 4.84E-06). SPOP has been linked to CUL3-mediated attenu-

ation of signaling downstream of DAXX (death-associated protein

6) and hedgehog [26,27]. The observation that SPOP and the

adjacent NXPH3 genes are both amplified in ER+ cell lines and

overexpressed in ER+ tumors is consistent with the hypotheses

that these two genes may comprise an amplicon that is commonly

amplified in ER+ tumors. The fact that both SPOP and NXPH3

regulate degradation of transcription factors that are involved in

ER, NOTCH, and DAXX signaling further emphasizes the

potential significance of this hypothetical amplicon.

Discussion

Breast cancer therapy, perhaps to a greater extent than any

other field of oncology, is motivated by the concept that genotype

predicts therapeutic response. This is not a new concept, but

rather has its origins in the observation that expression of the

product of the ESR1 gene (ERa) predicts response to endocrine

therapy. More recent developments have linked overexpression of

ERBB2 (HER2) to clinical outcome and therapeutic response. The

advent of oligonucleotide-based microarray platforms has facili-

tated the development of several clinically useful gene expression

signatures, which offer the promise of incorporating genomic

features other than ER, PR, and HER2 into clinical management

of breast cancer patients. One such signature, widely used among

researchers but not yet risen to standard of clinical care, has

facilitated the stratification of breast tumors into four or five

intrinsic subtypes [2]; and there is good evidence to suggest that

each of these subtypes exhibits a predictable clinical phenotype

[28,29]. Such findings substantiate the belief, almost an article of

faith amongst genomic researchers, that one should be able to

develop predictive models that are based upon integration of

multiple genomic features. This concept defines the intersection

between clinical practice and systems biology.

To date, the integration of multiple genomic features into a

cogent mathematical model that predicts cellular phenotype has

been frustrated by the fact that the output from analytical

platforms that have been used is primarily analog. Consequently, it

is often difficult to compare microarray data from different

laboratories, or for that matter to compare data from the same

laboratory run at different times. How much more difficult, then,

to integrate data from hybridization-based analyses of gene copy

number, promoter methylation, and mRNA abundance? The

advent of massively parallel DNA sequencers holds the promise of

overcoming some of these difficulties. The output from sequencers

is digital, the signal to noise ratio is high, and dynamic range is

great. The computational simplicity of merely counting the

number of times a defined sequence tag appears within a

particular sample should, in theory, make it possible to develop

mathematical models that integrate any number of genomic

features, with the expectation that such models will at the very

least engender hypothetical predictions about the relationship

between the various features that comprise the model.

To build such models, one must first develop a curated,

disciplined dataset. The development of such a dataset was our

primary objective in the experiments described in this report. We

elected to focus on breast cancer because of the historical

significance of gene expression and therapeutic response in this

disease, as discussed above. We elected to use cell lines, rather than

primary tumors, because these cells are readily available to any

investigator who wishes to confirm or extend our genomic

findings. (Note that all of the experiments described above were

done with early passage cells that were purchased from ATCC.)

Furthermore, the cell lines that we selected have been studied

extensively by many investigators, so there is a strong cellular and

molecular background to draw upon for future studies. Critically

important to our objectives, we elected to use a single platform for

all of our genomic analyses, the Illumina Genome Analyzer, in the

belief that a disciplined analytical approach would facilitate our

ultimate objective of data integration. Finally, we elected to extract

both RNA and DNA from the same cell cultures to minimize

potential biological variation that might arise from subtle

differences in culture conditions. DNA extracted from these cells

was used for DNA-seq and Methyl-seq analysis, whereas

polyadenylylated RNA was used for mRNA-seq analysis. Addi-

tional features of the mRNA-seq analysis included the generation

of long read libraries (longer cDNA than the conventional mRNA-

seq protocol) and paired end sequence analysis. Exploitation of the

paired end data to quantify splice junctions and to identify novel

splicing isoforms and fusion gene products is ongoing at this time.

