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Abstract

Analysis of protein data sets often requires prior removal of redundancy, so that data is not biased by containing similar
proteins. This is usually achieved by pairwise comparison of sequences, followed by purging so that no two pairs have
similarities above a chosen threshold. From a starting set, such as the PDB or a genome, one should remove as few
sequences as possible, to give the largest possible non-redundant set for subsequent analysis. Protein redundancy can be
represented as a graph, with proteins as nodes connected by undirected edges, if they have a pairwise similarity above the
chosen threshold. The problem is then equivalent to finding the maximum independent set (MIS), where as few nodes are
removed as possible to remove all edges. We tested seven MIS algorithms, three of which are new. We applied the methods
to the PDB, subsets of the PDB, various genomes and the BHOLSIB benchmark datasets. For PDB subsets of up to 1000
proteins, we could compare to the exact MIS, found by the Cliquer algorithm. The best algorithm was the new method, Leaf.
This works by adding clique members that have no edges to nodes outside the clique to the MIS, starting with the smallest
cliques. For PDB subsets of up to 1000 members, it usually finds the MIS and is fast enough to apply to data sets of tens of
thousands of proteins. Leaf gives sets that are around 10% larger than the commonly used PISCES algorithm, that are of
identical quality. We therefore suggest that Leaf should be the method of choice for generating non-redundant protein data
sets, though it is ineffective on dense graphs, such as the BHOLSIB benchmarks. The Leaf algorithm is available at: https://
github.com/SimonCB765/Leaf, and sets from genomes and the PDB are available at: http://www.bioinf.manchester.ac.uk/
leaf/.
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Introduction

Redundancy in datasets of proteins can be defined as the

presence of too similar proteins. Redundancy is a barrier to the

effective use of the dataset for multiple reasons, most simply size.

Redundant sequences in a dataset can prove detrimental to the

discovery of novel relations between the proteins, as the presence

of similar proteins can bias any conclusions drawn from using that

set. Machine learning classifiers trained on redundant training sets

will tend to over-fit and be of less value when applied to novel

data. A pre-processing step is therefore often used to generate a

non-redundant dataset consisting solely of representative proteins

from the original redundant set.

Algorithms for determining similarity between proteins are

more useful if they work by comparing sequences, rather than

structures, since structures are unavailable for most proteins and

evolutionary relationships are difficult to quantify. Alignment

based approaches to calculating sequence identity are either global

or local methods, with local more sensitive when the two

sequences may only share isolated regions of similarity, or when

scanning a protein database with little to no a priori knowledge

about the similarity between the database sequences and the query

sequence [1]. The predominant heuristics for finding local

alignments in proteins are BLAST [2] or PSI-BLAST, which is

more sensitive to weak sequence similarities in many cases [3].

BLAST is used by the protein redundancy removal application

BlastCuller [4], while PISCES [5] makes use of PSI-BLAST to

calculate the pairwise sequence identities.

Our intention here is to maximise the size of the non-redundant

dataset. We test both novel and previously published methods that

use graph theory. We show that it is possible to use novel graph

theoretic methods to increase the size of non-redundant sets, while

maintaining identical quality criteria for inclusion of proteins

within the set. We find that our novel method, Leaf, generates the

largest sets. We apply Leaf to generate non-redundant sets from

the PDB, using various sequence similarity and structure quality

parameters, and several genomes. Our webpage gives these sets, as

well as a facility for users to generate their own non-redundant sets

using Leaf.

Methods

Solving the Problem of Redundancy through Graph
Theory

Sequence similarity relationships between proteins can be

shown as a graph: A protein similarity graph G(V, E) denotes an

undirected graph with vertices V = {1, 2, … n} and edges

E~ffi,jg : i,j[Vg. Each protein in the redundant dataset is
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represented by a vertex. There is an edge between vertices i and j if

the sequence identity of the proteins that i and j represent is

greater than the similarity threshold, here taken to be an upper

limit for acceptable mean percentage sequence identity. If the

vertex which represents a protein has no edges incident to it, the

pairwise sequence identity between that protein and every other

protein in the dataset is below the similarity threshold. By

representing the dataset and sequence similarities as a graph, it is

possible to utilise graph theory to help optimise the generation of

the non-redundant dataset.

A non-redundant dataset can be represented by a protein

similarity graph that contains no edges. A non-redundant dataset

can therefore be generated by removing vertices, and all edges

incident to them, from the protein similarity graph until there are

no edges remaining. The proteins that correspond to the vertices

remaining in the graph will be the non-redundant dataset.

Our goal is to remove nodes, and incident edges, in such a way

that the remaining vertices constitute the largest possible set of

vertices that have no edges between them. The problem of finding

this optimal set is known as the maximum independent set (MIS)

problem, or equivalently the stable set problem. The MIS is the

largest possible independent set within a graph. In graph theory,

an independent set of a graph G(V,E) is a set of vertices I(V such

that Vi,j[I : i,jf g6 [E. An independent set I can be considered to

be a maximal independent set if the addition of any vertex v[V that is

not in I means that I no longer maintains the properties of an

independent set. An MIS is a maximal independent set that

contains the largest possible number of vertices. Finding the MIS is

known to be an NP-complete problem, one where there is no

known computationally efficient method for discovering the

solution. Approximation based algorithms to find the MIS are

thus often used instead.

