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Abstract

In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies
similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for
comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of
multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance
function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-
metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate
its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an
example of a case where the dependencies between system variables are known, while in the latter the system is treated
(and behaves) as a black box.
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Introduction

The term ‘time series’ is used to describe a set of data points that

vary over time. The analysis of different time series is an important

activity in many areas of science and engineering. Methods like the

Autoregressive Moving Average (ARMA) and Fourier analysis, [1]

are widely used for forecasting future values based on the existing

time series. Another important application is the comparison of

different time series. The underlying aim of this kind of analysis is

to uncover similarities and patterns that might exist in the data.

This translates to four specific activities: 1) indexing is used to

identify the most similar time series in a dataset from a query time

series; 2) classification is used to categorize data into predefined

groups [2]; 3) clustering is an unsupervised categorization of data

[3,4]; 4) anomaly detection is the identification of abnormal or unique

data items [5]. For most of these activities it is necessary to

compare time series using an appropriate similarity measure [6].

By similarity measure we mean any method, metric or non-metric,

which compares two time series objects and returns a value that

encodes how similar the two objects are. Distance metrics are

commonly used similarity measures to define if two time series are

similar [7].

For method d to be categorized as a metric, or distance metric, it

must fulfill the following conditions for all x and y [8]:

N d x,yð Þ§0 Non-negativity

N d x,yð Þ~d y,xð Þ Symmetry

N d x,xð Þ~0 Reflexivity

N d x,yð Þ~0 only if x~y Identity

N d x,zð Þƒd x,yð Þzd y,zð Þ Triangle Inequality

However, the use of metrics is not always possible or desirable.

Different non-metric similarity measures provide a different

perspective on comparing time series. Depending on the nature

of the data one might need to use a similarity method that is not

metric (does not fulfill all the distance conditions). In some cases

the use of different non-metric similarity methods is more desirable

since i) these non-metrics may be able to process data that metrics

cannot and/or ii) provide more meaningful results than the metric

methods [9,10]. In the next section we define a semi-metric that

we propose to be valuable to compare multidimensional time

series.

Often it is computationally expensive (in time or storage) to

apply the analysis directly to the original time series. In those cases

it is more desirable to carry out the data mining analysis on shorter

representations of the time series. Many methods exist for creating

such representations and estimating the distance between pairs of

time series approximations, such as discrete Fourier transform

[11], discrete wavelet transform [12], piecewise aggregate

approximation [13], or symbolic aggregate approximation [14].

These methods are widely used in many fields, including

econometrics, bioinformatics and signal processing.

Of particular interest are dynamical systems composed of

several variables that can be measured or simulated as a

function of time. For example, models of chemical reaction

networks are composed of variables representing different

chemical species; stock portfolios are sets of individual stocks

that are nonetheless interdependent (even though these depen-

dencies are not known explicitly); temporal gene expression data
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sets represent observations of levels of different genes or gene

products from an organism’s genome; models of the behavior of

electronic circuits are composed of several variables that

represent voltages at different points in the circuit. Up until

now data mining in the context of these dynamical systems has

been limited to comparisons of single time series: two particular

chemical species of two biochemical models, the time series of

two particular stocks, or the voltages of two points in two

separate circuits. Multidimensional time series comparisons are

also possible [15] but only if the various time series have the

same dimensionality. These methods allow us to compare two

dynamical models as long as they contain the same number of

variables.

However, existing approaches [16–19] are not applicable when

the two dynamical models have different numbers of component

variables. In that case the only method that has been applied is to

establish the (weighted) average behavior of each model (group of

time series) and then compare the two average univariate time

series [20]. While this approach may be satisfactory for some

applications, it does not satisfy the needs of many others. One may

be interested in comparing two groups of time series using all of

the information contained therein, yet allowing for the two groups

to have a different number of components. For example one may

want to know whether a 3-variable model of calcium oscillations is

more ‘similar’ to a model of calcium oscillations with 4 variables or

another one with 10 variables. Equally we may want to know if the

behavior of the group of 100 shares included in the Financial

Times and (London) Stock Exchange (FTSE) is more similar to the

group of 30 shares included in the New York Stock Exchange

(NYSE) or the 50 shares included in the Shanghai Stock Exchange

(SSE).

Figure 1 illustrates the problem addressed here: three models

are presented which contain different numbers of components.

Clearly (and purposely) these models have some similar features:

both A and C have oscillating variables with a similar frequency

and relative amplitude, while both A and B have components that

are monotonic. A has similarities to both B and C, but which one

is ‘closer’ to or ‘more like’ A?

Model

Distance between Univariate Time Series
Numerous methods have been proposed for calculating the

distance between univariate time series. Some of the most used are

the Euclidean distance, the Manhattan distance (taxicab distance),

Dynamic Time Warping (DTW), and the Longest Common

Subsequence (LCSS).

