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Abstract

The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need
for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility
after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and antibiotic cycling [2,3]. Part
of the problem may be that those efforts have implemented different classes of unrelated antibiotics, and relied on removal
of resistance by random loss of resistance genes from bacterial populations (drift). Here, we show that alternating
structurally similar antibiotics can restore susceptibility to antibiotics after resistance has evolved. We found that the
resistance phenotypes conferred by variant alleles of the resistance gene encoding the TEM b-lactamase (blaTEM) varied
greatly among 15 different b-lactam antibiotics. We captured those differences by characterizing complete adaptive
landscapes for the resistance alleles blaTEM-50 and blaTEM-85, each of which differs from its ancestor blaTEM-1 by four
mutations. We identified pathways through those landscapes where selection for increased resistance moved in a repeating
cycle among a limited set of alleles as antibiotics were alternated. Our results showed that susceptibility to antibiotics can
be sustainably renewed by cycling structurally similar antibiotics. We anticipate that these results may provide a conceptual
framework for managing antibiotic resistance. This approach may also guide sustainable cycling of the drugs used to treat
malaria and HIV.
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Introduction

For the past seventy years, the world has been flooded with b-

lactam antibiotics [4,5]. They have been the favored treatment for

most bacterial infections because of their efficiency, specificity, and

low toxicity [6,7]. In the 1940s and beyond, penicillin and

penicillin derivatives were the most heavily used b-lactams [8].

However, specificity of penicillins for gram positive bacteria and

increasing frequencies of b-lactamases in resistant bacteria spurred

the development of extended spectrum b-lactams including

cephalosporins, monobactams, and carbapenems in the 1980s

[5]. Within a few years, resistance to those antibiotics also evolved

and the frequencies of those resistance determinants have

continued to rise [5,9]. Decreasing the consumption of b-lactams

has not been successful in lowering resistance rates [1], nor has

alternating (cycling) their use with unrelated (non b-lactam) classes

of antibiotics [2,3]. However these attempts to control antibiotic

resistance have included ad hoc selections of antibiotics, usually

with no underlying theoretical or experimental framework.

It is unfortunate that the development of the necessary

theoretical and experimental underpinnings of successful antibiotic

cycling lagged behind the efforts of the medical community.

However, theoretical and experimental work directed at this

problem is starting to catch up. Recommendations about how to

derive the optimal orders of antibiotics and the duration over

which they should be applied have been introduced and are being

refined [3,10,11,12]. It is fairly clear at this point that although

clinical cycling may not be reliable yet, more informed and

sophisticated models have the potential to make management of

resistance by antibiotic cycling a robust approach to the resistance

problem.

We asked whether alternating the use of structurally similar

antibiotics (all b-lactams) might restore their usefulness. We

reasoned that when the selective pressure resulting from

consumption of an antibiotic is removed from a population, either

through cycling or decreased consumption, pleiotropic fitness costs

associated with expression of the resistance mechanism will be the

major selective pressure removing resistance determinants from

bacterial populations. If those fitness costs are extremely low, or if

compensatory mutations have ameliorated their effects, such that

there are essentially no fitness costs associated with expression of

the resistance mechanism, then drift may be the major mechanism

for removing those resistance determinants [13,14,15,16,17]. The

enormity of bacterial populations and the impossibility of complete

discontinuance of an antibiotic make removal of resistance by drift

too slow a process to have any practical outcome. Instead, we

reasoned that if the selective pressure for the evolution of a specific

resistance determinant could be in constant flux, then evolution
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would occur much more rapidly, and always have a moving target.

We wondered whether it might be possible to direct the evolution

of resistance in a cyclical fashion.

The experimental model we used to test this approach was the

TEM family of b-lactamases. They are often the most frequently

encountered resistance genes in clinical bacterial populations.

Collectively they confer resistance to the majority of b-lactam

antibiotics [9]. Over 200 unique variants of TEM that differ in

amino acid sequence have evolved since the

TEM-1 b-lactamase (blaTEM-1) was first identified in 1963 (http://

www.lahey.org/Studies/). The consumption of the antibiotics

responsible for selecting those substitutions has been recorded

[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32].

Results

In this study, we have determined the topologies of adaptive

landscapes [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] that

were traversed as two blaTEM alleles evolved naturally. The genes

blaTEM-50 [48] and blaTEM-85 [49] differ from their ancestor

blaTEM-1 by four mutations that result in amino acid substitutions.

Those mutations have arisen independently multiple times during

the course of blaTEM evolution [50] and confer adaptive benefits.

