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Abstract

As one of the most important and ubiquitous post-translational modifications (PTMs) of proteins, S-nitrosylation plays
important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification
of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In
contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using
computational methods could provide convenience and increased speed. In this work, we developed a novel software of
GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and
released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better
than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of
GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the
exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful
tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely
available at: http://sno.biocuckoo.org/.
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Introduction

The 1998 Nobel Prize for Physiology or Medicine was awarded

for seminal discoveries that showed nitric oxide (NO) to be a

freely-diffusible signaling molecule and second messenger which

regulates the production of cyclic GMP (cGMP) and plays essential

roles in the cardiovascular system. Subsequently, a large number

of studies challenged this fundamental view by demonstrating that

NO could spatially and temporally target specific cysteine thiols

and transition metals of proteins, a reversible post-translational

modification (PTM) termed S-nitrosylation [1–6]. In most cell

types, NO synthases (NOSs) catalyze the reaction of arginine and

O2 to produce citrulline and endogenous NO (Figure 1). NO can

then be further oxidated into NO2 and processed into N2O3

(Figure 1). By direct interactions or through scaffold and adaptor

proteins, protein targets closely associated with NOS may be S-

nitrosylated in situ to form S-nitrosothiols (SNOs) (Figure 1) [1–4].

Although the enzymatic mechanisms of protein S-nitrosylation are

still elusive, several enzymes have been demonstrated to facilitate

S-nitrosylation or de-nitrosylation reactions. For example, Cu, Zn

superoxide dismutase (SOD) and thioredoxin (TRX) promote S-

nitrosylation, while protein disulfide isomerase (PDI) is suggested

to regulate de-nitrosylation [3,4]. Recent reports have proposed

that S-nitrosylation can modulate protein stability [7], activities [8]

and trafficking [9,10], and play an important role in a variety of

biological processes, including transcriptional regulation [7], cell

signaling [11], apoptosis [8], and chromatin remodeling [12].

Moreover, aberrant S-nitrosylation has been implicated in

numerous diseases and cancers [1,2,8]. In this regard, experimen-

tal identification of S-nitrosylated proteins together with their sites

would serve as a foundation of understanding the molecular

mechanisms and regulatory roles of S-nitrosylation.

Conventional experimental identification of S-nitrosylation sites

with a site-directed mutagenesis strategy is laborious and of low-

throughput [7,8]. In 2001, Jaffrey et al. developed a novel biotin

switch technique (BST) for the large-scale detection of cellular S-

nitrosylated substrates [13,14]. The BST comprises three steps,

including methylthiolation of free cysteine thiols with methyl

methanethiosulfonate (MMTS), reduction of SNOs to thiols

with ascorbate, and ligation of the nascent thiols with

N-[6-(biotinamido)hexyl]-39-(29-pyridyldithio)-propionamide (bio-

tin-HPDP) [5,13,14]. Together with state-of-the-art mass spec-

trometry (MS), BST was successfully used to discover a large

number of potential S-nitrosylated proteins in H. Sapiens [15,16],

M. musculus [17], and A. thaliana [18]. Recently, several

approaches, including SNOSID (SNO-Cys site identification)

[19,20], were also developed to determine potential S-nitrosylation

sites from MS-derived data [19–23].

Currently, computational studies of post-translational modifica-

tions (PTMs) are attracting considerable attention. In contrast with

time-consuming and expensive experimental methods, certain of

the accurate and convenient computational approaches have been
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shown to be able to rapidly generate helpful information for

further experimental verification. Although there have been ,170

databases and computational tools developed for PTM analyses

(http://www.biocuckoo.org/link.php), in silico prediction of S-

nitrosylation sites in proteins is still a great challenge. In a previous

study, Hao et al. tested the prediction performance using a training

data set containing 65 positive S-nitrosylation sites and 65 negative

samples [20]. The support vector machines (SVMs) algorithm was

used, and the performance result was disappointing [20].

In this work, 504 experimentally verified S-nitrosylation sites in

327 unique proteins were obtained from the scientific literature

and public databases (Supplementary Table S1). Previously, we

developed the algorithm GPS 2.0 (‘‘Group-based Prediction

System’’) for the prediction of kinase-specific phosphorylation

sites [24]. Here, we report substantial improvement of the method

and the release of the GPS 3.0 algorithm. Then we developed a

novel computational software of GPS-SNO 1.0 for prediction of S-

nitrosylation sites. The leave-one-out validation and 4-, 6-, 8- and

10-fold cross-validations were calculated to evaluate the prediction

performance and system robustness. By comparison, the perfor-

mance of the GPS 3.0 algorithm was better than several other

approaches, with an accuracy of 75.80%, a sensitivity of 53.57%

and a specificity of 80.14% under the low threshold condition. As

applications of GPS-SNO 1.0, we also collected 485 potentially S-

nitrosylated substrates from PubMed (Supplementary Table S2).