Graph Definitions
In order to fully describe the properties of the developed

algorithms, definitions of properties of the graphs is necessary: The

neighbourhood of a vertex v, the vertices that share an edge with v, in

an undirected graph G(V,E), which contains no loops, can be

defined as neighbourhood(v)~fi : fi,vg[Eg. In a protein similar-

ity graph, the neighbourhood of v represents all the proteins that

have a sequence which is too similar to the protein that v

represents. The neighbourhood can also be defined for a set of

vertices. If s is a set of vertices from G, then

neighbourhood(s)~fi : v[s,fi,vg[Eg. The degree of a vertex v in

G can be defined as degree(v)~#neighbourhood(v). The support

of a vertex v in G can be defined as
P

i[neighbourhood(v) degree(i):

A clique Q(V is a subset of the vertices of G such that

Vi,j[Q : fi,jg[E. A maximum clique of G is a largest possible subset

of the vertices in G for which the clique property is satisfied. A

vertex cover C(V of G is a subset of vertices such that every edge in

G is incident to at least one vertex in C. A minimum vertex cover of a

graph G is a vertex cover C with the smallest possible number of

vertices in it. Graph components are sub-graphs that are not

connected to each other. Finally, the complement of a graph G(V,E)

is a second graph H(V,E’) with the same vertex set, but a

complementary edge set. That is, two vertices i and j are adjacent

in H if and only if they are not adjacent in G. A maximum

independent set in G is thus a maximum clique in G’s complement

H.

PISCES
The benchmark for all the algorithms developed and tested here

is PISCES, as it is very widely used [5], which superseded the

previously widely used PDBselect method [6]. PISCES works by

listing proteins in order of length. Redundancy is removed by:

finding the protein highest up the list that is not marked as kept or

removed, and marking it as being kept. For all proteins that have

been determined to be too similar to this protein, mark them as

being removed. Once the bottom of the list is reached all proteins

that have been marked as being kept will be the non-redundant

dataset. By only considering proteins higher up the list for

inclusion, i.e. proteins with longer sequences, it is possible to miss

the opportunity to increase the size of the non-redundant dataset.

The returned set will also be biased to include long sequences.

Here we evaluate algorithms that use graph theory to maximise

the size of the non-redundant dataset while maintaining identical

criteria for inclusion (e.g. no two proteins with more than 20%

pairwise sequence identity).

New Algorithms
Two possible graph representations were used for the new

algorithms. The first is an adjacency matrix. In this representation, an

n|n matrix M is constructed, where n is the number of vertices in

the graph. If there is an edge in between two vertices i and j in the

graph, then Mi,j~Mj,i~1. If no edge is present between the two

vertices, then Mi,j~Mj,i~0. In the adjacency list representation,

there is one entry in the adjacency list for each vertex in the graph.

The list records for each vertex i in the graph the vertices in

neighbourhood(i). Space is saved over the adjacency matrix

representation when the graph is sparse as information is only

stored about the presence of edges.

The density of the protein similarity graph of the entire human

proteome was calculated for sequence identity thresholds of 20%,

25%, 30%, 40%, 50%, 60%, 70%, 80% and 90%. The highest

density was found for the 80% sequence identity threshold, but this

was still only 0.03 on a scale where 0 indicates no edges in the

graph and 1 indicates that the graph is complete (i.e. all members

of G form a single clique). Protein similarity graphs are therefore

sparse, since the probability that any two proteins have a high

pairwise sequence identity is ,3%. An adjacency list representa-

tion is therefore utilised.The protein similarity graph is processed

before the algorithms are run, by removing all isolated nodes from

the graph and adding them to the independent set, as they must all

be members of the MIS.

First, we outline three novel algorithms to find an MIS.

Leaf
The Leaf algorithm works by identifying cliques in the graph

that satisfy the criterion of having at least one vertex which is not

connected to any vertex outside of the clique. One of the

(potentially many) vertices in the clique with no connections

outside of the clique is arbitrarily chosen to be kept in the

Figure 1. An example graph to demonstrate the differences
between Leaf, NeighbourCull and FIS.
doi:10.1371/journal.pone.0055484.g001

Maximising Protein Sets with Graph Theory

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e55484



independent set being formed. The algorithm starts by searching

for cliques of two vertices which satisfy the criterion. If a clique is

found, then one of the vertices in the clique is kept, and the other

removed. If no clique is found that satisfies the criterion, then a

clique of three vertices is searched for. This process of increasing

the number of vertices in the clique being searched for is continued

until either a clique is found, or there can be no possible clique in

the graph that satisfies the criterion. After a clique has been found

and one of its vertices has been incorporated into the growing

independent set, the process of searching for a clique begins again

with searching for a clique of two vertices. There is no clique in the

graph that satisfies the criterion if the size of the clique being

searched for is over a certain threshold size. This threshold size is

determined dynamically, and is equivalent to the number of

neighbours of the highest degree vertex in the graph. Although this

upper bound could be tightened through more careful analysis of

the graph, searching for a tight upper bound involves finding the

size of the maximum clique in the graph. If no clique satisfying the

criterion can be found, then the NeighbourCull algorithm is used

to determine which vertex to remove. As this method removes the

most connected vertex, the upper bound of the size of the clique

being searched for will decrease.

An outline of the algorithm is shown below: First the set of

vertices that are not in the maximal independent set is initialised

(line 1). Next a loop is entered (lines 2–18), which is only exited

once there are no edges remaining in the graph (lines 4 and 5). If

there are edges remaining, then the next step is to select a vertex to

add to the independent set, or one to remove from graph. First the

variable nClique is initialised (line 6). This is the size of the

neighbourhood that all vertices in the clique being searched for

must possess. A loop is entered to search for sequentially larger

cliques (lines 7–14). If a clique is found where there is at least one

vertex v in the clique that does not share any edges with a vertex

not in the clique, then v is to be added to the independent set being

formed (lines 8–12). If no clique of a given size is found, then the

size of clique being searched for is incremented (lines 13 and 14). If

the loop in lines 7–14 terminates without finding a clique, then the

NeighbourCull method is used to determine a vertex to delete

(lines 15–18).

1. Removed : ~Ø

2. While True

1. max ~fi[V DVj[V :#neighbourhood(i)§#neighbourhood(j)g
2. If #neighbourhood(max) = 0

3. Return Removed

4. nClique : ~1

5. While nCliqueƒ #neighbourhood(max)

6. If there is a clique C of nClique +1 vertices that satisfies the

criterion for Leaf

7. toKeep : ~i where i[Cthat satisfies the criterion for Leaf

8. Removed : ~Removed |fVj[C : j=ig
9. ,Update the adjacency list to reflect the removal of vertices in

C that are not i.