Although those mutations have adaptive roles in certain genetic

backgrounds and selective environments, they are not always

beneficial in every genetic background. This phenomenon is called

sign epistasis. To characterize those landscapes, we created all

possible combinations of the mutations found in blaTEM-50 and

blaTEM-85 (Table 1), and determined the resulting resistance

phenotypes by disk diffusion testing with 15 b-lactam antibiotics

(Table 2) that have been used heavily during the period in which

TEM variants have arisen.

We assumed the strong selection weak mutation (SSWM) model

[51] as both alleles evolved; we also assumed that increased

resistance indicates increased fitness [52]. We organized our results

using fitness graphs (Figures S1, S2, S3, S4, S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,

S23, S24, S25, S26, S27, S28, S29, S30) where 16 nodes

correspond to the 16 alleles. In principle, a fitness graph coincides

with the Hasse-diagram of the power set of events wherein

addition fitness differences between adjacent genotypes, ie

genotypes that differ by one mutation, are indicated (see materials

and methods). Specifically, the wild-type allele (blaTEM-1) is at the

bottom, alleles with single mutations are one level above, alleles

with two mutations are at the next level, followed by those with

three and then four mutations (ie blaTEM-50 and blaTEM-85). Line

segments drawn between adjacent nodes complete the graph.

Green lines indicate selection for mutation, red lines indicate

selection for reversion; absence of a line indicates that the adjacent

nodes are phenotypically equivalent. We used one-way ANOVA

testing to determine 95% confidence intervals around the mean

resistance phenotypes and to assign direction. The fitness graphs

reflect coarse properties of the fitness landscapes, including

accessible trajectories, the number of peaks and sign epistasis.

Such properties are important for our approach to drug cycling

programs. However, since fitness graphs depend on fitness ranks of

genotypes only, they will not reflect quantitative aspects which

may be relevant for recombination. Fitness graphs reveal the

adaptive potential under the assumption that no recombination,

double mutations or other extreme genetic events take place.

The Complexity of Fitness Landscapes
Additive fitness landscapes have a single peak. In contrast,

random (uncorrelated or rugged) fitness landscapes have no

correlation between the fitness of adjacent alleles. Random fitness

and additivity can be considered as two extremes with regard to

the amount of structure in the fitness landscapes. The degree of

additivity, roughly how close the landscape is to an additive

landscape, is of interest for comparing landscapes in different

settings. Since we work with qualitative information we use the

qualitative measure of additivity, a value ranging from 0 to 1 for

fitness landscapes, where the value is 1 for additive landscapes and

close to 0 for a random fitness landscape [53]. The mean values

were 0.33 for TEM-50 and 0.57 for TEM-85, using the landscapes

where the measure applies. The complete statistics show that the

TEM-85 landscapes have considerably less additivity than for

additive landscapes and considerably more additivity than

expected for random fitness landscapes. The results for TEM-50

point in the same direction (see materials and methods).

In an additive landscape where TEM-85 confers the greatest

fitness advantage, fitness should always increase with the addition

of more mutations. However, in the cefotaxime and ceftazidime

landscapes where TEM-85 does confer the greatest fitness

advantage, there are seven instances in each where fitness

increases via reversion of a previously existing mutation. Overall,

there are several occurrences of sign epistasis in 14 out of 15

landscapes. The cefoxitin landscape (Figure S26) has nearly no

sign epistasis because it is almost flat, in the sense that there are no

significant fitness differences for most alleles. For TEM-50 sign

epistasis also occurred in 14 out of 15 landscapes and the

ampicillin landscape was flat (Figure S1).

Adaptive Trajectories in Single-antibiotic and Fluctuating
Environments

TEM-50 landscapes. In the 15 adaptive landscapes that

include blaTEM-50 related alleles, there were no pathways

containing consecutive increases of resistance between blaTEM-1

and blaTEM-50 (See Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, S15). Based on this result, it is possible that

recombination occurred during the evolution of blaTEM-50.

However, an alternate explanation for the evolution of blaTEM-50

is fluctuation of environments as different antibiotic have been

administered. When the results from the 15 different landscapes

were simultaneously considered, we identified 5589 trajectories

between blaTEM-1 and blaTEM-50.