Figure 6. Expression of focus genes from cellular analyses in primary human breast cancer. The heatmap was generated from GSEA
analysis in which microarray data from 76 ER+ and 53 ER2 tumors were interrogated with a geneset consisting of 149 genes that were differentially
expressed and inversely methylated plus 30 genes that were overexpressed in ER+ cells and amplified in ER+ cells or deleted in ER2 cells.
doi:10.1371/journal.pone.0017490.g006
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In this initial analysis we concentrated on three genomic

features: mRNA abundance, gene copy number, and CpG island

methylation status. The decision to analyze these features as a

function of estrogen receptor status was obvious, given the clinical

significance of ER as a therapeutic marker. This focus was

substantiated by the very robust stratification of the cell lines based

on unsupervised clustering of the gene expression data. Several

points about the mRNA expression data warrant discussion.

Although not a major focus of this report, we compared several

different statistical models including ANOVA, negative binomial

regression, Poisson regression, and a Bayesian implementation of

the modulated t-test that had originally been developed for

microarray analysis (LIMMA). As a primary end point, we

compared each of these models for the ability to identify genes that

were differentially expressed, with the NanoString data considered

to be the ‘true’ test of differential expression. A separate

manuscript describing this comparison is in preparation, but our

analyses indicated that for this dataset, LIMMA was significantly

more reliable than any other model. Consequently, we used

LIMMA to assess the statistical significance of observed differences

in mRNA abundance and CpG island methylation.

The broad dynamic range of mRNA-seq analysis makes it

possible to detect transcripts that are present at very low

abundance, easily below the range of 1 tag/M. However, our

analysis of variance (standard deviation) as a function of expression

(total tags) indicates that this level of detection is probably not

within the range of reliable quantification. Therefore, we felt it was

necessary to exclude from our analysis a subset of 5,320 genes that

had average expression levels of ,50 total tags (,1 tag/M) in both

the ER+ and ER2 groups. We also eliminated genes that had

.50 total tags on average, but for which there were ,5 total tags

in one or more samples within either group. Among these, 580

genes were statistically significant, as assessed by p-value,0.05.

Thus we eliminated from our analyses a group of very low

abundance genes in which about 10% appeared to be differentially

expressed but were of such low abundance that we were not

confident of the quantification and meaningful integration with

methylation and CNA data. This point warrants additional

emphasis: mRNA-seq is capable of detecting transcripts at very

low levels, but quantification of such transcripts is problematic and

may require more detailed analysis of features such as exon

coverage.

We detected 1873 genes that were differentially expressed in

ER+ and ER2 cell lines, at a modest level of statistical stringency

(p,0.05, FDR q,0.2, fold change .1.5). Validation experiments

indicate that the mRNA-seq data generally conform to data

obtained with two different analytical platforms (qPCR and

NanoString). Pathway analysis of these genes revealed statistically

significant enrichment of known ER-associated functions. The

question then arises of the extent to which these differences in gene

expression profile can be linked to copy number aberrations or to

differential methylation of CpG islands located in the vicinity of

the cognate promoters.

We used segmentation analysis to compare copy number in the

tumor cells to that in non-transformed MCF10A cells. The use of

MCF10A as a reference standard is debatable, since these are not

normal human mammary epithelial cells. However, visual

examination of the distribution of CNV-seq sequence counts

across all chromosomes in this cell line revealed no notable regions

of gene amplification. The calculated chromosomal coverage in

our analyses was on average about one tag every 300 bp,

corresponding to 1006 physical coverage for a gene of 30 kb.

As one would expect, we detected many regions that exhibited

copy number aberration in each of the tumor cell lines. Most of

these were cell line-specific. However, we did identify 479 genes

that are differentially expressed in ER+ versus ER2 cells and that

may be regulated by changes in gene copy number in two or more

cell lines of either phenotype. However, we have focused our

analysis upon a core of 30 genes that are overexpressed either as a

result of amplification of chromosome 17 (in ER+) or deletion of

chromosome 8 (in ER2). These features were common to all ER+
or ER2 cell lines, suggesting that some of the genes within these

loci may be essential to establishment or maintenance of the ER+/

ER2 phenotypes.

The methylation signatures that we detected in these cells were

significantly more robust than the copy number aberrations. We

identified some 162 differentially expressed genes that exhibited

very highly significant changes in CpG island methylation and for

which methylation status correlated inversely with expression. Not

surprisingly, the majority of these CpG islands were very close to

the 59 ends of the differentially expressed genes. Our data suggest

that a minimum of 10% of the genes that define the ER+/ER2

expression profiles are likely to be regulated by promoter

methylation. This is almost certainly an underestimate, since our

analysis is likely to identify only those genes that exhibit very large

changes in methylation status.