10. Exit the inner while loop

11. Else

12. nClique : ~nClique +1

13. If nClique.#neighbourhood(max)

14. Use NeighbourCull to determine the vertex v to remove

15. Removed : ~Removed | v

16. ,Update the adjacency list to reflect the removal of v.

NeighbourCull
The NeighbourCull algorithm is based on the goal of removing

a vertex which has the highest connectivity (i.e. the most

neighbours), but is minimally connected to the vertices not in its

Figure 2. The progress of execution of the Leaf algorithm on the graph seen in Figure 1. Black vertices are in the independent set being
generated, white vertices have been removed and grey vertices are those that are still to be decided upon. Dashed edges indicate edges that have
been removed from the graph due to a vertex being removed. Each graph corresponds to the results of one the execution steps of the Leaf
algorithm. (a) corresponds to step 1, (b) to step 3, (c) to step 5, (d) to step 6.
doi:10.1371/journal.pone.0055484.g002
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neighbourhood. The algorithm works by identifying the vertices

with the most neighbours. If there is only one vertex with the most

neighbours, then this vertex is removed. When multiple vertices

have the most neighbours, the tie is broken by examining the

neighbours of the neighbours of the original vertex (i.e. all vertices

reachable by traversing two edges). The set of vertices reachable

by traversing two edges is determined, and the vertex with the

smallest set of vertices reachable in this manner is removed. If

there are still multiple vertices which cannot be decided between,

then the vertex to remove is chosen arbitrarily from amongst the

remaining possibilities.

An outline of the procedure is sketched below: First the set of

vertices that are not in the maximal independent set is initialised

(line 1). Following this, the loop (lines 2–14) that determines which

vertices to exclude from the maximal independent set is entered.

The first step is to find those vertices in the graph that still have

neighbours (line 3). If there are no vertices with neighbours, and

hence no edges in the protein similarity graph, a maximal

independent set has been found and the algorithm can exit (lines 4

and 5). If some edges remain, then we find those vertices that have

the most neighbours (line 7). If there is only a single vertex that has

the maximum number of neighbours, it is marked as not being in

the maximal independent set (lines 8–10). However, in cases where

more than one vertex has maximal degree, the one to remove is

determined by two applications of the neighbourhood function (lines

12–14). We compute the size of the extended neighbourhood

neighbourhood(v)|neighbourhood(neighbourhood(v))

and remove a vertex whose extended neighbourhood is smallest,

resolving any remaining ties by an arbitrary choice.

1. Removed : ~Ø

2. While True

3. nodesWithNeighbours : ~fiDi[V :#neighbourhood(i)w0g
4. If nodesWithNeighbours = a

5. Return Removed

6. Else

7. max~fi[V DVj[V :#neighbourhood(i)§#neighbourhood(j)g
8. If #max = 1

9. Removed : ~Removed | max

10. ,Update the adjacency list to reflect the removal of max.

11. Else

12. ,Select n [max such that n has the smallest extended

neighbourhood.

13. Removed : ~Removed | n

14. ,Update the adjacency list to reflect the removal of n.

FIS
The third new algorithm works by first initialising a maximal

independent set, and then permuting it in an attempt to increase

its size. The algorithm’s first step is to determine the initial vertex

from which the maximal independent set will be generated. This is

the vertex with the fewest neighbours, with ties broken arbitrarily.

From this initial vertex, the set is permuted using the addnodes sub-

function. This takes as its arguments the current independent set,

and the set of all the vertices in the graph. This function works by

first determining if there are any vertices that are not adjacent to

the current independent set. If there are no non-adjacent vertices,

then the current independent set is returned. If there are vertices

which are not adjacent to the current independent set, then the

independent set can be extended by adding a new vertex. This is

done by finding the non-adjacent vertex which, when added to the

independent set, causes the fewest vertices that are currently not

adjacent to the independent set to become adjacent. The function

swapnodes is used to see if the size of the independent set can be

increased by making small alterations to the vertices in the set. The

vertices that are not in the independent set are tested one at a time

to see how many vertices from the independent set they are

adjacent to. If a vertex i that is not in the independent set is

adjacent to only one vertex j that is, then i and j can be swapped

without invalidating the properties of a maximal independent set.

The new independent set resulting from this swap is passed to

addnodes to see if it can be extended by the addition of any non-

adjacent vertices.

An outline of the algorithm, including its two sub-functions

addnodes and swapnodes, is shown below: The algorithm’s first step is

to determine the initial vertex from which the maximal

independent set will be generated. This is done in line 1, and is

chosen to be the vertex with the fewest neighbours, with ties

broken arbitrarily. From this initial vertex a maximal independent

set is generated (line 4), and following this the set is permuted in an

attempt to increase its size (line 5). Once the set has been

permuted, either the permuted independent set (line 7) or the non-

permuted set (line 9) is returned based on which contains a greater

number of vertices.

The majority of the work in the algorithm is done in the addnodes

sub-function. This takes as its arguments the current independent

set, and the set of all the vertices in the graph. This function works

by first determining if there are any vertices that are not adjacent

to the current independent set (line 12). If there are no non-

adjacent vertices, then the current independent set is returned

(lines 13 and 14). If there are vertices which are not adjacent to the

independent set being formed, then the independent set can be

extended by adding a new vertex (lines 15–19). This is done by

finding the non-adjacent vertex which, when added to the

independent set, causes the fewest vertices that are currently not

adjacent to the independent set to become adjacent. The number

of currently non-adjacent vertices that will become adjacent if a

vertex i is added to the independent set Ind is determined to be

addedi : ~neighbourhood(i){Ind . Therefore the vertex j that is

added to Ind is chosen such that Vv[nonAdj : addedv§addedj ,

where nonAdj is the set of all vertices that are not adjacent to Ind.