TEM-85 landscapes. In contrast, two of the 15 adaptive

landscapes that include blaTEM-85 related alleles contain pathways

of consecutively increasing resistance between blaTEM-1 and

blaTEM-85 (Figures S16, S17, S18, S19, S20, S21, S22, S23, S24,

S25, S26, S27, S28, S29, S30). Cefotaxime (Figure 1a) and

ceftazidime (Figure 1b) can individually select for the evolution of

blaTEM-85 with either two or three pathways, respectively. TEM-85

is the allele of greatest fitness for both cefotaxime and ceftazidime.

The cefotaxime landscape has 2 peaks and the ceftazidime

landscape has 4 peaks. We computed the probabilities for a

population going to fixation at TEM-85, rather than at suboptimal

peaks, using a basic model which assumes that available beneficial

mutations are equally likely to occur and go to fixation. For

cefotaxime the probability for fixation at TEM 85 was 75%, and

for ceftazidime 12.5%. When all landscapes were simultaneously

considered, which is appropriate under circumstances of fluctuat-

ing selection, we found 15,716 pathways between blaTEM-1 and

blaTEM-85.

These results are consistent with Weinreich et al. [52] in that

when a single environment is considered, there are few pathways

through which evolution can proceed. These results are also

consistent with the study by Bergstrom et al. [3] in which they
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Table 1. Constructs containing all possible combinations of the four mutations found in blaTEM-50 and blaTEM-85.

Number of Substitutions Binary Allele Code Variants with mutations found in blaTEM-50 Variants of mutations found in blaTEM-85

0 0000 No Mutations No Mutations

TEM-1 TEM-1

1 1000 M69L L21F

(TEM-33) (TEM-117)

1 0100 E104K R164S

(TEM-17) (TEM-12)

1 0010 G238S E240K

(TEM-19) (Not identified)

1 0001 N276D T265M

(TEM-84) (Not identified)

2 1100 M69L L21F

E104K R164S

(Not identified) (TEM-53)

2 1010 M69L L21F

G238S E240K

(Not identified) (Not identified)

2 1001 M69L L21F

N276D T265M

(TEM-35) (TEM-110)

2 0110 E104K R164S

G238S E240K

(TEM-15) (TEM-10)

2 0101 E104K R164S

N276D T265M

(Not identified) (Not identified)

2 0011 G238S E240K

N276D T265M

(Not identified) (Not identified)

3 1110 M69L L21F

E104K R164S

G238S E240K

(Not identified) (TEM-102)

3 1101 M69L L21F

E104K R164S

N276D T265M

(Not Identified) (Not identified)

3 1011 M69L L21F

G238S E240K

N276D T265M

(Not identified) (Not identified)

3 0111 E104K R164S

G238S E240K

N276D T265M

(Not identified) (Not identified)

4 1111 M69L L21F

E104K R164S

G238S E240K

N276D T265M

(TEM-50) (Not identified)

doi:10.1371/journal.pone.0056040.t001
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found that random fluctuations of antibiotics can accelerate the

evolution of resistance.

Antibiotic Cycles
The complexity of the adaptive landscapes makes it possible to

identify cycles of antibiotics that are likely to effectively manage

resistance. The somewhat frequent increases in resistance that

result from reversions of mutations indicate that the evolution of

resistance is sometimes reversible. Based on this observation we

investigated approaches for cycling antibiotics as a method for

managing resistance. We determined whether it was possible to

cyclically restore susceptibility to a sequence of antibiotics by

alternating exposure to those antibiotics as follows: We first

identified the alleles that were local optima in the presence of at

least one antibiotic, and that were also adaptive valleys in the

presence of at least one other antibiotic. Next we identified the

antibiotic environments where those local optima and valleys exist.

We then identified pathways that formed closed loops within those

adaptive landscapes; the pathways returned to the allele where

they had begun. For blaTEM-50 landscapes the antibiotics we

identified were cefepime, cefprozil, and ceftazidime (Figure 2). We

found that 41,961 different cycles exist in those landscapes. For the

blaTEM-85 landscapes, we identified the antibiotics cefprozil,

ceftazidime, cefotaxime, and ampicillin as the most appropriate

choices for antibiotic cycling and with those, we identified 1770

cycles (Figure S31). These results indicate that there are numerous

routes for resistance to be reversed when those three antibiotics are

cycled, which is an indication that this approach is robust. If the

order of antibiotics is perturbed, the effects of cycling those

antibiotics should be consistent. One caveat is that in the case of

TEM-85, there are very few reversions that increase fitness when

the allele blaTEM-85 has been reached (Figure S31), allowing the

potential for ‘‘escape’’ from the cycling regimen. Generating

adaptive landscapes for more antibiotics may ameliorate this

situation.

