
The Effect of Single Recombination Events on Coalescent
Tree Height and Shape
Luca Ferretti1,2, Filippo Disanto1, Thomas Wiehe1*
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Abstract

The coalescent with recombination is a fundamental model to describe the genealogical history of DNA sequence samples
from recombining organisms. Considering recombination as a process which acts along genomes and which creates
sequence segments with shared ancestry, we study the influence of single recombination events upon tree characteristics
of the coalescent. We focus on properties such as tree height and tree balance and quantify analytically the changes in
these quantities incurred by recombination in terms of probability distributions. We find that changes in tree topology are
often relatively mild under conditions of neutral evolution, while changes in tree height are on average quite large. Our
results add to a quantitative understanding of the spatial coalescent and provide the neutral reference to which the impact
by other evolutionary scenarios, for instance tree distortion by selective sweeps, can be compared.
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Introduction

Coalescent theory is a central part of modern population

genetics [1–3]. It constitutes the basis of genealogical models, of

statistical tests of the neutral evolution hypothesis [4] as well as of

many simulation tools [5–7]. Besides application in population

genetics, coalescent models and their various generalizations

became an object of study in their own right in probability, graph

theory and combinatorics [8–12].

The classical coalescent is a binary, rooted, unordered tree with

a fixed number n of leafs. The latter is also called the size of the

tree (Figure 1A). Such a tree can be interpreted as the genealogical

history of a sample of DNA sequences, where mergers (‘‘coales-

cents’’) of two lineages represent events of common ancestry.

Thus, coalescent trees are naturally fitted with a time scale and for

this reason they are sometimes called labelled histories. A biologically

important generalization of the simple case is the coalescent with

recombination. Recombination is a process by which two DNA

sequences reciprocally exchange genetic material. In the coales-

cent framework this translates into lineage splits (Figure 1B). A split

represents the un-coupling of the genealogical history of two

sequence fragments. The ancestral recombination graph (ARG)

[13] is a model to integrate such lineage splits into coalescent trees.

Each sequence position x along the chromosome is associated with

a coalescent tree Tx, which is the marginal tree of the ARG at

position x. Depending on the rate of recombination, chromosomes

are divided into smaller or larger sequence fragments fi

(‘‘haplotype block’’) in such a way that all positions within a

fragment are free of recombination and therefore have the same

marginal tree Tf .

The spatial coalescent is the sequence (Tfi
)i of coalescent trees

along a sample of recombining chromosomes. Study of the spatial

coalescent is of prominent interest in population genomics, since it

contains information about the demographic and evolutionary

history of a population. For instance, it has lately been used to

infer demographic parameters in non-African human [14].

Unfortunately, the spatial coalescent is not a simple Markov

process [15], complicating its probabilistic analysis and leaving

many open problems to be addressed.

Here, we investigate the impact of single recombination events

upon some measures of tree topology and shape. By topology we

mean the branching pattern of a tree; by shape we mean its

topology and branch lengths. In particular, we ask how

recombination affects tree height and tree (im-)balance. The latter

is measured by the difference in size of the left and right subtrees

emerging from the root or any internal node. Depending on when

and where a recombination event occurs, the effect on altering tree

structure may be drastic, mild or completely silent. Informally,

drastic events are those which lead to a large change of tree height

or balance. These are events which typically involve splits by

recombination of the branches emerging from the root of the tree.

As such they may strongly affect the genealogical structure of

haplotypes. Identifying and characterizing these events is very

informative for population genetic inference. Mild events are

typically those which occur along very recent branches, close to

the leafs of the tree. They do not, or only mildly, affect haplotype

structure and mutation frequency spectrum. Interestingly, there is

a non-negligible portion of recombination events which do not

alter tree topology, i.e. the branching pattern. We call these events

silent. Sometimes, also the branch lengths remain unchanged; we

call these events hidden (Figure 2).
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Our goals are to formalize these concepts, to characterize in

more detail the effect of single recombination events upon tree

shape and to quantify the relative frequencies of drastic, mild and

silent events. We explicitly calculate the probabilities of changes in

height or root balance induced by a single recombination event.

Our results are based on the assumption of a standard neutral

model of constant population size. This means that for each

coalescent event two lineages are chosen at random to merge.

Further, the timing of events is exponentially distributed with a

rate which, after re-scaling by population size N, depends only on

the number of lineages at a given time.

In Results Section (a), we define a probability density for the

trees in the spatial coalescent and we explain the difference

between pointwise marginal trees Tx, evaluated at every basepair

x of the DNA sequences, and the marginal trees Tf , evaluated at

every fragment f . We derive a simple relation between the

densities of Tx and Tf . In Section (b) we analyze the

recombination events which lead to height-changes and derive

their probabilities. In Section (c) we quantify the concept of root

imbalance, called V, and derive the first-order transition

probabilities under single recombination events. We focus on

events which produce unbalanced trees and, at the same time, lead

to an increase of tree height. This type of events is of particular

interest for the analysis of biological data. Their effect on the

mutation frequency spectrum and on haplotype structure is the

basis of tests to reject the neutral evolution hypothesis (e.g., [16–

18]). Therefore, for bench-marking it is highly interesting to know

how often such events occur under purely neutral conditions, but it

is not the goal of this paper to devise another neutrality test. Then,

we generalize the results regarding the tree topology parameter V
and derive the transition probability for arbitrary types of

recombination events. Using this, we calculate the run-length

distribution of V along recombining chromosomes. Finally, in

Section 0.4, we calculate the average proportion of hidden

recombination events and derive its limiting behavior for large

sample sizes.

We remind the reader that the spatial coalescent is a non-

Markovian process and not completely determined by transitions

of any finite order. However, it is a homogeneous process.

Therefore, first-order transition probabilities are well-defined and

independent of the position in the sequence. Here, we compute

first order probabilities for single recombination events from one

tree to the next, averaging over all trees of the ARG which are not

directly involved in the recombination event considered. There-

fore, our results hold for the spatial coalescent as described by the

ARG [13]. In fact, the ARG is the model which is underlying all

our calculations.