These proteins were detected from large-scale or small-scale

studies, and the exact S-nitrosylation sites had not been

experimentally determined. We predicted 359 (,74%) of these

targets with at least one potential S-nitrosylation site. These

prediction results might be of use for further experimental

verification. Finally, the online service and local packages of

GPS-SNO 1.0 were implemented in JAVA 1.4.2 and are freely

available at: http://sno.biocuckoo.org/.

Methods

Data preparation
We searched the scientific literature from PubMed with the

keywords of ‘‘nitrosylation’’ or ‘‘nitrosylated’’, and collected 549

experimentally verified S-nitrosylation sites in 363 proteins which

were published before Jun. 23rd, 2009. We also searched the

sequence annotations of the UniProt database (http://www.

uniprot.org/uniprot/) [25]. Only experimentally verified S-

nitrosocysteine sites were reserved. Potentially nitrosylated sites

with annotations of ‘‘By similarity’’, ‘‘Potential’’ or ‘‘Probable’’

were removed. From the UniProt database, in total we obtained

22 known S-nitrosylation sites in 18 proteins. In a previous study,

Li et al. developed the public database SysPTM and collected 50

PTM types with experimentally verified information [26], while

the known S-nitrosylation sites were taken from two large-scale

surveys [20,27]. The three data sets were integrated, while the

protein sequences were retrieved from the UniProt database.

As previously described [24,28–31], we regarded the cysteine (C)

residues that undergo S-nitrosylation modification as positive data

(+), while all other non-nitrosylated cysteines were taken as negative

data (2). The positive data (+) set for training contain a number of

homologous sites from homologous proteins. If the training data

were highly redundant with too many homologous sites, the

prediction accuracy would be overestimated. To avoid such

overfitting, we clustered the protein sequences with a threshold of

40% identity by CD-HIT [32]. If two proteins were similar with

$40% identity, we re-aligned the proteins with BL2SEQ, a program

in the BLAST package [33], and checked the results manually. If two

S-nitrosylation sites from two homologous proteins were at the same

position after sequence alignment, only one item was reserved while

the other was discarded. Finally, the non-redundant data set for

training contained 504 positive sites and 2,581 negative sites from

327 unique substrates. The 504 experimentally verified S-nitrosyla-

tion sites are presented in Supplementary Table S1.

Performance evaluation
As previously described [24,28–31], we used four measurements,

including sensitivity (Sn), specificity (Sp), accuracy (Ac), and Mathew

Correlation Coefficient (MCC) to evaluate the prediction performance

of GPS-SNO 1.0. The four measurements were defined as below:

Sn~
TP

TPzFN
, Sp~

TN

TNzFP
,

Ac~
TPzTN

TPzFPzTNzFN
,

and

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p .

In this work, the leave-one-out validation and 4-, 6-, 8-, 10-fold

cross-validations were performed. The Receiver Operating

Characteristic (ROC) curves and AROCs (area under ROCs)

were also carried out.

The GPS 3.0 algorithm
For prediction of the S-nitrosylation sites, we greatly refined our

previously developed method and released GPS 3.0 (Group-based

Prediction System) algorithm, with its two major components of

scoring strategy and performance improvement.

The basic hypothesis of the scoring strategy is that similar short

peptides might bear similar 3D structures and biochemical

properties [24,28–31]. First, we defined a nitrosylation site peptide

NSP(m, n) as a cysteine (C) amino acid flanked by m residues

upstream and n residues downstream. Then we used an amino

acid substitution matrix, e.g., BLOSUM62, to calculate the

similarity between the two NSP(m, n) peptides. For two amino

acids a and b, let the substitution score between them in the amino

acid substitution matrix be Score(a, b). Then the substitution score

between the two NSP(m, n) peptides A and B was defined as:

S(A, B)~
X

{mƒiƒn

Score(A½i�, B½i�)

If S(A, B),0, we simply redefined it as S(A, B) = 0.

The performance improvement process is comprised of four

sequential steps of k-means clustering, peptide selection (PS),

weight training (WT) and matrix mutation (MaM).