1. ,Select the vertex I such that #neighbourhood(I) is

minimal.

2. Ind : ~{I}

3. ,Set V to all the vertices in the graph.

4. IndA: = addnodes (Ind, V)

5. IndS: = swapnodes (IndA, V)

6. If #IndAv#IndS

7. Return IndS

8. Else

9. Return IndA

addnodes(Ind,V ):

10. Start : ~Ind

11. While True

12. nonAdj : ~V{closedNeighbourhood(Start)

13. If nonAdj = o/

14. Return Start

15. For i in nonAdj

Maximising Protein Sets with Graph Theory
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16. addedi : ~closedNeighbourhood(i)\nonAdj

17. If ,addedi contains the smallest number of vertices for all

addedifound so far.

18. min : ~i

19. Start : ~Start | min

swapnodes(Ind,V ):

20. Start : ~Ind , changed : ~True, maxSet: ~Ind

21. While changed

22. changed: ~False

23. For i in V{Start

24. adj : ~closedNeighbourhood(i)
T

Start

25. If #adj~1

26. test : ~Start{adjzi

27. temp : ~addnodes(test,V )

28. If #temp. #maxSet

29. maxSet : ~temp

30. Start : ~temp

31. changed : ~True

32. Return maxSet

The function swapnodes is used at the end of the algorithm to see

if the size of the independent set generated by line 4 can be

increased by making small alterations to the vertices in the set. The

vertices that are not in the independent set are tested one at a time

to see how many vertices from the independent set they are

adjacent to (lines 23–31). If a vertex i that is not in the independent

set is adjacent to only one vertex j that is, then i and j can safely be

swapped without invalidating the properties of a maximal

independent set (line 26). The new independent set resulting from

this swap is passed to addnodes to see if it can be extended by the

addition of any non-adjacent vertices (line 27). If the set returned

by addnodes contains more vertices than the largest maximal

independent set previously found it is recorded as the current best

maximal independent set (lines 28–31).

Examples
The simplest method of fully understanding the new algorithms

is through an example which demonstrates the differences between

them. The graph in Figure 1 is one such graph, and will be used to

illustrate the execution of the Leaf, NeighbourCull and FIS

algorithms. For all three algorithms the alphabetic names of the

vertices will be used to arbitrarily break any ties.

Figure 3. The progress of execution of the NeighbourCull algorithm on the graph seen in Figure 1. Black vertices are in the independent
set being generated, white vertices have been removed and grey vertices are those that are still to be decided upon. Dashed edges indicate edges
that have been removed from the graph due to a vertex being removed. Each graph corresponds to the results of one the execution steps of the
NeighbourCull algorithm. (a) corresponds to step 2, (b) to step 4, (c) to step 6, (d) to step 7, (e) to step 8 and (f) to step 9.
doi:10.1371/journal.pone.0055484.g003
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The execution of the Leaf algorithm on the graph in Figure 1 is

as follows:

1. Select vertex A to keep. This is because vertices A and B

comprise the only maximal clique of two vertices. Vertex B is

not kept because it is connected to vertices that are not in the

clique (Figure 2).

2. There are no more maximal cliques of two vertices, so cliques

of three vertices are examined.

3. Select vertex C to keep. There are three maximal cliques of

three vertices ({C,D,E}, {F,G,H}, {G,H,I}), all of which contain

at least one vertex that has no connection to a vertex not in the

clique. Clique {C,D,E} is arbitrarily chosen as the one to keep a

vertex from. Vertex C is chosen arbitrarily from this clique.

(Figure 2).

4. There are no maximal cliques of two vertices, so cliques of

three vertices are examined.

5. Select vertex F to keep. Clique {F,G,H} is arbitrarily chosen as

the maximal 3-clique to keep a vertex from. Vertex F is the

only vertex in the clique that has no connections to vertices not

in the clique. Therefore vertex F is kept. (Figure 2).

6. Keep vertex I as it has no neighbours (Figure 2).

7. The final independent set is {A,C,F,I}.

The execution of the NeighbourCull algorithm on the graph in

Figure 1 is as follows:

1. Vertices B,D,F,G and H all have three neighbours, and no other

vertex has more, so we need to look at the sizes of their

extended neighbourhoods to choose a vertex for deletion. The

relevant data are summarised in Table 1 where, in the column

headings, N(v) is an abbreviation for neighbourhood(v) and

#½N(v)|N(N(v))� is the size of the extended neighbourhood.

Vertices G and H have the smallest extended neighbourhoods,

Figure 4. The progress of execution of the FIS algorithm on the graph seen in Figure 1. Black vertices are in the independent set being
generated, white vertices are the vertices adjacent to the independent set and grey vertices are those that are still to be decided upon. Each graph
corresponds to the results of one the execution steps of the FIS algorithm. (a) corresponds to step 1, (b) to step 3, (c) to step 4, (d) to step 5, (e) to
step 7 and (f) to step 10.
doi:10.1371/journal.pone.0055484.g004

Table 1. Vertex Neighbourhoods for NeighbourCull
Algorithm Example.

Vertex v N(v) N(N(v)) # N(v) #[N(v) |N(N(v))]

B {A, D, F} {B, C, E, G, H} 3 8

F {B, G, H} {A, D, F, G, H, I} 3 7

D {B, C,E} {A, C, D, E, F} 3 6

G {F, H, I} {B, F, G, H, I} 3 5

H {F, G, I} {B, F, G, H, I} 3 5

doi:10.1371/journal.pone.0055484.t001
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and so vertex G is arbitrarily chosen to be removed instead of H

(Figure 3).

2. Vertices B and D now have the most neighbours of the

remaining vertices, 3, while their extended neighbourhoods

contain 7 and 6 vertices, respectively. Thus we remove vertex

D.