Results

(a) Tree Distribution and Recombination
We consider a sample of n ‘‘chromosomes’’ from a diploid

panmictic population of constant size N. Without recombination,

the genealogical history for these chromosomes is described by the

classical coalescent process [1,2]. The set of all possible coalescent

trees of size n is a product Rn{1
z 6Ln, where Rn{1

z contains

positive real waiting times of n{1 independent coalescent events

and the discrete set Ln represents the set of all possible tree

topologies. For our purposes here it is more convenient to consider

labelled coalescent trees: this means that not only the internal

nodes are ordered but also the leafs carry leaf labels. Hence [19]

(see also http://oeis.org/A006472), the cardinality of Ln is

DLnD~
n!(n{1)!

2n{1
: ð1Þ

Furthermore, all trees in Ln have the same probability

2n{1

n!(n{1)!
, when they are generated under the standard coalescent

process [20]. The waiting times tk for a coalescent event, given k
lineages, are exponentially distributed with mean 1=k(k{1).
Time runs backward from the leafs to the root of the tree and is

measured in units of the coalescent, i.e. time is scaled by four times

the population size. Therefore, Rn{1
z 6Ln can be regarded as

being equipped with a probability mass function which factorizes

into a probability density pk(tk) for each waiting time (2ƒkƒn)

and the discrete probability for the topology P(top). For trees T in

the above sense, we denote the resulting probability ‘density’ by

p(c)(T)~6
n
k~2pk(tk)|P(top)(T)

and we have

Figure 1. Example coalescent trees. A: Tree of size n~10 generated under the coalescent process. The y-axis represents a time scale, with leafs at
the ‘present’, and the root in the ‘past’. Starting from the present and going backwards in time, coalescent events are exponentially distributed with a
parameter depending on population size (2N) and the number of lineages at any given point in time. B: Recombination is a prune (asterisk) and re-
graft (circle) event: a lineage splits and merges onto another lineage which exists in the population at the time of recombination. This lineage does
not need to extend to the present, and it may have become extinct from the entire population (cross). Recombination has changed the height of the
coalescent tree with respect to the tree in panel A (Dh), but has not changed root imbalance: for both trees V~3.
doi:10.1371/journal.pone.0060123.g001
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p(c)(T)~
2n{1

n!(n{1)!
P
n

k~2
k(k{1)e{k(k{1)tk (T) , ð2Þ

where tk(T) is the time interval during which the coalescent tree T

has k lineages.

Modeling recombination as an ARG [13], there are two

processes to be considered: coalescence and recombination. Given

k independent lineages, in the coalescent process two lineages

merge into a single one with rate k(k{1). In the recombination

process, a single lineage splits into two with rate krL, where

r~4Nr denotes the population recombination rate, r is the

recombination rate per base and L is the finite length of the

sequence. After a recombinational split the two ancestral lineages

correspond to different sequence fragments, left and right of the

point of recombination. This point is chosen uniformly along the

sequence of length L. We assume that r is small, so multiple

recombination events in the same position are negligible.

Given a tree T(x) in position x, the length before the first

recombination event downstream (or upstream) of x is geometri-

cally distributed with parameter rl(T), where l(T) represents the

total length of the tree. Since r is small, it can be safely

approximated by an exponential distribution with the same

parameter rl(T).

Recombination events may change the shape of the tree. The

local tree at position x in the genome may differ from the local tree

at position y due to recombination. Moving along the genome, we

consider two different sequences of trees: the sequence

Sx~fT(x1),T(x2), . . .g of local trees for all positions x1,x2, . . .,
and the sequence Sf ~fT(f1),T(f2), . . .g of local trees which are

separated by a single recombination event (Figure 3). Note that a

tree in Sf can span several base positions, as the typical length

1=rl(Tf ) of the fragment f is greater than 1. Also, note that

consecutive trees in Sf need not be different. This occurs when

fragments are separated by hidden recombination events.

The standard coalescent without recombination is recovered

when looking at the tree for a single position x in the sequence,

ignoring all other trees. Neither the rate of coalescent events nor

the choice of coalescing lineages in this tree are influenced by

ancestral lineages at other positions. The local tree T(x) at any

position x is therefore a standard coalescent tree without

recombination [21] and the marginal density of a tree in position

x of the ARG is identical to p(c)(T); i.e., picking the tree in

position x from a random sequence Sx is equivalent to generating

one from the standard coalescent process without recombination.

On the other hand, picking a tree from a random sequence Sf

results in a different distribution. The reason is that short trees

recombine less, therefore they tend to span larger regions and to

be under-represented in Sf compared to Sx, as illustrated in

Figures 4 and 5.

In fact, the two distributions differ by weights which are

proportional to the length Lf of the fragments spanned by each

tree. Since in the limit of large sequences the average length is

E(Lf (T))~1=(rl(T)), we have p(c)(T)!p(r)(T)=l(T). Therefore,

for large sequences, the tree density after a random recombination

event is given by

p(r)(T)~
l(T)

Ec(l)
p(c)(T) , ð3Þ

where l(T) denotes the total length of the tree. For the standard

neutral model, Ec(l)~an~
Pn{1

i~1 1=i. Note that the two distri-

butions differ only in their weights of branch lengths, but not with

respect to topology.

The argument leading to eq (3) can be made rigorous under the

assumption of infinitely long chromosomes, using the fact that the

coalescent with recombination is an ergodic process [22] (see Text

S1, Supporting Information eqs (1)–(3)). As a check of eq (3), we

show that p(r)(T) is invariant under a single recombination event.

Let Px(T ’DT) be the transition density from tree T in a given

position x to tree T ’ in position xz1, and Pr(T ’DT) the transition

density from tree T to tree T ’ obtained by a single recombination

event. Since the marginal density p(c)(T) is the same for every

position, we have

p(c)(T ’)~
X

T

Px(T ’DT)p(c)(T) ð4Þ

independent of the recombination rate. For small recombination

rates and at first order in r, we have

Px(T ’DT)~(1{rl(T))dT ’,Tzrl(T)Pr(T ’DT). Substituting this

into (4) gives

l(T ’)p(c)(T ’)~
X

T

Pr(T ’DT)l(T)p(c)(T) : ð5Þ

Figure 2. Non-silent, silent and hidden recombination events. A: Non-silent recombination changes tree topology. In the case shown, also V
changes from 2 to 1. B: A recombination event which changes the order of internal nodes. Whether this event is classified as non-silent or silent,
depends on the tree definition. It is non-silent for labelled histories (considered here; eq (1)), but it would be silent for unlabelled trees. C: A silent
recombination event, which does not affect the branching pattern, but the lengths of the recombining branches. D: A hidden recombination event. It
does neither affect branching pattern nor branch lengths.
doi:10.1371/journal.pone.0060123.g002
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That is, after normalization p(r)(T)!l(T)p(c)(T) is an invariant

distribution under Pr(T ’DT). The normalization isP
T l(T)p(c)(T)~Ec(l).