Figure 1. The biochemical processes of the endogenous NO
source and protein S-nitrosylation.
doi:10.1371/journal.pone.0011290.g001

Prediction of Nitrosocysteine
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1) k-means clustering. The k-means clustering method has

been extensively used in analyses of gene [34,35] or protein [36]

expression data, protein 3D structural analysis [37], and image

processing [38,39]. Here, we used this approach to cluster the

training data set into several groups. In these studies, more clusters

will generate better performance. However, the current training

process is excessively time-consuming. Therefore, to improve the

calculation speed, the K was roughly set to 3. Given two NSP(m, n)

peptides A and B, the similarity was measured as:

s(A, B)~
Num: of conserved substitutions

Num: of all substitutions

A conserved substitution is a substitution with a Score(a, b).0 in the

BLOSUM62 matrix. The s(A, B) ranges from 0 to 1. Thus, the

distance between them can be defined as: D(A, B) = 1/s(A, B). If

s(A, B) = 0, D(A, B) = ‘.

By exhaustive testing, NSP(7, 7) was used for this procedure.

First, three S-nitrosylation sites from the positive data (+) were

randomly chosen as the centroids. Second, the other positive sites

were compared in a pairwise manner with the three centroids and

clustered into groups with the highest similarity values. Third, the

centroid of each cluster was updated with the highest average

similarity (HAS). The second and third steps were iteratively

repeated until the clusters did not change any longer. After the

three clusters for the positive sites had been determined, we put

each negative site into the cluster with the HAS.

2) Peptide selection (PS). In this step, We determined the

optimized combination of NSP(m, n) for optimal performance. The

combinations of NSP(m, n) (m = 1, …, 30; n = 1, …, 30) were

extensively tested. The optimal NSP(m, n) for each cluster was

separately selected, with the highest leave-one-out performance by

singling out one site (all sites must be singled out one time). The Sp

value was fixed at 80%.

3) Weight training (WT). The weight of each position in

NSP(m, n) was initially defined as 1. The leave-one-out

performance was calculated with the Sp of 80%. A weight of any

position was randomly picked out for +1 or 21, and the leave-one-

out result was re-computed. The manipulation was adopted if the

Sn value was increased. The process was repeated until

convergence was reached. Then the updated substitution score

between two NSP(m, n) peptides A and B was refined as:

S0(A, B)~
X

{mƒiƒn

wiScore(A½i�, B½i�)

The wi is the weight of position i. Again, if S9(A, B),0, we simply

redefined it as S9(A, B) = 0.

4) Matrix mutation (MaM). The above three approaches

were first introduced here in this work, while the MaM strategy

was established in our previous work [24]. As previously described,

BLOSUM62 was chosen as the initial matrix, and the leave-one-

out performance was calculated. Subsequently, we fixed the Sp as

80% to improve the Sn by randomly picking out an element of the

matrix for +1 or 21. The procedure was terminated when the Sn

value was not increased any further. More detailed information of

MaM is available in supplementary Text S1.

Implementation of the online service and local packages
The online service and local packages of GPS-SNO 1.0 were

implemented in JAVA and are freely available at http://sno.

biocuckoo.org/. For the online service, we tested the GPS-SNO

1.0 on a variety of internet browsers, including Internet Explorer

6.0, Netscape Browser 8.1.3 and Firefox 2 under the Windows XP

Operating System (OS), Mozilla Firefox 1.5 of Fedora Core 6 OS

(Linux), and Safari 3.0 of Apple Mac OS X 10.4 (Tiger) and 10.5

(Leopard). For the Windows and Linux systems, the latest version

of Java Runtime Environment (JRE) package (JAVA 1.4.2 or later

versions) of Sun Microsystems should be pre-installed. However,

for Mac OS, GPS-SNO 1.0 can be directly used without any

additional packages. For convenience, we also developed local

packages of GPS-SNO 1.0, which worked with the three major

Operating Systems, Windows, Linux and Mac.