3. Now vertices B,F and H all have two neighbours apiece, while

their extended neighbourhoods contain either 4 (for B and H)

or 5 (for F) vertices. We choose, arbitrarily, to remove vertex B.

4. Vertex H will be removed as it has the most neighbours

(Figure 3).

5. Vertices C and E both have the most neighbours, and the same

extended neighbourhood. Remove vertex C arbitrarily

(Figure 3).

6. The final independent set is {A,E,F,I} (Figure 3).

The execution of the FIS algorithm on the graph in Figure 1 is

as follows:

1. The initial vertex is set to A as it has the fewest neighbours

(Figure 4).

2. Ind: ~{A}

3. Vertices C,D,E,F and I would all cause the fewest new vertices,

3, to become adjacent to Ind. Vertex C is added arbitrarily

(Figure 4).

4. Vertices F and I would both cause the fewest new vertices, 3, to

become adjacent to Ind. Vertex F is added arbitrarily (Figure 4).

5. Vertex I is added to Ind as it is the only vertex available to add

(Figure 4).

6. Ind is {A,C,F,I} after the function addnodes completes.

7. The first vertex that is not in Ind, and is only adjacent to one

vertex in Ind, is D. D is swapped with C, and addnodes is called

with Ind : ~fA,D,F ,Ig (Figure 4).

8. No additional vertices can be added.

9. The size of Ind has not increased so maxSet is still {A,C,F,I}.

10. The next vertex that is not in Ind, and is only adjacent to one

vertex in Ind, is E. E is swapped with C, and addnodes is

called with Ind : ~fA,E,F ,Ig (Figure 4).

11. No additional vertices can be added.

12. The size of Ind has not increased so maxSet is still {A,C,F,I}.

13. No more vertices can be swapped so the final independent

set is {A,C,F,I}.

Existing Algorithms
Three algorithms from the literature were chosen to be tested

alongside the three new algorithms:

GLP is a state of the art heuristic for approximating the

maximum clique that works by finding an initial clique starting

from a random initial vertex in the graph, and then improving this

initial clique using local search operations [7]. Algorithm 1 from

this paper, along with restart rule 2, is used here. An

implementation of the algorithm was written in Python. As the

GLP algorithm makes use of rules for restarting, it is possible that

the algorithm will execute for a substantial length of time on larger

graphs. For this reason, a parameter is used with the GLP

algorithm that limits the number of vertices that can be added to

and removed from the clique being generated. There are two

problems with using the algorithm as it stands for the generation of

non-redundant datasets. The first is that the size of the maximum

clique of the graphs being used was known in the tests done in the

GLP paper [7]. This meant that the algorithm could be stopped if

the clique being generated ever reached this size. Unfortunately,

the protein similarity graphs being used here have unknown MISs,

and therefore the algorithm cannot be stopped early in the same

way. Secondly, the value of the parameter cannot easily be set to

prevent the algorithm running for excessive lengths of time. In

order to prevent this, GLP was adapted to allow a time limit to be

placed on the running of the algorithm and the largest maximal

independent set found up to that point is returned.

The final two algorithms work based on the neighbourhood of

the individual vertices in the graph. The VSA algorithm of Balaji

et al. [8] finds an approximation to the MIS by calculating an

approximation to the minimum vertex cover. The algorithm works

by beginning with an empty vertex cover, and progressively

increasing the number of vertices in the vertex cover by adding the

vertex with the highest support. If two vertices have the largest

value for the support, then the vertex with the higher number of

neighbours is added. This is repeated until there are no vertices

that are not either in the vertex cover or adjacent to a vertex in the

vertex cover. This algorithm was re-implemented in Python and

extended to incorporate a limit on the length of execution.

The final algorithm used was BlastCuller [4]. Unlike GLP and

VSA, this algorithm is designed to produce non-redundant protein

datasets. BlastCuller generates a non-redundant dataset by

approximating the MIS of the protein similarity graph. The

algorithm works by initialising the result as an empty set, and then

adding to it all the isolated vertices. Following this, the vertex with

the most neighbours is deleted, and any newly isolated vertices are

added to the result set. This process is repeated until all vertices

have been either removed, or added to the result set. BlastCuller

was re-implemented in Python for the tests here, in order to enable

a time limit on the exaction to be incorporated.

Cliquer
Although there are no known efficient algorithms to compute

the MIS of an arbitrary graph, it is nonetheless possible to find the

size of the MIS exactly using so-called branch-and-bound

algorithms, which have worst-case running times that are

exponential in the number of vertices. These algorithms typically

combine a brute-force search (list all possible subsets of the vertex

set and ask whether each is an independent set, keeping track of

the largest set seen so far) with a clever upper bound that allows

one to prove statements such as ‘‘any independent set that includes

vertices 1, 25, 1548 and 21973 contains at most 53 other vertices’’

and so eliminate whole families of subsets without having to

enumerate and check each member.

To obtain exact answers against which to check our algorithms

we used the Cliquer library [9–10] to find a maximum clique in

the complement of the protein similarity graph. Cliquer works by

successively computing the size ci of the maximum clique in the

subgraph that contains only the vertices in the set

Si~fv1,v2, . . . ,vigand any edges running between them. It’s clear

that either ciz1~ci or ciz1~ciz1, with the latter holding only

when there is a maximum clique in Siz1 that includes the vertex

viz1: this is the key observation behind the upper bound that

speeds Cliquer’s search. The algorithm’s running time depends on

the order in which the vertices are listed and we used Cliquer’s

default ordering strategy, which proceeds in two stages. Initially

the vertices are arranged in order of decreasing degree; one then

uses the greedy colouring algorithm recursively to choose large sets

of non-adjacent vertices. The final vertex ordering lists the vertices

in order of increasing colour-index (as assigned by the greedy

colouring stage) and, within each colour-group, in order of

decreasing degree.
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Experimental Design
The algorithms were compared in terms of the number of

proteins removed from the original redundant dataset of the

human proteome (downloaded from http://www.uniprot.org/

downloads on December 10th, 2010), and the time taken to finish.