Furthermore, any marginal tree obtained from an ARG

(conditioned on the number of recombinations in the sequence)

by choosing randomly an ancestral lineage for every recombina-

tion event is distributed according to p(r)(T). This can be seen

from symmetry: none of two trees separated by a single

recombination event is distinguished, so they have the same

distribution, which is the invariant distribution under a single

recombination event, i.e. p(r)(T). This property has far-reaching

consequences since it makes it possible to exploit the symmetries of

the ARG.

Note that the two distributions, p(r)(T) and p(c)(T), become

asymptotically identical when n becomes large. To see this, it

suffices to consider the random variable l=E(l). Its mean is identical

to 1. Since Var(l)~
Pn{1

i~1 i{2&p2=6 for large n [2], one has

Var(l=E(l))~
Var(l)

E2(l)
&

p2=6

a2
n

: ð6Þ

The right hand side of equation (6) converges to 0 with

increasing n. Therefore the factor l=E(l) converges to 1 and

p(r)(T)~(l=E(l))p(c)(T)?p(c)(T) (in the sense of local weak

convergence). The relations between the empirical probability

distributions p½(T(x))x� and p½(Tf )f � along the sequence and the

probability densities p(c)(T) and p(r)(T) are summarized in the

following diagram:

Figure 3. Distinction between sequences Sx and Sf along a recombining chromosome (sketched in the middle). Sequence Sx is the
sequence of coalescent trees plotted for each nucleotide. Sequence Sf is the sequence of coalescent trees for each recombination fragment.
Recombination breakpoints are indicated by arrows.
doi:10.1371/journal.pone.0060123.g003

Figure 4. Cumulative distribution of tree height for n~2 (black) and n~4 (red) along a recombining chromosome of length 106 bp.
Shown are the height distribution of trees in Sx (solid; ‘‘positions’’) and in Sf (dashed; ‘‘fragments’’). For comparison, the theoretical distributions for
Sx are plotted in light colors.
doi:10.1371/journal.pone.0060123.g004
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p Txð Þx
� �

p Tf

� �
f

h i
p cð Þ Tð Þ
:n??

p rð Þ Tð Þ

The distributions p(c)(T) and p(r)(T) need to be carefully

distinguished when measuring the effect of a single recombination

event. If one asks for the first recombination event downstream of

a given position x in the genome, then the initial tree at position x

is distributed with p(c)(T). If one asks instead for the effect of a

randomly chosen recombination event, then the density p(r)(T) is

the appropriate one.

(b) Height-changing Recombination Events
Probabilities of height changing events. Recombination

can be interpreted as a random prune-and-regraft event on the

tree [23]. First, a time point of pruning is selected uniformly

anywhere on the tree; second, the node immediately above the

selected branch is removed; third, the pruned branch is re-grafted

onto the tree anywhere above the pruning point or onto the

ancestral lineage of the root, forming a new node. For hidden

recombination events, prune and re-graft occur on the same

branch, without modifying topology or branch lengths of the tree.

We denote the root node by n0 and the first internal node by n1.

There are four types of recombination events that change the

height of the tree (Figure 6).

U (‘up’): a prune-and-regraft event on the root branches

generates a higher root without changing the topology;

D (‘down’): a prune-and-regraft event on the root branches

generates a lower root without changing the topology;

N (‘new’): pruning a branch below the root branches and re-

grafting onto the ancestral branch of the root creates a new root,

while the old root becomes internal node n1;

S (‘substitute’): pruning a root branch and re-grafting onto a

branch in the subtree of n1 causes n1 to become the root.

In fact, for the root to change height it must either be shifted

(cases U and D) or be replaced (cases N and S). If the root is

replaced, it can become an internal node n1 (case N) or be lost

(case S). Cases U and D leave the topology unchanged, while cases

N and S do not.

We denote the probabilities of these events by PU, PD, PS, PN.

We compute these quantities under both distributions, p(c)(T) and

p(r)(T).

Given a coalescent tree of size n, let the level k be the time

interval when exactly k independent lineages coexist, with

k~2, . . . ,n. The waiting time at the kth level is tk(T), in the

following called tk for short. Tree height may be increased by

recombination events of type U or N. The total probability for

this, PUN(T), is given by the sum of the probabilities of pruning at

all possible levels, but never re-grafting lower than the root:

PUN(T)~
Xn

k~2

ðtk

0

k dt

l(T)
e{2kt P

k{1

j~2
e
{2jtj , ð7Þ

where the product is defined to be 1 when k~2. This is a

telescopic series that can be re-summed in a function of the total

length of the tree

PUN(T)~
Xn

k~2

k

l(T)

1{e{2ktk

2k
P

k{1

j~2
e{2jtj

~
1

2l(T)

Xn

k~2

P
k{1

j~2
e{2jtj { P

k

j~2
e{2jtj

� �

yielding the simple result

PUN(T)~
1{e{2l(T)

2l(T)
ð8Þ

Interestingly, this probability depends only on the total length l(T)
of the tree and not on the topology. Very short trees grow with

high probability, very long trees are unlikely to grow (Figure S1).

The average probability of height-increase when passing from one

recombination-delimited sequence fragment to the next is

P
(r)
UN~

X
T

PUN(T)p(r)(T)~
X

T

1{e{2l(T )

2an

p(c)(T)

~
1

2an

1{ P
n

k~2

ð?
0

dtk e{2ktk pk(tk)

� 	
~

~
1

2an

1{ P
n

k~2

k{1

kz1

� 	
~

1

2an

1{
2

n(nz1)

� 	
, ð9Þ

which agrees very well with simulations (Figure 7). Note that P
(r)
UN

approaches zero as slowly as O(1= log (n)).