Our analyses have identified a subset of 30 genes that are

overexpressed in ER+ cells and are either amplified in ER+ or

deleted in ER2 cells. In addition, we have identified 149 genes

that are differentially expressed in ER+ versus ER2 cells,

differentially methylated on one or more promoter-proximal

CpG islands, and exhibit an inverse correlation between CpG

island methylation and mRNA abundance. The observation that

common mechanisms underlie differential expression implies that

some or all of these genes are regulated by global genomic

processes that are central to establishment and/or maintenance of

the ER+/ER2 phenotypes. That hypothesis predicts that this

cohort of genes should be enriched in ER+/ER2 tumors, and our

GSEA analysis of a large microarray dataset from such tumors is

consistent with this prediction (p,0.001, q = 0.06). Some 103 of

our 179 focus genes were differentially expressed in the tumor

dataset. Fourteen of the 30 genes that exhibited CNA in the cell

lines were differentially expressed in the tumors; however, only 9/

14 were overexpressed in ER+ tumors. Conversely, 84/149 of the

differentially methylated genes were coordinately and significantly

expressed in both ER+/ER2 cell lines and tumors. Included

among these were several genes that have been linked to clinical

outcome, notably GATA3 (hypermethylated in ER-cell lines and

repressed in ER2 cell lines and tumors) and LYN (hypermethy-

lated in ER+ cell lines and repressed in ER+ cell lines and tumors).

Our data are correlative in nature, and do not rigorously

establish a link between methylation status or copy number

aberration in cell lines and expression in tumors. Nevertheless, our

data are consistent with the hypothesis that there is a significant

Figure 7. Representative examples of methylation status and mRNA abundance for genes that are differentially methylated in cell
lines and differentially expressed in both cell lines and tumors. Panel A: C6orf97 (with SYNE1 and ESR1); Panel B: GATA3; Panel C: LYN; and
Panel D: CPNE8. On each figure, gene expression track represents the log2 fold change of gene expression between ER+ and ER2 cell lines, red for
up-regulation and blue for down-regulation in ER+ cell lines. Below that track is the methylation data for each cell line, which shows the average
percent of methylated CpGs (dynamic range 0–100%) in the CpG Islands that were interrogated in this analysis.
doi:10.1371/journal.pone.0017490.g007
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subset of differentially expressed genes that are likely to be

regulated by such mechanisms and to play important roles in

establishment and/or maintenance of the ER+/ER2 phenotypes

in breast cancer. Copy number aberration may be involved, but

our data suggest that only a few genes are likely candidates for ER-

specific amplification or deletion. Conversely, CpG island

methylation appears to be linked to differential expression of a

large cohort of genes that define the ER+ versus ER2 tumor

phenotype. Some of these genes are known to be functionally

significant (e.g. GATA3 and LYN) whereas the functional signifi-

cance of other genes can only be inferred (C6orf97) or is completely

unknown (COPN8). Overall, however, there is a very strong

indication that global methylation patterns are critical to breast

tumor phenotypes, including therapeutic response and clinical

outcome. Of particular interest are those genes that are

hypermethylated in ER+ cells and overexpressed in ER2 cells

and tumors, since these may include potential therapeutic targets

(e.g. LYN) that could be exploited to treat ER2 (basal/triple

negative) tumors.

Materials and Methods

Data sharing
All of the sequence data that were analyzed in this report have

been deposited in Gene Expression Omnibus (GSE27003).

Breast cell lines
Eight breast cell lines, 7 from breast cancer and one from non-

tumor breast epithelial cells, were obtained from the American

Type Culture Collection (ATCC). The characteristics of these cell

lines were confirmed by qPCR analysis of ER, PR, and HER2

mRNA. Among the 7 cancer cell lines, 4 are ER+ and 3 are ER2.

All cell lines were grown under conditions recommended by

ATCC and RNA and DNA were extracted from mid log phase

populations of low passage number cultures.