Results

Development of GPS-SNO for prediction of S-
nitrosylation sites

Previously, we developed a novel algorithm of GPS 1.0 & 1.10

(Group-based Phosphorylation Scoring) for the prediction of

kinase-specific phosphorylation sites [29,30]. Based on the

hypothesis that similar peptides possess similar biological func-

tions, we developed a scoring strategy using an amino acid

substitution matrix, BLOSUM62 [29,30]. We also hypothesized

that the bona fide pattern for phosphorylation modification might

be compromised by the heterogeneity of multiple structural

determinants with different features. Thus, to improve the

prediction performance, we adopted a Markov Cluster Algorithm

(MCL for short) to partition experimentally verified phosphory-

lation sites into several clusters [29,30]. In GPS 2.0, we observed

that different substitution matrices resulted in different levels of

performance [24]. Thus, we developed a simple approach of

matrix mutation (MaM), which mutated the initial matrix of

BLOSUM62 into the optimal matrix having the highest leave-one-

out performance [24]. The MCL method was removed in GPS 2.0

due to its poor efficiency [24]. Recently, while studying

sumoylation [28] and palmitoylation [31], we classified modifica-

tion sites based on either experimentally determined or putative

linear motifs. However, this procedure couldn’t generate satisfying

performance for prediction of S-nitrosylation sites.

In this work, we have greatly refined the previous strategies and

here release the GPS 3.0 algorithm. The scoring strategy and

MaM were preserved, while three additional approaches,

including k-means clustering, peptide selection (PS), and weight

training (WT) were added. The k-means clustering method has

been widely used in many fields [34–39]. Analogously, we used

this method to classify the training data set into three groups,

cluster A, B and C, with HAS values of 0.2475, 0.2517 and

0.2716, respectively. In our previous work, the flanking peptides

were arbitrarily selected. For example, PSP(3, 3) (phosphorylation site

peptide) was used in GPS 1.0 & 1.10 [29,30], while PSP(7, 7) was

deliberately selected in GPS 2.0 [24]. Here, we developed the PS

to determine the optimal combination of NSP(m, n) based on the

highest leave-one-out performance. The NSP(m, n) for cluster A, B

and C were determined to be NSP(30, 7), NSP(15, 7) and NSP(8,

3). Previously, the weight of each position in a PSP(m, n) was equal

to 1. Here, we developed the WT to determine the optimal weight

for each position with the highest leave-one-out performance.

By exhaustive testing, we decided the order of training processes

to be: k-means clustering, PS, WT and MaM. For convenience,

NSP(7, 7) is shown. The prediction results for human tissue

transglutaminase (tTG, UniProt ID: P21980) are shown as an

example (Figure 2). In endothelial cells, the human tTG is

expressed, secreted into the extracellular matrix (ECM), and

nitrosylated in a Ca2+-dependent manner [40]. There were

fourteen unambiguous S-nitrosylation sites identified (Supplemen-

tary Table S1), including C10, C27, C98, C143, C230, C269,

C277, C285, C336, C370, C371, C524, C545 and C620 [40].

Prediction of Nitrosocysteine
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The GPS-SNO 1.0 with the default threshold predicted eight sites

as positive hits (Figure 2). In addition, C505 was also predicted as a

positive hit, which might be shown to be useful by experimental

verification.

Performance evaluation and comparison
To evaluate the prediction performance and robustness of GPS-

SNO 1.0, the leave-one-out validation and 4-, 6-, 8-, 10-fold cross-

validations were performed. ROC curves were drawn, and the

AROC values were calculated as 0.685 (leave-one-out), 0.652 (4-

fold), 0.661 (6-fold), 0.662 (8-fold) and 0.660 (10-fold), respectively

(Figure 3). Since the results of the 4-, 6-, 8- and 10-fold cross-

validations were very similar with the leave-one-out validation,

GPS-SNO 1.0 is evidently a stable and robust predictor.

To investigate the performance of the GPS 3.0 algorithm, we

compared it to several other approaches, including the GPS 2.0

and position-specific scoring matrix (PSSM) [41] methods. To

avoid any bias, the same training data set used in GPS 3.0 was also

employed in GPS 2.0 and PSSM. The GPS 2.0 algorithm was

carried out as previously described [24,28,31]. For the PSSM

algorithm [41], the probabilities of the twenty amino acids in

terms of positive data (+) and negative data (2) were calculated as

P+ and P2. Then the score of a given NSP(m, n) could be

calculated as:

Score½NSP(m,n)�~
X

1ƒiƒmzn

log2(Pz½i�=P{½i�)