Figure 5. Height of neutral coalescent trees along the genome. One simulation run using ms [5] with n~20 and r~4Nr~10{3 . On the right,
the distribution of the trees according to Sx and Sr and the average length before a recombination event, for a simulation of a sequence of length 106 .
doi:10.1371/journal.pone.0060123.g005
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Figure 6. Types of height-changing recombination events. The square indicates the new node created by re-grafting. It forms the new root in
cases U, D and N. In case S, an existing internal node becomes the new root (empty square overlaid on node n1).
doi:10.1371/journal.pone.0060123.g006

Figure 7. Increase of tree height. Probabilities P
(r)
UN (black), P

(r)
U (green) and P

(r)
N (red) of events that increase tree height as a function of sample

size n. Dots represent the values of P
(r)
UN obtained by simulations using program ms [5] and selecting a random recombination event which is far from

the sequence boundaries.
doi:10.1371/journal.pone.0060123.g007
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This result can also be derived directly by counting ARGs, since

p(r)(T) corresponds to the distribution of a random tree in an ARG.

We will consider the case of a recombination event at a given level k
and then average over all levels. To obtain the total number of

ARGs An,k with a single recombination event at level k, choose a

tree at random (among DLnD possibilities), then choose the branch to

be pruned (k possibilities) and the branch to which it is re-grafted at

the same or a higher level (
Pk

j~1 j possibilities). Therefore,

An,k~
k2(kz1)

2
DLnD ð10Þ

The number of ARGs where the new tree is higher than the old one

is kDLnD, because there is just one possibility of re-grafting, namely on

the ancestral lineage above the root of the old tree. The probability

of pruning at level k in the old tree is Pk~ktk=l. Therefore, one can

average over p(r)(T) to obtain P
(r)
UN~

Pn
k~2 kEr(tk=l)kDLnD=An,k,

which is identical to equation (9).

Focusing now on pruning of the root branches, we obtain PU

analogously to equation (7). Let Nk(nj) be the number of direct

descendants of node nj at level k. Nk(nj) can take values 0,1,2. The

average value of Nk(nj) satisfies the recursion

�NNkz1(nj)~ �NNk(nj) 1{
1

k

� 	

�NNjz2(nj)~2

that has the solution

�NNk(nj)~
2(jz1)

k{1
:

In particular, the average number of direct descendants of the

root at level k is �NNk(n0)~2=(k{1). The probability PU is a

modification of equation (7): multiplying by the fraction of events

that are actually of type U, i.e. Nk(n0)=k, one obtains

PU(T)~
Xn

k~2

ðtk

0

dt

l(T)
Nk(n0)e{2kt P

k{1

j~2
e{2jtj

~
1

l

Xn

k~2

Nk(n0)
1{e{2ktk

2k
P

k{1

j~2
e{2jtj :

ð11Þ

In contrast to equation (7), equation (11) cannot be easily

simplified since it depends also on the topology. After averaging

over p(r)(T), we obtain

P
(r)
U ~

1

2an

12bnz
10

n
z

2

nz1
z

8

n2
{19

� 	
ð12Þ

and

P
(r)
N ~

1

an

10{6bn{
6

n
{

4

n2

� 	
, ð13Þ

where bn~
Pn{1

j~1 1=j2.

The probabilities P
(r)
D and P

(r)
S can be computed similarly to the

above formulae, giving

PD(T)~
t2

l
{

1{e{4t2

4l

z
1

l

Xn

k~3

Nk(n0)
1{e{2ktk

2k
P

k{1

j~3
e{2jtj

1{e{4t2

2

ð14Þ

and

PS(T)~

1

l

Xn

k~3

Nk(n0)

Pk{1

j~3

1{e
{2ktk
2k

P
k{1

d~jz1
e{2dtd

j{1
j

(1{e
{2jtj )

z k{1
k

tk{
1{e

{2ktk
2k


 �
2
6664

3
7775

ð15Þ

(Text S1, Supporting Information eqs (4)–(9)). Alternatively, one

may employ an argument based on symmetry properties of the

ARG. Among two adjacent trees in the ARG, the left one is

smaller or larger than the right one with equal probability.

Therefore,

P
(r)
DS~P

(r)
UN : ð16Þ

The same is true when the root is only shifted. Thus,

P
(r)
D ~P

(r)
U : ð17Þ

Hence, by subtraction,

P
(r)
S ~P

(r)
N : ð18Þ

Note that the identities (17) and (18), being topological in

nature, are also valid for models with variable population size. A

related result about the probability that a random recombination

event leaves tree height unchanged (1{P
(r)
UN{P

(r)
DS) has been

obtained previously by Griffiths & Marjoram [24].

Equations (8), (11), (14), (15) are valid also when averaging

over the distribution p(c)(T), instead of p(r)(T). However, exact

results are available only for small sample sizes. For the case of

arbitrary n we use the following Taylor approximation of the

ratio moment

E
X

l

� 	
^

E(X )

E(l)
1z

Var(l)

E(l)2
z

Cov(X ,l)

E(X )E(l)

� 	
, ð19Þ

where E(X )=E(l) represents the desired probability P(c). When

the expansion is truncated at zeroth order (i.e., replacing the first

moment of the ratio by the ratio of first moments), one obtains

the results analogous to equations (12), (13), (17) and (18). More

detailed calculations are given in Text S1, Supporting Informa-

tion eqs (10)–(12). These yield, for instance, the probability of

increasing tree height

P
(c)
UN^P

(r)
UN 1z

bn

a2
n

z
1

an

3=2{1=n{1=(nz1)

n(nz1)=2{1

� 	
: ð20Þ
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Note that the scaling factor on the right hand side in equation (20)

approaches 1 very slowly with increasing n. The case P
(c)
UN is

actually an exception since an exact formula exists [15] for all

values of ; in fact, PUN(T) depends only on l(T), therefore it is

sufficient to average this quantity over the distribution of l
obtained in [15]. For small samples there is a considerable

difference between P
(c)
UN and P

(r)
UN. For example, if n~2, we have

P
(c)
UN~0:55 while only P

(r)
UN~0:33.