Discussion

Our results indicate that the occurrence of sign epistasis may

provide a means for sustainably renewing the usefulness of

antibiotics once resistance to them has evolved. Historic failures

of ad hoc cycling programs for antibiotics in hospitals have no

bearing on our approach. The scheme for drug cycling we suggest

relies on current laboratory techniques, as well as established

theory of adaptation, and it remains to evaluate our approach in a

clinical setting. Our results indicate that abundant sign epistasis

exists for the TEM resistance determinants and that it provides a

means for sustainably renewing the usefulness of b-lactam

antibiotics once resistance to them has evolved. An obvious

limitation in our approach is that we have considered only a few

mutations associated with antibiotic resistance. For practical

solutions, a more complete picture is required. Other antibiotic

cycling studies have added significantly towards our understanding

of what factors will improve cycling. A knowledge of pleiotropic

fitness costs associated with resistance mechanisms can help to

inhibit the evolution of multi-drug resistant strains and possibly

eliminate those that already exist. The order and timing in which

antibiotics are applied also have a significant effect on the

occurrence of resistance. Additionally, a recent study that

demonstrated the effectiveness of a program in which a hospital

cycled among b-lactam antibiotics to reduce resistance over a

period of several years [54]. This success is consistent with our

results and may have benefitted in its design from the apparent

absence of pleiotropic fitness costs associated with expression of

most serine b-lactamases [55].

Recommendations for Further Development of Cycling
It is likely that effective cycling programs will be specific to local

environments and the specific resistance alleles in that environ-

ment. The identification of an effective antibiotic cycling program

will require identifying the resistance alleles currently circulating in

the local environment, determining the fitness of each of those

alleles with respect to the set of antibiotics being considered, then

identifying those drugs that will result in a repeating cyclic path

through the local adaptive landscape. Additionally, optimizing the

order in which antibiotics are applied [11,12] and the duration for

which the antibiotics are administered are key [3,10].

The required experiments are neither difficult nor time

consuming. The analyses will be facilitated by user-friendly

programs that are under development. Although the introduction

of unexpected novel alleles, either by mutation or from sources

external to the local environment, may disrupt an effective cycling

program, identification of those alleles and their addition to the

analysis is likely permit effective modification of the cycling

program. Applying the suggested antibiotic cycling scheme will be

made even more practical as it builds upon thorough analyses of

many adaptive landscapes. Moreover, in pathogens such as

malaria and HIV where fewer and more predictable resistance

mechanisms exist, this method may be more easily implemented.

Figure 1. Adaptive landscapes of TEM-85. These diagrams show the pathways through which the blaTEM-85 can evolve in a single antibiotic. 1a.
(Left) The TEM-85 adaptive landscape in cefotaxime with pathways to TEM-85 indicated. 1b. (Right) The TEM-85 adaptive landscape in ceftazidime
with pathways to TEM-85 indicated.
doi:10.1371/journal.pone.0056040.g001
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Methods

Mutants and Susceptibility Testing
We used QuikChangeH site-directed mutagenesis (Stratagene)

to generate all mutant constructs from the blaTEM-1 gene in

plasmid pBR322 (Table 1). Those mutant alleles were expressed in

Escherichia coli strain DH5-aE. We performed Kirby Bauer Disk

Diffusion Susceptibility testing [56] for 10 replicates of each of the

32 strains under 15 commonly prescribed b-Lactam antibiotics

(Table 2).

Identifying Paths and Cycles
In order to compute all possible combinations of pathways, we

have represented the fitness graph of a drug as a possibly cyclic

directed graph G~(N,E). The nodes N of the graph represent the

alleles, and the directed edges E of the graph are determined by

the statistical analysis of the resistance differences among alleles.

Nodes ni[N do not have costs associated to them, however costs

are associated with each edge ei[E and are determined by the

resistance difference between the two nodes that are connected by

the edge.

Since we consider a biallelic system, the genotypes can be

represented by a string of 09s and 19s, where the zero-string 0000

represents the wild-type. A fitness graph compares the fitness ranks

of mutational neighbors. Roughly, consider the zero-string as the

starting point and each non-zero position of a string as an event,

i.e., that a mutation has occurred. Under these assumptions the

fitness graph coincides with the Hasse-diagram of the power set of

events, except that each edge in the Hasse-diagram is replaced

with an arrow toward the string with greater fitness.