Pairwise sequence identities between all possible pairs of the 20251

human proteins were calculated using PSI-BLAST version 2.2.25.

PISCES was used to perform the BLASTing, and to process the

resulting alignment information. The BLOSUM62 scoring matrix

was used. From this alignment file, it was possible to determine

which proteins had a percentage pairwise sequence identity over

any specified threshold.

Random datasets of 500, 1000, 2000 and 5000 proteins were

generated by sampling from the 20251 human proteins down-

loaded from UniProt. 50 datasets were generated randomly of

each size. Taking the 2000 protein datasets as an example, the

process for generating datasets was as follows:

1. Select 2000 different proteins from the 20,251 possible

proteins.

2. Extract any alignments from the alignment file where the 2000

proteins were either the query or the hit in the PSI-BLAST

output.

3. Form an alignment file from the subset of entries selected in

step 2, and a FASTA format file of the proteins selected in step

1.

4. Repeat steps 1–3 until 50 datasets have been generated.

This method of generating datasets ensures that the same

protein is not present multiple times in any one dataset, but may

be present in more than one dataset of any given size.

Individual datasets were tested as follows:

1. Generate an adjacency list for each percentage threshold (20%,

25%, 30%, 40%, 50%, 60%, 70%, 80% and 90%).

2. Run PISCES on the dataset using each of the nine percentage

thresholds.

3. Run each of the algorithms being tested on each of the nine

adjacency lists.

The time limit for each algorithm was set to be the longer of

either two minutes or ten times the running time of the Leaf

algorithm, whichever is the longer. We used a PC running

Windows XP SP3, with a 3.30 GHz Intel i3–2120 processor and

4Gb of 1600MHz DDR3 RAM.

The model organism data used for the comparison of the

algorithms was downloaded from UniProt on November 3rd 2011.

For each proteome, only reviewed proteins in the complete

proteome were downloaded. The taxonomy ID for the proteomes

was: 9606 for H.sapiens, 10090 for M. musculus, 83333 for E. coli,

559292 for S. cerevisiae and 3702 for A. thaliana.

The algorithms were also tested using a benchmark suite of

graphs, BHOSLIB (http://www.nlsde.buaa.edu.cn/,kexu/

benchmarks/graph-benchmarks.htm). This benchmarking serves

to test the ability of the algorithms to find a MIS in general, rather

than simply from protein similarity graphs. Additionally this

should give an idea of how the algorithms designed for the simpler

protein similarity graphs fare on more complex graphs in

comparison to state of the art heuristics.

As of August 23rd 2012, only the PISCES and Leaf algorithms

are available online for users to use.

Results

Subsets of the Human Proteome
The quality of each algorithm tested is measured as the number

of proteins removed from the starting set, where the smaller the

number removed, the better (Table 2).

Table 2. Mean Number Over 50 Runs Kept from Datasets of
100, 250, 500, 1000, 2000 and 5000 Proteins.

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

500
Proteins

20% 371.9 384.3 384.1 384.0 380.4 383.4

25% 413.4 419.4 419.3 419.3 417.6 419.0

30% 442.2 445.1 445.0 445.0 444.5 444.8

40% 472.3 474.5 474.5 474.5 474.1 474.4

50% 488.5 489.0 489.0 489.0 488.9 489.0

60% 493.4 493.4 493.4 493.4 493.4 493.4

70% 496.0 496.0 496.0 496.0 496.0 496.0

80% 497.2 497.2 497.2 497.2 497.2 497.2

90% 498.4 498.4 498.4 498.4 498.4 498.4

1000
Proteins

20% 668.0 699.6 698.7 698.0 688.2 695.8

25% 766.9 785.7 785.4 785.3 779.9 784.0

30% 840.2 849.2 849.0 849.0 846.9 848.6

40% 917.4 922.0 921.9 921.9 920.6 921.6

50% 958.4 960.3 960.3 960.3 960.2 960.3

60% 976.6 977.0 977.0 977.0 977.0 977.0

70% 985.5 985.6 985.6 985.6 985.6 985.6

80% 990.4 990.6 990.6 990.6 990.6 990.6

90% 994.8 994.9 994.9 994.9 994.9 994.9

2000
Proteins

20% 1158.2 1240.1 1236.2 1234.9 1210.1 1229.9

25% 1364.8 1421.0 1419.4 1418.4 1402.1 1414.8

30% 1544.7 1575.5 1574.8 1574.6 1566.2 1573.0

40% 1754.6 1768.7 1768.2 1768.4 1765.6 1767.9

50% 1864.1 1870.1 1870.1 1870.1 1869.3 1870.1

60% 1920.1 1922.1 1922.1 1922.1 1922.0 1922.1

70% 1947.9 1948.9 1948.9 1948.9 1948.8 1948.9

80% 1980.6 1980.9 1980.9 1980.9 1980.9 1980.9

90% 1980.6 1981.0 1981.0 1981.0 1981.0 1981.0

5000
Proteins

20% 2284.0 2520.0 2504.7 2503.3 2439.7 2491.8

25% 2777.9 2970.9 2962.7 2959.5 2901.3 2947.7

30% 3293.0 3423.1 3419.2 3417.7 3380.8 3410.7

40% 3997.3 4052.1 4050.5 4050.6 4040.9 4048.5

50% 4385.4 4417.8 4417.8 4417.5 4413.0 4416.9

60% 4622.7 4634.1 4634.0 4634.0 4632.7 4633.7

70% 4756.5 4762.5 4762.5 4762.5 4762.2 4762.4

80% 4905.6 4908.5 4908.5 4908.5 4908.4 4908.5

90% 4905.8 4908.7 4908.7 4908.6 4908.6 4908.7

doi:10.1371/journal.pone.0055484.t002
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GLP
When the execution time of the GLP algorithm was limited to

ten times that of the Leaf algorithm, GLP performed more poorly

than Leaf and often worse than PISCES (Figure S1). This is

mainly due to GLP terminating before it has had a chance to build

up a maximal independent set in the protein similarity graph.