RNA preparation and sequencing
Total RNA extraction was performed using Exiqon’s miR-

CURY RNA Isolation Kit. Long-read mRNA-seq cDNA libraries

were prepared from 1mg of total RNA using a modification of the

Illumina mRNA-seq protocol. Briefly, mRNA was resolved using

poly-dT oligonucleotides attached to magnetic beads, fragmented

using divalent cations under elevated temperatures, and converted

to cDNA using random primers. After conversion of the cleaved

fragments into cDNA, the cDNA underwent blunt end repair,

addition of an ‘A’ base to the 39 blunt ends, and ligation of adapter

molecules which will be used for PCR amplification, bridge

amplification, and sequencing. The cDNA library was resolved by

gel electrophoresis using conventional Illumina protocols except

that we cut from the gel those cDNA fragments in the range of

300–400 bp. The increased fragment length is necessary to

accommodate paired end sequence analysis. The gel purified

cDNA fragments were amplified by PCR and sequenced using the

Illumina Cluster Station and Genome Analyzer. Paired-end

sequence analysis (51 cycles/end) was carried out using sequencing

primers that correspond to either end of the bridge-amplified

cDNA fragments so as to obtain 50 nt of sequence from either end

of every cDNA fragment.

mRNA-seq data analysis
The Illumina standard pipeline version 1.4 was employed for

processing of raw images to make base calls and generate sequence

reads. Reads were aligned to genome and exon junctions using

Illumina’s alignment tool Eland_RNA (NCBI36/UCSC hg18). A

maximum of two mismatches were allowed for first 32 bases in

each alignment, and reads that had more than two mismatches or

were mapped to multiple genomic locations (alignment score less

than 4) were discarded. The aligned sequence tags were

summarized and annotated using Illumina’s CASAVA tool

(version 1.0) and imported into the Genome Studio software.

The read counts for genes, exons, and exon junctions were

exported from Genome Studio. A total of 18,517 genes were

annotated using RefSeq RNA database and the raw read counts

were used for downstream analyses.

The same mRNA library preparation was sequenced from both

ends of each cDNA fragment twice (Paired-End sequencing) and

the raw read counts from each end were combined for increased

coverage. The combined reads for each gene were normalized by

the total reads of each individual cell line and then standardized to

reads per million (RPM, gene counts/total counts of each cell line

61 million). For differential gene expression analysis between ER+
and ER2 cell lines, we first eliminated genes without any reads

across all 7 cell lines. We added 1 to all the genes and samples

before converting to RPM so that we could deal with genes with

zero count in some of samples to facilitate log2 transformation.

The log2 transformed data were visualized by hierarchical

clustering and heat maps for all the genes first and then for a

subset of highly varied genes across seven cell lines (standard

deviation greater than 75th percentile). The distance matrix was 1-

correlation and linkage method was average. Differentially

expressed genes between ER+ and ER2 cell lines were identified

using the linear models for microarray (LIMMA) package in R

[30]. This package uses an empirical Bayesian implementation to

estimate a standard error and has improved performance when an

experiment has a limited number of samples. False discovery rate

(FDR) was estimated using q-value [31]. As one of our goals was to

explore the underlying causes of differentially expressed genes

between ER+ and ER2 cell lines from methylation and DNA

abnormality perspectives, a generous nominal p-value cut-off of

0.05 was used for significant changed genes to correlate the gene

expression with the methylation and DNA copy number changes.

For pathway analysis of differentially expressed genes, we applied

a more stringent criterion of including only genes with a FDR of q-

value less than 0.1. We carried out concordance analysis in which

we compared the mRNA-seq data to expression data from the

same samples obtained using the NanoString cancer reference

gene set data (see below). In this analysis we compared LIMMA,

over-dispersed Poisson model, DESeq (negative binomial model),

and Student’s t-test for identification of differentially expressed

genes between ER+ and ER2 cell lines. We observed that

LIMMA processing of mRNA-seq data gave the highest

concordance with NanoString data. Therefore we selected

LIMMA for analyzing both mRNA-seq and Methyl-seq data.