Amount of change in height. The variation in height Dh has

a simple distribution. If the height increases, then the difference is

given by the waiting time for coalescence of two lineages. It is

PU(DhDT)~2e{2Dhg(Dh)PU(T) ð21Þ

and

PN(DhDT)~2e{2Dhg(Dh)PN(T) : ð22Þ

where g(x) is the Heaviside function, g(x)~1 if x§0 and 0
otherwise. If the height decreases because of an event of type D, its

distribution is given by the waiting time for coalescence before

time t2, equivalent to the ‘‘bounded coalescent’’ for two lineages

[25]

PD(DhDT)~
2e{2(t2zDh)g({Dh)g(t2zDh)

1{e{2t2
PD(T) : ð23Þ

For events of type S, the variation in height is simply the waiting

time t2 of the tree

PS(DhDT)~d(Dhzt2)PS(T) , ð24Þ

where d(x) is the Dirac delta distribution. Averaging these

quantities over p(r)(T) and using the symmetries of the ARG,

we obtain

P
(r)
U (Dh)~P

(r)
D ({Dh)~2e{2Dhg(Dh)P

(r)
U ð25Þ

and

P
(r)
N (Dh)~P

(r)
S ({Dh)~2e{2Dhg(Dh)P

(r)
N : ð26Þ

i.e., all these variations in height are exponentially distributed for

an average tree.

Taking expectations, the average change in height after one of

these events is

DE(Dh)D~1=2,

irrespective of the type of event, i.e

E(DhDU)~E(DhDN)~{E(DhDD)~{E(DhDS)~1=2. Comparing

this to the average height of a tree, E(h)~1{1=n, one notices that

a single recombination event changes tree height by 50% on

average.

(c) Root Imbalance and Recombination
Let Ln0

(Rn0
) be the number of left (right) descendants of the

root. We have Ln0
zRn0

~n. We call the random variable

V~ min (Ln0
,Rn0

) root imbalance. V is a coarse-grained measure

of tree topology. A recombination event may or may not change V

and a change of V is neither sufficient nor necessary for a change

in tree height. Since many recombination events induce

rearrangements of the lower branches (close to the leafs) of the

tree, they may affect V without affecting tree height. Still, large

changes in V are often associated with height-changing recombi-

nation events of type N or S and thus are associated with drastic

changes of tree topology.

In this section we calculate the transition probabilities P(vDv0)
for V under a single recombination event, averaged over the initial

tree. First, we focus on events of type UN, i.e. increasing height,

and then we obtain the transition probabilities for all types of

events separately.

Root imbalance and height-increasing events. Let the size

of a branch be the number of leaves below the branch. A specific

tree of size n can be fully described by the probability Pn,k(iDT)
that a randomly chosen branch at level k has size i. Averaging

over trees of size n, the probability that a branch of level k has size

i is

Pn,k(i)~
n{i{1

k{2

� 	
=

n{1

k{1

� 	
ð27Þ

[26]. Let ~PP(r)
UN(i) be the probability that the height increases and

the pruned branch has size i. It is obtained, similarly to P
(r)
UN, by

multiplying each term of the sum in equation (7) by Pn,k(iDT).
Thus, given a tree T ,

~PPUN(iDT)~
Xn

k~2

ðtk

0

dt

l(T)
Pn,k(iDT)e{2kt P

k{1

j~2
e{2jtj ð28Þ

and, averaging over p(r)(T), one obtains

~PP(r)
UN(i)~

2

an

Xn

k~2

n{i{1

k{2

� 	
n{1

k{1

� 	 1

k(k{1)(kz1)
: ð29Þ

More generally, the probability that the pruned branch has size i,
given that recombination leads to an increase in height, is simply

~PP(r)(iDUN)~~PP(r)
UN(i)=P

(r)
UN. The random variable V can take values

between 1 and n=2 and is the folded version of the random

variable i which ranges from 1 to n{1. Hence, the distribution of

V, after an event that increases tree height, is

P
(r)
UN(v)~

~PP(r)
UN(v)z~PP(r)

UN(n{v)

(1zd2v,n)

and the distribution of V, conditioned on tree height increase, is

P(r)(vDUN)~
P

(r)
UN(v)

P
(r)
UN

, ð30Þ

as illustrated in Figure S3.

Now we calculate the probability conditioned on the value v0 of

V before recombination, i.e. the transition probability P
(r)
UN(vDv0).

The basic quantity for this computation is the probability Pn,k(iDv0)
that a branch at level k has size i in a tree of total size n, given that

the size of the root branches are v0 and n{v0. To compute this, we
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need information about the actual size k at level k of the subtree of

size v0 of the root. We denote the distribution of k by P(kDv0,k,n)
and the distribution of i given the sizes k and v0 of its root subtree at

levels k and n by P(iDk,v0). Note that i does not depend on k nor on

n, but only on the size of the root subtree to which it belongs (see

Figure S4). Therefore we have

Pn,k(iDv0)~
Xmin (v0,k{1)

k~i

P(iDk,v0)
k

k
zP(iDk{k,n{v0)

k{k

k

� �
P(kDv0,k,n)

ð31Þ

The probability P(iDk,v0) is equal to

P(iDk,v0)~Pv0,k(i)zdi,v0
dk,1~

v0{i{1

k{2

� 	
v0{1

k{1

� 	 zdi,v0
dk,1 ð32Þ

as can be shown by considering the corresponding subtree of the

root as the whole tree and using equation (27). The probability

P(kDv0,k,n) depends only on the topology, therefore it can be

obtained by counting the number of labelled coalescent trees

(http://arxiv.org/abs/1112.1295v2) with a root branch of size v0

in the whole tree that reduces to size k at level k, denoted byLn,v0,k,k,

and dividing by the total number of trees with a root branch of size

v0, denoted by Ln,v0
. Using that DLnD~n!(n{1)!=2n{1, that the

coalescent process induces a uniform distribution onLn and that the

distribution of v0 is 2=(n{1)(1zd2v0,n) [27], we have

DLn,v0
D~

2DLnD
(n{1)(1zd2v0,n)

~
n!(n{2)!