For a formal definition, a fitness graph for a biallelic L-loci

population is a directed graph where each node corresponds to a

string (which represents a genotype). The fitness graphs has Lz1

levels. Each string such that
P

si~l corresponds to a node on

level l in the fitness graph. In particular, the node representing the

zero-string is at the bottom, the nodes representing strings with

Figure 2. Example of one possible outcome from antibiotic cycling. These diagrams show that by alternating the antibiotics cefepime,
ceftazidime, and cefprozil susceptibility to those antibiotics can be restored in bacterial populations expressing variant alleles present in TEM-50
adaptive landscapes. 2a. (Top left) The TEM-50 adaptive landscape in cefepime. Yellow peaks indicate the adjacent alleles that are important during
cefepime selection. 2b. (Top right) The TEM-50 adaptive landscape in ceftazidime. Orange peaks indicate the adjacent alleles that are important
during ceftazidime selection. 2c. (Bottom left) The TEM-50 adaptive landscape in cefprozil. Red peaks indicate the adjacent alleles that are important
during cefprozil selection. 2d. (Bottom right) Composite cycle: The yellow arrow indicates the direction of selection in the presence of cefepime. The
red arrows indicate the direction of selection in the presence of cefprozil. The orange arrow indicates the direction of selection in the presence of
ceftazidime. Rotation of these antibiotics results in cyclical renewal of antibiotic susceptibility.
doi:10.1371/journal.pone.0056040.g002
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exactly one non-zero position are one level above, the nodes

representing strings with exactly two non-zero positions are on the

next level, and the 1-string is at the top. Moreover, the nodes are

ordered from left to right according to the lexicographic order

where 1.0 of the corresponding strings. A directed edge connects

each pair of nodes such that the corresponding strings differ in

exactly one position. The edge is directed toward the node

representing the more fit of the two genotypes.

Fitness graphs reflect coarse properties of fitness landscapes,

including sign epistasis. For a complete analysis of fitness

landscapes other methods are necessary. The most fine-scaled

approach to epistasis is the geometric theory of gene interaction

[44].

Once graph G~(N,E) is built and the edge costs are computed

and associated with their corresponding edges, path queries in the

graph can then be computed. To compute all the pathways, from

the initial starting node (0000 in our trials), a search expansion is

performed by adding each connected node as a child to the

current node in a search tree representation. Since backward

edges are possible, a mechanism to detect cycles is included by

making sure that expanded nodes do not appear twice in a

pathway. When a cycle is detected, the last node of the cycle is not

expanded. The overall expansion continues until all the search tree

branches reach the target node 1111. The final search tree will

represent all possible pathways.

In addition to the search tree, we use a priority queue Q that

maintains ranked all the current leaves of the search tree to be

expanded. We use a Dijkstra-like cost-to-come sorting function in

Q, which represents the accumulated costs of the pathways since

the source node. The priority queue ranks all available leaf nodes

to be expanded and the node with lowest cost is always expanded

first. This guarantees that each node is reached in the order of

appearance in the shortest path from the source node to it. This

guarantees that the shortest cycles are always found first. Since

cycle determination is important in our research, all identified

cycles are stored and saved for later analysis.

Although our experiments involved searches with different

graphs (single or multiple drugs), searches with either forward or

backward edges and searches with different starting nodes (1111

for backwards pathways), the described search method was the

same and handled well all situations. The used notation in our

figures shows backward edges in red and forward edges in green.

Degree of Additivity
The degree of additivity, roughly how close a landscape is to

being a completely additive landscape, can be measured in

different ways. We used the qualitative measure of additivity which

ranges from 0 to 1 for fitness landscapes. For a formal definition:

The set Bp consist of all double mutants such that both

corresponding single mutations are beneficial.

The set B(Bp consists of all double mutants in Bp which are

more fit than at least one of the corresponding single mutants.

The qualitative measure of additivity is the ratio
DBD
DBpD

.

DBD
DBpD

~1 for an additive landscapes. For random fitness

landscapes, the measure is expected to be close to zero in this

setting. Indeed, using standard arguments in the Orr-Gillespie

approach, the wild-type has very high fitness also in the new

environment, in comparison with a randomly generated genotype.

By definition, fitness is uncorrelated for a random fitness

landscape, so that double mutants combining beneficial mutations

are expected to be no more fit than randomly generated

genotypes. It follows that the qualitative measure is close to zero,

and a more precise estimate is that it should be less than 3% for

random landscapes in this context. The derivation of this result

will be published elsewhere. The conclusion depends on an

analysis of TEM data from the record of clinically found mutants.