In order to determine whether running GLP for a longer length

of time will increase the size of the non-redundant dataset

generated, we extended the time limit for the execution of GLP to

500 times the Leaf execution time and studied a subset of the 5000

protein datasets (Figure 5). The improvement over PISCES was

lower for GLP than for Leaf at all sequence identity thresholds. At

all but 40% and 50% sequence identity, the results for GLP were

worse than those of PISCES.

Leaf, FIS, NeighbourCull, VSA and BlastCuller
At sequence identities greater than 50%, there is little

improvement over PISCES for any of the algorithms (Table 2).

Gains are small at the higher sequence identities because the

protein similarity graphs themselves contain only a few proteins.

For example, using a 90% sequence identity threshold with

datasets of 1000 proteins generates protein similarity graphs with a

mean of 9.68 proteins, and the mean number of nodes in each

component is 2.68. The small size of the components leaves very

little room for an improvement in the size of the non-redundant

dataset.

For sequence identity thresholds below 60%, the improvement

over PISCES achieved by all five algorithms is more substantial

(Table 2). The pattern of improvement changes depending on the

sequence identity threshold used. One trend that is noticeable

across all sequence identity thresholds is the increasing difference

between the five algorithms as the datasets increase in size.

The order of success of the algorithms is the same for almost

every combination of dataset size and sequence identity threshold,

with Leaf showing the most improvement followed by FIS,

NeighbourCull, BlastCuller and finally VSA. The three algorithms

that work solely by identifying the vertex that is most connected by

some measure show the smallest improvement over PISCES.

Figure 5. Comparison of Leaf and GLP to PISCES for 5000 protein data sets, when GLP is terminated after executing for 500 times
as long as Leaf. The percentage improvement over PISCES is calculated at each cut off percentage as (# proteins kept by algorithm - # proteins
kept by PISCES)/(# proteins kept by PISCES) * 100. For example, if the non-redundant dataset found by Leaf is 2000 and for PISCES it is 1900, then the
percentage improvement is (2000–1900)/1900 * 100 = 5.26.
doi:10.1371/journal.pone.0055484.g005

Table 3. Mean Execution Times for 5000 Protein Data Set (s).

Cut Off PISCES Leaf FIS NeighbourCull GLP VSA Blastculler

20% 3.454 1.944 10.747 3.339 120.868 7.920 2.966

25% 3.390 0.840 5.961 1.998 120.440 3.756 1.472

30% 3.337 0.693 1.713 0.610 120.229 0.931 0.364

40% 3.315 0.089 0.043 0.039 120.009 0.054 0.022

50% 3.288 0.020 0.011 0.016 120.004 0.013 0.008

60% 3.297 0.009 0.003 0.010 120.002 0.005 0.004

70% 3.339 0.005 0.002 0.008 120.001 0.003 0.002

80% 3.361 0.003 0.001 0.004 120.001 0.002 0.002

90% 3.370 0.001 0.001 0.002 120.000 0.001 0.001

doi:10.1371/journal.pone.0055484.t003
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Table 3 shows the time taken for the 5000 protein data set at

sequence cut offs from 20–90%. We see that all the algorithms

apart from GLP take a similar time to PISCES. Leaf usually takes

the least time, even though it tends to give the largest sets. The

mean lengths of the proteins returned by each algorithm from the

human proteome for the 20% cut off are: FIS 419.9; Leaf 410.7;

NeighbourCull 422.6; VSA 418.5; BlastCuller 422.6 and PISCES

518.3. Figure S2 shows a cumulative frequency plot. PISCES thus

does select for longer chains, as expected.

Comparisons to the Maximum Independent Set
The Cliquer algorithm computes the exact size of a maximum

independent set, which is the perfect solution to our problem of

finding the largest possible non-redundant protein data set.

Unfortunately, it is so slow that it is only possible to find the

MIS for starting sets of 1000 proteins or fewer with this method.

We ran starting sets of 5000 proteins and none reached a solution

after 6 months of processing on a Condor [11] distributed

computing pool. Jobs submitted to this pool run mainly on

inactive, recent-model desktop machines in student computing

clusters and, during the academic term, get around 8–10 hours of

uninterrupted processor time per day. Nevertheless, we can

compare the approximate methods used here to the exact solution

for sets of 500 and 1000 proteins. Table 4 shows these

comparisons. For the 1000 proteins subsets, Leaf misses the MIS

in only a few cases, shown, for example, by the mean difference for

the 20% cut off being only 0.1 proteins. This gives reassurance

that we have found highly accurate algorithms that can reach, or

get close to, the MIS in a short time. For example, with the 1000

protein sets at a 20% cut off, the Cliquer algorithm takes on

average 4130 seconds to find the MIS for each set, while the Leaf

method needs only 42ms and nearly always finds the MIS.

Human Proteome
The results of running the algorithms on the entire human

proteome (20251 proteins) are in Table 5. Leaf again outper-

formed the other algorithms in most cases.

GLP was originally used in the test on this dataset, but the size

of the representation of the protein similarity graph proved to be

problematic. For example, the largest connected component of the

protein similarity graph at 20% sequence identity contains 16,383

vertices, and has a mean degree of 84. The complement of this

graph will therefore have the same number of vertices, but a mean

degree of 16,299. In order to record all the connections between

vertices in the graph, approximately 266 million connections need

to be recorded. The size of the graph representation will cause the

algorithm to be substantially slower, making the time required to

generate a non-redundant dataset prohibitive. Similar issues may

explain the poor results of GLP on the random subsets of the

human proteome.