For comparison, the leave-one-out validations for the GPS 3.0,

GPS 2.0 and PSSM algorithms were calculated. Again, the ROC

curves were drawn, and the AROC values were calculated as

0.685 (GPS 3.0), 0.594 (GPS 2.0) and 0.572 (PSSM), separately

(Figure 4). Furthermore, we fixed the Sp values of GPS 3.0 so as to

be identical with the other methods, and then compared the Sn

values (Table 1). For construction of the GPS-SNO 1.0 software,

three thresholds of high, medium and low were established

(Table 1). The results demonstrated the GPS 3.0 algorithm to be

better than the other methods. In addition, previous experimental

observations had suggested that S-nitrosylation preferred to

recognize an ‘‘acid-base’’ motif such as K/R/H/D/E-C-/D/E

[2,3,6]. With the training data set, we critically evaluated the

performance of this motif, with an Ac of 82.22%, Sn of 4.37%, and

Sp of 97.41%. However, with the same Sp value of 97.41%, the Sn

of GPS 3.0 was 6.94% (Table 1). In this regard, the GPS 3.0

algorithm is also better than the simple motif approach.

Figure 2. The screen snapshot of GPS-SNO 1.0 software. The medium threshold was chosen as the default threshold. As an example, the
prediction results of human tissue transglutaminase (tTG, P21980) are presented.
doi:10.1371/journal.pone.0011290.g002

Prediction of Nitrosocysteine
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Large-scale prediction of S-nitrosylation sites in proteins
Hundreds of proteins have been experimentally indicated to be

potentially nitrosylated, with the exact S-nitrosylation sites in these

proteins requiring elucidation. As applications of GPS-SNO 1.0,

we manually collected 485 potentially S-nitrosylated substrates

from the scientific literature (Supplementary Table S2). The

primary sequences of these targets were retrieved from the

UniProt database. With the default threshold (medium) of GPS-

SNO 1.0, we successfully predicted 359 (,74%) of these proteins

with at least one potential S-nitrosylation site (Supplementary

Table S2). These prediction results should be useful for further

experimental verification. Several examples were randomly picked

out, and their prediction results are shown in Figure 5.

It was proposed that the anticancer agent cisplatin induces S-

nitrosylation of human p53 (UniProt ID: P04637) to prevent its

translocation to mitochondria [9]. However, the S-nitrosylation

sites in p53 were not experimentally identified. With GPS-SNO

1.0, we predicted that p53 might be nitrosylated at C135

(Figure 5A), which locates in the DNA binding region of p53,

potentially influences its DNA binding affinity and regulates p53

subcellular localization (Figure 5A). As previously described [3,4],

The human protein disulfide-isomerase (PDI) P4HB (P07237) is a

regulatory partner in the de-nitrosylation process. In a recent

large-scale analysis [16], P4HB was also proposed as a potential

nitrosylated target. Here, we predicted five potential S-nitrosyla-

tion sites in P4HB, including C8, C53, C56, C397 and C400

(Figure 5B). In 2003, Kuncewicz et al. carried out a proteomic

analysis in mouse mesangial cells and identified 31 novel S-

nitrosylated substrates [17]. We predicted one of these proteins,

Mannan-binding lectin serine protease 1 (Masp1, P98064), might

be nitrosylated at C190, C372 and/or C496 (Figure 5C). In

addition, Arabidopsis Adenosylhomocysteinase 1 (SAHH1,

O23255) was experimentally identified as a potential S-nitrosylated

protein [18]. In this work here, we predicted that SAHH1 might

only be S-nitrosylated at the single site of C42 (Figure 5D).

Discussion

S-nitrosylation is an essential and reversible PTM of proteins

[1–5]. Identification of S-nitrosylated substrates with their exact

sites is fundamental for dissecting the molecular mechanisms and

regulatory roles of S-nitrosylation [1–5]. In contrast with labor-

intensive and expensive experimental approaches, computational

prediction of S-nitrosylation sites is potentially a convenient and

fast-speed strategy to generate useful information for subsequent

Figure 3. The prediction performance of GPS-SNO 1.0. The
leave-one-out validation and 4-, 6-, 8-, 10-fold cross-validations were
calculated. The Receiver Operating Characteristic (ROC) curves and
AROCs (area under ROCs) were also carried out.
doi:10.1371/journal.pone.0011290.g003

Figure 4. Comparison of GPS 3.0, GPS 2.0 and PSSM. For
comparison, the leave-one-out results of GPS 3.0, GPS 2.0 and PSSM
were calculated.
doi:10.1371/journal.pone.0011290.g004

Table 1. Comparison of the GPS 3.0 algorithm with other
approaches.