2n{2(1zd2v0,n)
ð33Þ

The set of all trees in Ln,v0,k,k can be generated in the following

way: (i) choose v0 leafs out of n; (ii) choose an relative order of the

n{2 coalescent events among the two subsets with v0 and n{v0

leafs such that among the first n{k events v0{k events belong to

the first subset and n{v0{kzk belong to the second; (iii) choose

a topology for the root subtree of size v0; (iv) choose a topology for

the complementary subtree of the root. This process generates

exactly once all trees in Ln,v0,k,k, except for the case v0~n=2,

where each tree is generated twice. Therefore, we have

DLn,v0,k,k D

~
1

1zd2v0,n

n

v0

 !
n{k

v0{k

 !
k{2

k{1

 !
DLv0

DDLn{v0
D :

ð34Þ

Taking the ratio of tree counts, we obtain an hypergeometric

distribution

P(kDv0,k,n)~
DLn,v0,k,k D
DLn,v0

D
~Hypv0{1,k{2;n{2(k{1) : ð35Þ

Finally, inserting the results (32) and (35) into (31), we obtain

Pn,k(iDv0)

~

di,v0

n{v0{1

k{2

 !
zdi,n{v0

v0{1

k{2

 !

kn{2

k{2

 ! z

n{i{2

k{3

 !

kn{2

k{2

 ! :
ð36Þ

2Bk{3,v0{i{1;n{i{2zMk{3,v0{i{1;n{i{2


 �
z (k{1)Bk{3,v0{1;n{i{2{Mk{3,v0{1;n{i{2


 �
2
64

3
75,

where Bx,y;z and Mx,y;z are the normalization and the mean (i.e.,

the zeroth and first moment) of the hypergeometric distribution

with parameters x, y and z, if they satisfy 0ƒx,yƒz, and 0

otherwise. Note that Mx,y;z~
xy

z
Bx,y;z.

As before, we introduce Pn,k(iDv0) in equation (7) to obtain

~PP(r)
UN(iDv0)~

2

an

Xn

k~2

Pn,k(iDv0)
1

k(k{1)(kz1)
ð37Þ

and, finally, the result

P
(r)
UN(vDv0)~

~PP(r)
UN(vDv0)z~PP(r)

UN(n{vDv0)

(1zd2v,n)
ð38Þ

P(r)(vDUN,v0)~
P

(r)
UN(vDv0)Pn{1

j~1

~PP(r)
UN(jDv0)

ð39Þ

Figures 8 and S5 illustrate these probabilities. With a recombina-

tion event of type N, v tends to change to smaller values. Thus,

the tree becomes more unbalanced. However, by far the highest

probability is attained for v~v0, irrespective of v0 and mainly

due to events of type U. This case is omitted from the figures for

clarity.

Other recombination events that change root im-

balance. Now we consider all possible recombination events

that change V. Events of type U and D do not change V, so they

can be ignored. Apart from the events of type N that we discussed

above, other relevant recombination events are of type S and of

type R (‘root remains’), i.e. any event which leaves the root

untouched. To compute the probability of a change in V for these

types of events, we use the fact that random trees from an ARG

have the distribution p(r)(T) and that the probability of each

labelled ARG topology is the same. Due to this, we need only

count the number of ARGs with a single recombination event at

level k compatible with root imbalances v0 and v, and denoted by

An,k,v0,v,S and An,k,v0,v,R. Then, we divide by the total number

An,k,v0
of ARGs with a recombination at level k and root

imbalance v0 for the original tree. Putting everything together, we

obtain

P
(r)
R (vDv0)~

1

an

Xn

k~3

1

k2(kz1)

1

n{2

k{2

� 	 : ð40Þ
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n{v0zv{2

k{3

� 	
H(v0{v{1)(2(k{1)Bk{3,v{1,n{v0zv{2z

�

z(k{3)Mk{3,v{1,n{v0zv{2{Qk{3,v{1,n{v0zv{2)z

z
1

(1zd2v,n)

n{vzv0{2

k{3

 !
H(v{v0{1)(2(k{1)

Bk{3,v0{1,n{vzv0{2z

z(k{3)Mk{3,v0{1,n{vzv0{2{Qk{3,v0{1,n{vzv0{2)z

z
1

(1zd2v,n)

vzv0{2

k{3

 !
H(n{v0{v{1)(2(k{1)

Bk{3,v0{1,vzv0{2z

z(k{3)Mk{3,v0{1,vzv0{2{Qk{3,v0{1,vzv0{2)
i
,

where Qx,y;z is the second moment of the hypergeometric

distribution with parameters x, y and z satisfying 0ƒx,yƒz,

and 0 otherwise, and H(n) is the Heaviside function, H(n)~1 if

n§0 and 0 otherwise. Note that the ARG symmetries imply the

non-trivial relation

P
(r)
R (vDv0)~P

(r)
R (v0Dv)

1zd2v0,n

1zd2v,n
: ð41Þ

The relative importance of P
(r)
R versus P

(r)
UN and P

(r)
DS is shown in

Figure S6.

The contribution for events of type S can be obtained using the

symmetry properties of the ARG. In fact, an ARG with a

recombination event of type S changing v0 to v is equivalent to

an ARG with an event of type N changing v to v0. Therefore,

P
(r)
DS(vDv0)~P

(r)
UN(v0Dv)

1zd2v0,n

1zd2v,n
: ð42Þ

This result is essentially the transpose of the one shown in Figure 8,

i.e. after an event of Type S, v has an almost uniform distribution

irrespective of v0.

Finally, the transition probability is

P(r)(vDv0)

~

v=v0 : P
(r)
UN(vDv0)zP

(r)
DS(vDv0)zP

(r)
R (vDv0)

v~v0 : 1{
P

v=v0

P
(r)
UN(vDv0)zP

(r)
DS(vDv0)zP

(r)
R (vDv0)


 �
0
B@ ð43Þ

This distribution is shown in Figures S7 and S8 for n~40.

Figure 8. Transition probabilities of V. Distribution P(r)(vDUN,v0) as a function of v (horizontal axis) and v0 (vertical axis) for n~40. The
diagonal terms (v~v0) are not shown.
doi:10.1371/journal.pone.0060123.g008
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(d) Hidden and Silent Recombination Events
Counting ARGs we now determine the fraction of hidden

recombination events, i.e. those which neither change tree

topology nor branch lengths. Since these events are ‘invisible’

when analysing sequence polymorphisms or haplotype structure,

their frequency can only be estimated by theoretical means.