Validation of mRNA-seq with qPCR and NanoString on a
set of cancer reference genes

The NanoString nCounter Cancer Reference CodeSet was

used to validate mRNA-seq data (http://www.nanostring.com/

products/assays/). This codeset contains a 39 biotinylated capture

probe and a 59reporter probe tagged with a fluorescent barcode,

two sequence-specific probes for each of 236 transcripts. Probes

were hybridized to 100 ng of total RNA for 19 h at 65uC, after

which excess capture and reporter probes were removed and

transcript-specific ternary complexes were immobilized on a

streptavidin-coated cartridge. All solution manipulations were

carried out using the NanoString preparation station robotic fluids

handling platform. Data collection was carried out with the

nCounter Digital Analyzer to count individual fluorescent

Gene Expression, Methylation, CNA in Breast Cancer

PLoS ONE | www.plosone.org 15 February 2011 | Volume 6 | Issue 2 | e17490



barcodes and quantify target RNA molecules present in each

sample. Normalization was carried out based on a standard curve

constructed using spike in exogenous control samples. Background

hybridization signal was determined using spike in negative

controls, and all mRNAs had fewer than mean background+2

standard deviations were considered to be below the limits of

detection.

The raw code count data from the nCounter Analysis System

were first normalized and background corrected. Specifically, a

normalization factor was calculated based on the relative number

of positive control counts in each sample. Genes with counts less

than the average of embedded negative controls (background

noise) in that sample were first set to its background. The gene

count for each gene was subtracted from this background so that

each sample had same footing where zero numbers represent

undetectable noise. When comparing the data to mRNA-seq data

and detecting differentially expressed genes, we log2 transformed

the data after each data point was increased by adding 1 to deal

with zeros. Correlation coefficients between the mRNA-seq and

NanoString data were determined using Pearson product-moment

correlation coefficient. Student’s t-test was applied to the Nano-

String data to identify differentially expressed genes between the

ER+ and ER2 cell lines.

CpG Island methylation by Reduced Representation
Bisulfite Deep Sequencing

DNA (2mg) extracted from cell lines was fragmented using

endonuclease MspI, followed by QIAQuick purification. The end

of digested DNA was repaired and an adenine was added to the 39

end of the DNA fragments according to the Illumina standard end

repair and add_A protocol (Illumina, San Diego, CA). Pre-

annealed forked Illumina adaptors containing 59-methyl-cytosine

instead of cytosine was ligated to both ends of DNA fragments

using standard Illumina adaptor ligation protocol (Illumina).

Ligated fragments were then separated by 2% agarose gel. Two

size ranges, 150–175 bp and 175–225 bp (includes adaptor

length), were selected and cut from the gel. DNA from gel slices

was purified using Qiagen Gel extraction kit (Qiagen). The

purified DNA was treated with EpiTect Bisulfite kit (Qiagen) with

modification. The bisulfite conversion time was extended to

approximately 14 hr by adding 3 cycles of denaturation at 95uC
for 5 min followed by incubation at 60uC for 180 min. The

bisulfite-converted DNA was purified using the EpiTect Bisulfite

kit and the protocol for DNA isolated from formaldehyde-fixed,

paraffin-embedded tissue samples. The bisulfite-treated DNA was

purified a second time with MinElute PCR purification kit

(Qiagen) and eluted with 15ml EB buffer. The bisulfite-treated

DNA fragments were PCR amplified: 15ml of eluted DNA, 5 pmol

of Illumina PE PCR primers 1.0 and 2.0, 62.5 nM of each dNTP,

and 2.5 U of Pfu Turbo Cx hotstart DNA polymerase (Stratagene

Products, Agilent, La Jolla, CA) in a total 50ml volume. The

amplification conditions were as follows: 5 min at 95uC, 30 sec at

98uC then 66 (10 sec at 98uC, 30 sec at 65uC, 30 sec at 72uC)

followed by 5 min at 72uC. The PCR reaction was purified by

MinElute PCR purification Kit (Qiagen) and final reduced

representation bisulfite library was eluted in 15ml EB. The

concentration of final library was measured using the Agilent

2100 Bioanalyzer (Palo Alto, CA). The library was sequenced on

Illumina GA sequencing instrument according to standard

Illumina cluster generation and sequencing protocols.

DNA sequencing (50 nt) was conducted on one end of the DNA

fragments. About 62% of all 50 nt sequence tags were uniquely

mapped to the human genome in 3 letter space. A multi-fasta file

of sequences for both forward and reverse strands, consisting of 50

nucleotides or less if the next MspI site is located less than 50

nucleotides apart, adjacent to MspI sites was used as a reference for

alignment. A converted reference, where every C was replaced by

T for forward strand fragments and every G replaced by A for

reverse strand fragments was prepared. All reads from the

Genome Analyzer (qseq files from Bustard) were converted into

three bases (A,G,T), i.e., simply replacing all remaining Cs with Ts.