Method Threshold Ac Sn Sp MCC

GPS 3.0 High 80.40% 25.20% 91.17% 0.1897

Medium 78.33% 35.32% 86.72% 0.2175

Low 75.80% 53.57% 80.14% 0.2864

a 82.64% 6.94% 97.41% 0.0900

GPS 2.0 78.46% 14.29% 90.98% 0.0652

76.22% 22.22% 86.76% 0.0937

72.66% 34.52% 80.10% 0.1299

PSSM 78.49% 13.49% 91.17% 0.0586

75.77% 20.24% 86.60% 0.0718

72.27% 27.58% 80.99% 0.0786

K/R/H/D/E-C-D/Eb 82.22% 4.37% 97.41% 0.0391

For construction of the GPS-SNO 1.0 software, the three thresholds of high,
medium and low were chosen. For comparison, we fixed the Sp values of GPS
3.0 so as to be similar or identical to the other methods and compared the Sn
values.
a With the same Sp value, the Sn value of GPS 3.0 is better than the simple motif
approach (6.94% vs. 4.37%).
b An ‘‘acid-base’’ motif for S-nitrosylation recognition [2,3,6].
doi:10.1371/journal.pone.0011290.t001

Prediction of Nitrosocysteine
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experimental verification. Previously, experimental studies sug-

gested an ‘‘acid-base’’ motif such as K/R/H/D/E-C-/D/E for S-

nitrosylation recognition [2,3,6]. However, later researches

proposed that most S-nitrosylation sites do not have this motif.

For example, there are only ,20 S-nitrosylation sites with this

‘‘acid-base’’ motif in our training data (Supplementary Table S1).

In this regard, the simple motif approach is of only limited value.

In this report, we have greatly modified a previously developed

algorithm and released the GPS 3.0 algorithm for the prediction of

S-nitrosylation sites. All of the GPS series algorithms comprise the

two major procedures of scoring strategy and performance

improvement [24,29,30]. In GPS 1.0 & 1.10, the scoring strategy

was established first, while the MCL was selected as the

performance improvement step [29,30]. In GPS 2.0, the scoring

strategy was preserved, and the novel approach of matrix mutation

(MaM) was used to improve performance [24]. In GPS 3.0, the

original scoring strategy was adopted as the initial step. For

performance enhancement, a sequential procedure was deter-

mined by means of k-means clustering, peptide selection (PS), and

weight training (WT) and MaM. The first three approaches were

newly developed in GPS 3.0. By comparison, the prediction

performance of GPS 3.0 was better than other algorithms, such as

GPS 2.0, PSSM and the simple motif method.

In the current stage, the data training process of GPS 3.0 was

computationally intensive and time-consuming. In this regard, the

technical strategies were simplified to save time. For example, in

the k-means clustering procedure, more clusters generate better

performance. However, the k value was set at three to improve the

training speed. From our previous experience, if experimentalists

want to perform a limited number of experiments to obtain at least

one real site, a higher Sp than Sn value is important for avoiding

too many false positive hits [24,29,30]. However, in some

applications, experimentalists will try to exhaustively identify all

the actual sites from among the predicted results without any

regard to time and cost. In these cases, a higher Sn is more

important, in order to provide more potential hits. For

performance improvement, the Sp value was arbitrarily chosen

to be 80%. Again, in the WT step, the weight of a randomly

selected position was roughly added with +1 or 21. Although

these parameters or settings still remain to be precisely calibrated

in the future, the current GPS 3.0 algorithm has already exhibited

superiority in S-nitrosylation site prediction. Finally, the novel

software program for GPS-SNO 1.0 was implemented in JAVA.

Taken together, we propose that GPS-SNO 1.0 is a useful tool

for the identification of potential S-nitrosylation sites. The

combination of computational predictions and experimental

verification will provide a foundation for an understanding of

the mechanisms and the dynamics of S-nitrosylation.

Supporting Information

Text S1 The algorithmic procedure of matrix mutation (MaM).

Found at: doi:10.1371/journal.pone.0011290.s001 (0.07 MB

DOC)

Table S1 From the scientific literature (PubMed) and the

UniProt database, we collected 504 experimentally verified S-

nitrosylation sites in 327 unique proteins. All of the sites from

UniProt were complemented by the data taken from PubMed

(marked in grey).

Found at: doi:10.1371/journal.pone.0011290.s002 (0.07 MB

XLS)

Table S2 From large-scale as well as small-scale experimental

studies, we also collected 485 potentially S-nitrosylated substrates.

The exact S-nitrosylation sites had not been experimentally

determined. The default threshold (medium) was adopted for

GPS-SNO 1.0.

Found at: doi:10.1371/journal.pone.0011290.s003 (0.06 MB

XLS)
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