Table 4. Number of Proteins Present in the exact Maximum Independent Set with Differences to the MIS for each Algorithm.

500 Proteins

Cut Off Exact Kept NeighbourCull FIS Leaf VSA BlastCuller GLP PISCES

20% 385.34 0.3 0.3 0.07 4.0 1.00 4.7 11.5

30% 445.9 0.2 0.1 0 0.6 0.4 0.2 2.7

40% 476.1 0 0 0 0.4 0.07 0.7 2.3

50% 489.9 0 0 0 0.07 0 0.3 0.3

60% 494.0 0 0 0 0 0 0 0.03

70% 496.2 0 0 0 0 0 0 0

80% 497.3 0 0 0 0 0 0 0

90% 498.4 0 0 0 0 0 0 0

1000 Proteins

20% 699.7 1.7 1.0 0.1 11.5 3.9 40.3 31.7

30% 849.2 0.2 0.2 0 2.3 0.6 174 9.0

40% 922.0 0.2 0.2 0.06 1.4 0.4 2.4 4.6

50% 960.3 0.02 0 0 0.2 0.02 1.2 1.9

60% 977.0 0 0 0 0 0 0 0.4

70% 985.6 0 0 0 0 0 0 0.2

80% 990.6 0 0 0 0 0 0 0.1

90% 994.9 0 0 0 0 0 0 0.1

doi:10.1371/journal.pone.0055484.t004

Table 5. Number of Proteins Kept from Human Proteome.

Cut Off PISCES Leaf FIS NeighbourCull VSA BlastCuller

20% 5700 6643 6572 6580 6365 6541

30% 9007 9856 9796 9800 9594 9762

40% 12422 12843 12832 12829 12746 12811

50% 14927 15169 15167 15164 15129 15154

60% 16771 16887 16884 16886 16874 16884

70% 17969 18036 18036 18036 18030 18033

80% 18763 18801 18801 18801 18798 18801

90% 19366 19389 19388 19389 19388 19388

doi:10.1371/journal.pone.0055484.t005
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Model Organisms
We applied MIS algorithms to the M. musculus, E. coli, A. thalania and

S. cerevisiae proteomes, in order to evaluate its performance on diverse

proteomes and to generate potentially useful data sets for groups

studying these organisms. Table S1 summarises their performances

and shows that again Leaf consistently gives the largest culled sets.

PDB
Non-redundant sets of protein crystal structures are often used to

study protein structure. PDB files can be culled not just on the

maximum pairwise sequence identity, but also structure quality, as

measured by minimum resolution and R-factor. We used the Leaf

algorithm to compare with PISCES, using a range of these parameters

(Table S2). For sets with low sequence identities (20% –25%), Leaf

returns data sets that are around 10% larger than from PISCES.

BHOSLIB Benchmark
The results of running Leaf, FIS, GLP, VSA and BlastCuller on

the BHOLSIB benchmark datasets can be seen in Figure 6, where

the mean difference between the number of vertices returned by

the algorithms and the true MIS is shown.

GLP consistently outperforms the other algorithms on the

benchmark datasets, unlike the protein datasets. For the other

algorithms, the structure of the graphs is not suitable for the simple

methods used to generate the independent sets. For example, the

Leaf method relies on using vertices in a clique that are not

connected to any vertices not in the clique, but these are rare in

the test graphs. This will cause Leaf to behave very similarly to

NeighbourCull, as it falls back on the removal of the vertex with

the most neighbours. Hence, the results for Leaf and Neighbour-

Cull are very similar.

Leaf Protein Culling Server
We have implemented the Leaf method to provide datasets

(http://www.bioinf.manchester.ac.uk/leaf/ or https://github.com/

SimonCB765/Leaf). The website uses Leaf to cull subsets of the

PDB or submitted user sequences. Pre-computed sets of non-

redundant PDB chains can also be downloaded, along with the

source code and data files needed to run the culling on a local

machine. Pre-culled PDB datasets are available with various

sequence identity cut offs, resolutions and R-value limits. Culled

proteomes are available for h. sapiens, E. coli, Arabidopsis thaliana, S.

cerevisiae and M. musculus.

Discussion

When comparing algorithms, the one that clearly underper-

forms is GLP. This algorithm substantially underperforms when

compared to Leaf, and occasionally when compared to PISCES.

Even when the time was increased to 500 times that of Leaf, the

datasets returned by GLP were still smaller than those returned by

Leaf. GLP has to work on very large graphs as it uses the

complement of the protein similarity graph. While this problem

can be overcome by using large amounts of memory, the time

needed to produce a suitable result on larger graphs is far too

large. For these reasons it is undesirable to use GLP, at present, for

starting sets of this nature.

The Leaf algorithm consistently outperformed the other algorithms

on both the datasets of random proteins, and the datasets of biological

importance. A larger set will increase the ability to reveal significant

differences between sets that are not apparent with smaller sets and give

more accurate statistics on the properties of the set. It is not a general

solution to the MIS problem, however, as its relatively poor

performance on the BHOSLIB Benchmark data sets, suggest that it

is only appears suitable for sparse graphs.

Conclusions
Using algorithms designed to find maximum independent sets

can substantially increase the size of non-redundant sets of proteins.

For a small datasets of up to 1000 proteins, Cliquer can find the

exact MIS, though other algorithms often find it too. The long run

time of Cliquer prohibits its use for larger sets, however. For larger

sets, the novel method Leaf is the most suitable for finding non-

redundant protein datasets of maximal size, as it finds the largest sets

in a short time. For sets with many edges per node, such as the

BHOSLIB benchmarks, Leaf is not suitable.

Figure 6. Algorithm comparison for the BHOSLIB Benchmarks. BHOSLIB datasets are listed as, for example, 30–15, where the datasets consist
of 30 cliques of 15 nodes each (450 nodes in total) and the MIS is 30 nodes in size.
doi:10.1371/journal.pone.0055484.g006
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