The converted reads (50 nt) were aligned to converted reference

by stand_alone Eland_extended module. The repeat-masking

option of Eland was used to mask known multiple hits. The

positions from these alignments were used to generate reference

sequences from the original (4 bases) MspI fragments. The original

4 base reads from Genome Analyzer were matched to the

corresponding reference sequences (4 bases). Methylated C base

was obtained by counting C/C+T ratio. Summarized methylation

data on each CpG island were obtained from averaging all CpG

sites with coverage. = 10 in a CpG island. These data represent

the percentage of methylated CpGs over total number of CpGs in

the island (from 0 to 100). CpG islands within 5 kb of the 59 end of

a gene were included for the analyses and comparisons. The

overall profile of methylation was examined using unsupervised

hierarchical clustering where distance matrix was 1-Pearson

correlation and the linkage method was average. The differentially

methylated CpG islands were identified using the LIMMA

package, as described for analysis of gene expression. A p-value

cut-off of 0.05 was applied for significantly methylated CpG

islands.

DNA preparation and sequencing
Genomic DNA was extracted using Qiagen’s QIAamp DNA

Mini Kit. Genomic DNA libraries were constructed according to

the standard Illumina protocol. Briefly, DNA (5mg) was fragment-

ed using the Covaris shearing apparatus. The end of digested

DNA was repaired and an adenine was added to the 39 of the

DNA fragments according to the Illumina standard end repair and

add_A protocol. After adaptor ligation using standard Illumina

adaptor ligation protocol, ligated fragments were separated by 2%

agarose gel and DNA fragments of around 400 bp were selected

and purified using Qiagen Gel extraction kit. Size selected DNA

fragments were then amplified using standard Illumina PCR

amplification protocol with 12 PCR cycles. The concentration of

the final library was measured using the Agilent 2100 Bioanalyzer

(Palo Alto, CA). The library was sequenced on Illumina GA

sequencing instrument according to standard Illumina cluster

generation and sequencing protocols. Sequencing was carried out

to a depth of $10 M aligned tags, which corresponds to a

theoretical coverage of about one tag every 300 bp, assuming

3E9bp/genome divided by 1E7 tags/sample.

DNA copy number aberration detection
Genomic 50 bp single end DNA sequencing data were

generated to identify copy number aberrations (CNA) in 7 breast

cancer cell lines in reference to the non-tumor epithelial cell line

(MCF10A). Tumor cell lines were compared to the reference to

obtain log2 ratios using BWA [32] paired-end uniquely mapped

reads to the genome. We identified the CNAs using the

combination of CNV-seq software [33] and Partek Genomics

Suite segmentation algorithm. Specifically, for each sample, we

mapped the filtered BWA alignment reads to a chromosome and

exact base pair locations for input into the CNV-seq software.

CNV-seq software uses a sliding window approach to count

number of mapped reads in a region for each sample and these

counts are used to calculate log2 values. The log2 count values

were normalized at individual chromosome level based on the
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assumption that most parts of the chromosomes have no copy

number changes. After normalization we performed median

adjustment to the counts obtained from tumor and reference

samples so that the median log2 values for tumor and reference

were similar. The log2 ratio between a tumor and a reference was

defined by the difference between the median log value of tumor

counts and the median log value of reference counts for a given

segment. To detect copy number changes, we imported the log2

ratio data into Partek Genomic Suite (www.partek.com) and

applied a genomic segmentation algorithm with p-value cutoff at

0.0001 for neighboring regions for significantly different means, 10

minimum number of data points for any candidate region, 0.3

signal to noise difference as minimum magnitude of change, and

p-value threshold 0.0001 for one-sided t-test for a changed region

(below and above thresholds 21 and 0.59, which is equivalent to

log2(1/2) = one copy deletion and log2(3/2) = one copy amplifi-

cation, respectively). We merged the adjacent CNAs and also

obtained overlapped CNAs found in two or more samples using R

package CNTools. Genes that reside in the identified CNA regions

were retrieved using SQL queries according to their genomic

locations. The log2 ratio of that region was used for gene copy

number.