Hidden recombination events are caused by pruning and re-

grafting on the same branch (see Figure 2D). Let An,k,H denote the

number of ARGs with a hidden event at level k. Since ARG

topologies are equiprobable under p(r)(T), the probability that a

recombination event is hidden is

P
(r)
H ~

Xn

k~2

Pk

An,k,H

An,k
, ð44Þ

where Pk~E(ktk=l)~((k{1)an){1 is the probability of pruning

at level k. To calculate An,k,H we need to consider the following

ingredients. A branch pruned under node nj can be regrafted in

k{j{1 topologically inequivalent ways on the same branch (but

possibly on different levels). This number has to be multiplied by

the number of branches under node nj at level k (denoted by

Nk(nj)). Then, one has to sum over all possible nodes nj and over

all possible initial trees T[Ln. This yields

An,k,H~
X
T[Ln

Xk{2

j~0

Nk(nj)(k{j{1)

~
Xk{2

j~0

�NNk(nj)(k{j{1)DLnD

ð45Þ

Combining eqs (44) and (45) we obtain

P
(r)
H ~

Xn

k~2

1

(k{1)an

Pk{2
j~0

�NNk(nj)(k{j{1)DLnD
k2(kz1)DLnD=2

~
2

3an

1{
1

n

� 	
:

ð46Þ

This means that the fraction of hidden recombination events is

of the order O(1= log (n)). They are quite frequent for small to

moderate n, but become increasingly rare with increasing n. Still,

even when n~1000, about 9% of all recombination events are

hidden.

Using the same technique of counting ARGs also the fraction of

silent recombination events (i.e. events that do not change

topology but that may change branch lengths) can be obtained.

We start by counting events that are silent but not hidden. Given a

tree, select a branch for pruning. Then, there are exactly two ways

for re-grafting: either on the branch immediately above or on the

branch immediately below the old parent node of the pruned

branch (Figure 2B or C), but not on the pruned branch itself (the

latter would be a hidden event). Performing similar calculations as

before we obtain

P
(r)
silent{P

(r)
H ~

Xn

k~2

1

(k{1)an

An,k,sil{H{

An,k

~
Xn

k~2

1

(k{1)an

Pk{2
j~0 2 �NNk(nj)DLnD

k2(kz1)DLnD=2

~
1

an

1{
2

n(nz1)

� 	
:

ð47Þ

Therefore,

P
(r)
silent~

1

3an

5{
8

n
z

6

nz1

� 	
: ð48Þ

Note that the following holds:

P
(r)
silent~P

(r)
UNDSzP

(r)
H : ð49Þ

An intuitive explanation is the following: for any pruning point,

there are two possible ways for re-grafting such that tree topology

remains unchanged and there is exactly one way for re-grafting

which leads to an increase of tree height. Therefore,

P
(r)
silent{P

(r)
H ~2P

(r)
UN . Then, eq (49) follows from symmetry of the

ARG. Note that this argument is topological and does not depend

on waiting times, i.e. branch lengths.

(e) Correlation Lengths
Since the spatial coalescent is a non-Markovian process, it is

important to know over which chromosomal distances correlation

and statistical dependence among trees persist. Correlation

between trees, measured by any well-behaved tree statistic,

decreases with distance. An interesting question is how quickly

recombination reduces correlation. The answer depends on the

particular statistic which is employed to measure correlation.

Topology based statistics, such as V (measuring imbalance at the

root) or Colless’ index [28] (measuring imbalance at all internal

nodes), behave differently from length based statistics, such as tree

height (Figure 9).

We use our above results regarding events of type U, D, N, S

and R to give a quantitative answer. The idea is to approximate

the correlation length for a statistic by the inverse of the

probability of recombination events that have a strong impact

on this statistic.

Events of type U or D change height, but leave the topology

unchanged. Events of type R preserve height but alter topology.

Events of type N or S may change both, height and topology.

They also lead to the fastest decay of correlation.

The average number of recombination events before an event of

type N or S occurs is the inverse of this probability. This quantity is

a rough estimate for the correlation length of tree shape. The

numerical values of P
(r)
NS~2P

(r)
N for 20=n=100 lie between

0:05{0:07 (Figure S2). Based on this estimate, correlation

between trees should decay strongly within 15 to 20 recombination

events. This is in agreement with numerical simulations. More

generally, the topological correlation length can be roughly

estimated as
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L(r)
top

1

P
(r)
NS

an

2(10{p2)
&3:83 an: ð50Þ

It Increases Logarithmically in n (Figure 9)

To translate this into physical length, we assume that the

distance between two consecutive recombination events is

exponentially distributed with mean 1=(rl(T)). Averaging over

p(r)(T) we obtain 1=(ran). Therefore, distance ltop between two

events of type N or S is approximately

ltop~
L(r)

top

ran

*
1

2(10{p2)r
*

3:83

r
, ð51Þ

independent of n. For example, if the scaled recombination rate is

r&10{3, the genomic distance between such events is about 4kb.

Assuming that also the scaled mutation rate is h&10{3 per bp and

assuming n~100, an interval between drastic recombination

events of type N or S contains about 4a99&20 polymorphic sites.

This number should be sufficiently high to enable at least a rough

tree re-construction from SNP data, and to estimate V. It will

probably not be sufficient for the reconstruction of the fine

topological structure of the lower branches.

To estimate the correlation length of V, also events of type R

need to be taken into account. In fact, changes in V occur more

often than events of type N or S. Using equation (43), we

determined the run-length of V, i.e. the number of recombination

events that occur before a change in V happens. Considering a

random initial tree, an estimate for the run-length is given by

LV~
1

1{P(r)(vDv)
: ð52Þ

The run-length is longer for more imbalanced trees, but always on

the order of a few recombination events (between 2 and 6;

Figure 10). This is also a reasonable estimate for the correlation

length of the fine topological structure.

We now consider correlation in tree height. Height can change

by events U,D,N and S. The average change in height is the same,

DDhD~1=2, for all these events. Therefore, correlation length can

be estimated as

L
(r)
h *1=P

(r)
UNDS:

Since

P
(r)
UNDS~2P

(r)
UN is between 0:25 and 0:3 for 20=n=100 (Figure 7),

drastic changes in height are expected on average every 3 to 4
recombination events. More generally, the correlation length also

increases logarithmically in n and is

L
(r)
h *an : ð53Þ

For the physical correlation length we have.

lh~
L

(r)
h

ran

*
1

r
: ð54Þ

This is only about a quarter of the topological correlation length.