For the 15 TEM-85 landscapes, the qualitative measure applies

for 9 out of the 15 landscapes. The result is 0, 0, 0, 1/3, 5/6, 1, 1,

1, 1. The mean value is 0.57. This result deviates considerably

from expectations for additive and random landscapes. Indeed, if

all landscapes were additive, the result should be 1 in each case

modulo measurement errors. For random landscapes, non-zero

values are expected to be rare. For TEM-50 the qualitative

measure applies for 3 landscapes out of 15 and the corresponding

Table 2. The antibiotics used to characterize adaptive landscapes.

Antibiotic FDA approval Antibiotic Group

Ampicillin (AM) 1963 Penicillin derivative

Cefoxin(FOX) 1978 Cephalosporin

Cefaclor(CEC) 1979 Cephalosporin

Cefotaxime (CTX) 1981 Cephalosporin

Ceftizoxime (ZOX) 1983 Cephalosporin

Cefuroxime (CXM) 1983 Cephalosporin

Ceftriaxone(CRO) 1984 Cephalosporin

Amoxicillin +Clavulanic acid (AMC) 1984 Penicillin derivative+b-Lactamase inhibitor

Ceftazidime (CAZ) 1985 Cephalosporin

Cefotetan (CTT) 1985 Cephalosporin

Ampicillin+Sulbactam (SAM) 1986 Penicillin derivative+b-Lactamase inhibitor

Cefprozil (CPR) 1991 Cephalosporin

Cefpodoxime (CPD) 1992 Cephalosporin

Pipercillin+Tazobactam (TZP) 1993 Penicillin derivative+b-Lactamase inhibitor

Cefepime(FEP) 1996 Cephalosporin

While not a comprehensive listing of all b-lactam antibiotics, this set contains many heavily used antibiotics and provides good general coverage of b-lactams.
doi:10.1371/journal.pone.0056040.t002

Antibiotic Cycling and Adaptive Landscapes
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data is 0,0,1. The mean value is 0.33. From the qualitative

measure alone, we have an indication that the landscapes are

neither all additive, nor all random, also for TEM-50 (even if the

data set is small).

The qualitative measure of additivity is useful for comparing a

fitness landscape with other empirical landscapes, as well as with

additive and random (or uncorrelated) landscapes. The measure is

robust in the sense that small differences in the environment, such

as (moderate) changes of the concentration of antibiotics, have no

impact. Quantitative measures may be more sensitive. However,

one should not over interpret the qualitative measure. This is a

coarse measure, since it depends on fitness ranks only.

Probabilities
By the SSWM assumption we were able to consider fixation of

beneficial mutations as independent events. Therefore, we

computed the probability for a trajectory as the product of the

probabilities of its steps. The probabilities for single substitutions

can be determined by the following well-established estimate:

The probability that a beneficial mutation j will be substituted at

the next step in adaptation is:

sj

s1z:::zsk

where sr is the fitness contribution of mutation r and where there

are k beneficial mutations in total. However, we used the

simplified assumption that fitness is equal for available beneficial

mutations, so that this probability equals
1

k
.

Supporting Information

Figure S1 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S2 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S3 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S4 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S5 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S6 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S7 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S8 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S9 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S10 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S11 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S12 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S13 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in
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resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S14 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S15 Figures of TEM-50 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S16 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S17 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S18 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S19 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S20 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S21 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S22 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S23 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S24 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S25 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S26 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S27 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S28 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S29 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in

resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S30 Figures of TEM-85 Adaptive Landscapes.
Ovals represent alleles. The names are given in binary code (See

table 1). The absence of lines indicates no significant difference in

resistance phenotypes. Green lines indicate an increase in
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resistance resulting from addition of a mutation. Red lines indicate

an increase in resistance resulting from reversion.

(DOCX)

Figure S31 Example of one possible outcome from
antibiotic cycling. a. (Top left) Composite cycle: The red

arrow indicates an allele (T265M) that will be selected by

cefotaxime. The green arrows indicate alleles that will be selected

by ceftazidime. The yellow arrow indicates alleles that will be

selected by cefprozil. b. (Top right) The TEM-85 adaptive

landscape in cefotaxime. Red peaks indicate the adjacent alleles

that are important during cefotaxime selection. c. (Bottom left)

The TEM-85 adaptive landscape in ceftazidime. Green peaks

indicate the adjacent alleles that are important during ceftazidime

selection. d. (Bottom right) The TEM-85 adaptive landscape in

cefprozil. Yellow peaks indicate the adjacent alleles that are

important during cefprozil selection.

(DOCX)
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