Correlation of mRNA-seq data with methylation and copy
number aberration

Genes in the final analysis were merged with methylation data

and identified copy number aberration regions according to

genomic locations. A scatter plot was created for the genes

that were differentially regulated and for which surrounding

CpG islands were also differentially methylated. A correlation

coefficient between the log2 fold change of gene expression and

mean difference of methylation for these genes was calculated

using Pearson product-moment correlation coefficient, which

ranges from 21 to 1 where 21 and 1 represent perfect negative

and positive correlation and 0 for no correlation. A two-sided

t-test was conducted to compare the correlation coefficient

with 0 and the 95% confident intervals were estimated for

the correlation coefficient. The distance of these CpG islands

from genes was also plotted against the log2 fold change of

differentially expressed gene. In correlating gene expression

with DNA copy number aberrations, average log2 ratio for a

segment from each group (ER+ or ER2) was used to deter-

mine the mean copy number difference between ER+ and

ER2 groups.

Pathway analysis for differentially expressed genes
We conducted pathway analysis for the genes with FDR less

than 0.1 using the genes kept in the final analysis as a reference list

in MetaCore (GeneGo Inc). Both canonical pathways (GeneGo

Maps) and GeneGo process networks were evaluated. In both

analyses, the uploaded focus gene list was compared to the

manually curated and pre-built pathways or biological process

networks using hypergeometric test to get an enrichment p-value

for each pathway or network. The p-value indicates the possibility

of a set of genes that is mapped to a pathway or network by

chance.

Validation of the genes regulated by methylation or
affected by CNA in a public dataset

Our integrated analyses identified a set of 179 genes that were

regulated by methylation (149 genes) or affected by CNA (30

genes) in cell lines. To examine whether these genes were also

differentially regulated in tumor samples, we analyzed a cohort of

129 primary breast cancer gene expression profiles generated

using the Affymetrix U133plus2 platform and downloaded from

Gene Expression Omnibus (GEO accession number: GSE5460)

[8]. The data were log2 transformed and differentially expressed

genes were identified using the t-test. To address the question

whether the set of 179 genes together and the two sets of 149 and

30 genes separately were significantly enriched in this set of

tumor samples, we conducted a gene set enrichment analysis

(GSEA) as described by Subramanian [34]. We evaluated these

user-defined gene sets along with 1,425 well-curated public gene

sets (filtered out 470 gene sets that had fewer than 15 or more

than 500 genes). The phenotypic class was ER+ or ER-status of

the tumors, and the genes that were overexpressed in ER+ or

ER2 tumors were evaluated separately. From this analysis, a

normalized enrichment score (NES), nominal p-value from 1000

permutations, and FDR q-value adjusting for a gene set size and

correlations between gene sets and expression datasets were

obtained.

All the analyses other than specifically noted were conducted in

R: A language and environment for statistical computing (http://

www.r-project.org).

Supporting Information

Table S1 Differential analysis results for mRNA-seq data. It

contains 1,873 genes passing our filtering criteria with log2 fold

change, p value, and false discovery rate q value.

(XLSX)

Table S2 Pathway analysis results for 451 differentially ex-

pressed genes. Only significantly enriched pathways or networks

are listed. Those with bold face have estrogen involvement. P

value was from hypergeometric test. The ratio represents the

number of differentially expressed genes over the total number of

genes in the pathway or network.

(DOCX)

Table S3 Differentially methylated CpG islands and their

associated genes (within 5 kb of transcript start). Both methylation

and gene expression data are included. Note that there are 444

unique CpG islands differentially methylated, with 469 unique

associated genes in the table. Some CpG islands (36) have more

than one gene within 5 kb window. Some genes (10) have more

than one CpG islands within 5 kb of its transcript start.

(XLSX)

Table S4 149 genes (with highlight) whose gene expression was

inversely correlated with CpG island methylation. Both gene

expression and methylation were differentially regulated between

ER+ and ER2 cell lines.

(XLSX)

Table S5 Detected CNA segments in 7 breast cancer cell lines

(reference to MCF10A normal cell line).

(XLSX)

Table S6 Gene expression and CNA data for 30 genes that were

differentially expressed between ER+ and ER2 cell lines and their

copy numbers were consistently changed in ER+ or ER2 cell lines

(amplified in four ER+ cell lines or deleted in three ER2 cell

lines).

(XLSX)
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