Therefore, an exact reconstruction of tree height is difficult. For

instance, for n~100 and h~r~10{3, one would have on average

only 5 SNPs to estimate height or other tree parameters.

For the case n~2, Hudson [21] gives a formula for the

correlation between the heights of two trees in dependence of the

recombination rate r. The formula predicts that the correlation

drops to about 0:5 with r1:4, i.e. after approximately 1.4

Figure 9. Correlation length L(r)
top (blue line) as a function of sample size n. The red line is the approximation log (n)=2(10{p2).

doi:10.1371/journal.pone.0060123.g009
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recombination events. Our rough estimate for the correlation

length in this case is 1=P
(r)
UNDS~1:5, and in good agreement with

Hudson’s result.

Finally, we briefly comment that linkage disequilibrium and

haplotype block size depend strongly on the number and

distribution of mutation and recombination events along coales-

cent trees, i.e. they depend strongly on tree topology and length.

Since topology can in practice only be indirectly estimated from

polymorphism patterns, not all changes in topology are actually

visible for these statistics. The correlation lengths estimated from

experimental data will tend to be larger than the theoretical

estimates presented here. Assuming that haplotype blocks are

mostly delimited by ‘drastic’ recombination events, involving a

change of topology, we estimate the size of these haplotype

fragments Lh, centered at some position x with a tree T . Assuming

further that neither tree length l(T) nor the probability of

topology-changing drastic recombination events Ptd (T) change

much after a ‘non-drastic’ recombination event, the probability

distribution for the haplotype sizes is

P(LhDT)~e{rl(T)Ptd (T)Lhrl(T)Ptd (T) : ð55Þ

The average size is then

E(LhDT)~1=(r l(T)Ptd (T)) : ð56Þ

The class of drastic recombination events that should be

considered to determine Ptd (T) is probably larger than the class

of type N and S events. However, Ptd (T)~PNS(T) is a reasonable

lower bound approximation.

Discussion

We have considered the effect of single recombination events on

coalescent tree topology and explicitly determined the probability

with which recombination triggers ‘drastic’ changes. We consider

a change to be drastic if it leads to a change of tree height or of tree

imbalance. These types of events are of practical interest because

both have an effect on the pattern of polymorphic sites which are

informative for genealogical reconstruction and evolutionary

inferences. The primary effect of height change is upon the

number of mutations, while a change in tree imbalance primarily

affects the mutation site frequency spectrum.

Our results show important qualitative differences for the two

types. The average change in height is quite drastic per se (50% of

average tree height), while the average change in imbalance is

quite mild, with large jumps occuring only very rarely. Our results

hold for the standard neutral model, i.e. a model with constant

population size and without substructure. As such, our results may

serve as the analytical reference case for constructing formal tests

of the neutral evolution hypothesis. For instance, the probabilities

of height or topology change are markedly altered in the presence

of selective sweeps, i.e. the fast fixation of a mutant allele due to

positive selection. Recombination close to the sweep site, where

tree height is severely reduced [29], tends to lead to both a drastic

increase of tree height and highly imbalanced trees [16,18]. In

contrast, variable population size leaves a different signature on

the probabilities of drastic recombination events. Non-constancy

of N is reflected in branch length variation, but it has no impact on

the branching pattern, i.e. on topology. In fact, if panmixis

continues to hold, the probability distribution of tree topologies

does not depend on population size. Variation of N affects only

branch lengths and waiting times. Since all our results, averaged

over p(r)(T), depend implicitly on the first moments of the waiting

times through the quantity Pk~kE(tk=l), they can in principle be

adapted to models with variable population size using the theory

developed earlier [26,30]. A detailed treatment is left to further

investigation. Here we just note that the relations (17), (18) and (49)

are valid for all models of variable population size.

Population substructure is another important case of deviation

from the standard neutral model. Restricted gene flow between sub-

populations strongly affects the transition probabilities of root

imbalance, but less the distribution of height change. A more

detailed discussion of the impact of these evolutionary scenarios upon

a test statistic of the neutral evolution hypothesis is given in [18].

Figure 10. Run length 1=(1{P(r)(vDv)) as a function of v�~
2v

n
for even sample sizes (A) (n~10,20,40,60,80,100) and for odd sample

sizes (B) (n~11,21,41,61,81,101).
doi:10.1371/journal.pone.0060123.g010
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We have derived a number of further results which shed more

light on the details and consequences of recombination. We

analysed the correlation length between trees on a recombining

chromosome and showed that topological correlation is generally

longer-ranging than correlation in tree height. Still, for both types

very few recombination events – on the order of ten – are sufficient

to unlink the genealogical histories of two genomic fragments,

given standard neutral conditions. The calculations also make

clear that correlation length (number of recombinations) scales

logarithmically in n. This is important to take into account for

deep sequencing association studies.

It is perhaps surprising to see that a considerable fraction of

recombination events remains hidden. Even for large sample sizes,

about 10% of the recombination events are not visible. An even

larger fraction is silent, i.e. does not cause topological changes of

the underlying genealogy.

Analyzing root imbalance in more detail, we found that the

distribution of V-run lengths is biased towards unbalanced trees:

under the standard neutral model, unbalanced trees tend to span

larger genomic regions than balanced trees. Interestingly, the V-

run length, when normalized, is asymptotically independent of n.

Our results provide a basis to tackle problems of correlation

between tree statistics in coalescent models. They extend known

results, such as the one by Hudson [21] concerning tree height

correlation, to the more general case of arbitrary sample size n.

Some of the quantities studied here involve counting problems

of ancestral recombination graphs with a single recombination

event. These problems are related to counting problems of

phylogenetic networks [31]. Unlike counting problems of trees,

which can often be tackled by generating function techniques

([20], arxiv.org/abs/1112.1295v2, arxiv.org/abs/1202.5668v3),

only few results are available for tree-like structures with

independent cycles so far [32]. Our results represent a step

towards a combinatorial treatment of these problems.
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