Most applications in time series data mining require or benefit

from some level of compression of the data since e.g. they may not

fit in memory together or we may have grounds for first removing

higher-frequency noise. Methods that create shorter representa-

tions of the original time series, like the Discrete Fourier

Transform [11], the Discrete Wavelet Transform (DWT) [12],

the Piecewise Aggregate Approximation (PAA) [13], or the

Symbolic Aggregation Approximation (SAX) [14] are thus widely

used. Lower bounding is a required property of these represen-

tations [21], i.e. the distance between two time series represen-

tations must be smaller or equal to the distance between the

original time series. Here we use the Haar wavelet transformation

method from the DWT family of representations. We then use the

Euclidean distance in DWT space to measure distance between

univariate time series.

SMETS
A new method, SMETS (Semi Metric Ensemble Time Series),

is proposed to compare multivariate time series of arbitrary

dimensions. The method is designed to provide numerical indices

that translate the level of similarity between two multivariate time

series: this is achieved by matching the most similar univariate

time series component between each model. The method also

takes into account the differences that arise from unmatched

univariate components when one of the time series has a higher

dimensionality than the other.

SMETS consists of two parts: the first identifies the similarity

between the two models. This is achieved by partially matching all

the univariate time series components from one model (the one

with the smallest number of variables) with the most similar

univariate time series components from the second model. The

second part of the method adds two penalties that account for the

complexity of the unmatched time series and for the difference in

cardinality between models. These penalties are computed from

the remaining unmatched time series of the second model and the

difference between the dimensions of the two time series.

Consequently, the partial matching of the two models means

that, in general, SMETS does not satisfy the triangle inequality

rule. Since it satisfies the rest of the metric conditions (non-

negativity, symmetry, identity and reflexivity), SMETS is a semi-

metric method [22,23]. In the special case where the two time

series have the same dimension, then the triangle inequality is also

fulfilled and SMETS is a metric.

Part 1, partial matching. The aim of this step is to link all

the univariate time series from the model with the smallest

cardinality to the most similar univariate time series from the

second model. Since we are using time series representations, the

distance metric used is particular to each one. The examples

included here use the Haar Wavelet Transform and so the

distance is simply the Euclidean distance between the DWT

representations of each univariate time series. It is also possible to

apply the method directly on the original time series rather than

on their transformations. The partial matching proceeds according

to the following algorithm:

Figure 1. Three dynamic models with different dimensionality.
A model with 4 variables, B model with 2 variables and C model with 3
variables. A has similarities with both B and C, however the distance
between B and C is large. The question that SMETS addresses is which
of B and C is closest to A?
doi:10.1371/journal.pone.0054201.g001

Semi-Metric for Multivariate Time Series
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1. Calculate the distance between each of the component time

series or their representations from the model with the largest

cardinality and every time series from the model with the

smallest cardinality. Distances between the component (uni-

variate) time series can be measured using any of the methods

discussed above. Here the Euclidean distance in Haar DWT

space is used.

2. Identify the two time series (one from each model) with the

smallest distance and record that distance.

3. Remove the two component time series that were matched

from further calculations.

4. Repeat steps 1 to 3 until all time series from the model with the

smallest cardinality have been matched.

Two univariate time series are considered as the most similar if

they share the smallest distance among all univariate time series

across the two groups. Every time a pair of component time series

is matched, their distance is recorded in a vector d and both time

series are removed from the process. This step is important

because it eliminates the possibility of multiple matchings of the

univariate time series. Each component of the multivariate time

series with the smallest dimension will therefore be matched to one

and only one component of the multivariate time series with the

largest dimension. Some of the components of the multivariate

time series with the largest dimension will thus not be matched to a

counterpart in the other multivariate time series.

After matching the most similar univariate time series, their

overall distance is calculated using a p-norm of d [8] (Equation

1).

dk kn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

dn
m

n

s
ð1Þ

In this case p = n, the dimension of the smallest time series. In

a set of multivariate time series, all of different dimensionality,

the p-norm used in each comparison is different. The use of a

p-norm here is beneficial because it provides a normalized

distance value that depicts the similarity level of the partially

matched time series.

The p-norm value calculated from Equation 1 provides an

indication of the level of similarity between the matched univariate

time series. However, Equation 1 does not take into consideration

the influence of the unmatched component time series. Based on

that, a penalty must be added to the p-norm to account for the

dissimilarity that arises from the unmatched time series.

Part 2, penalization. In the second step penalties are added

to account for differences between the multivariate time series. A

simple way to account for the unmatched components would be to

add their distance to the closest counterparts in the other

multivariate time series. However it is important to account for

how much information (in the sense of Shannon) is contained in

the unmatched components. Thus we weight the distance between

the unmatched components to the closest counterpart in the other

multivariate time series by the proportion of information

contained in that component. This means that unmatched time

series with high information content will contribute to making the

overall distance larger. Unmatched time series with little

information content (e.g. constant traces) will contribute little to

the overall distance. Equation 2 measures the relative information

of a univariate component time series:

Hj~{
Xq

i~1

p tj,i

� �
log2p tj,i

� �
ð2Þ

Where Hj is the entropy of the (univariate) j component time

series; tj,i is the i-th data point of the component time series tj; q is

the length of the component time series, and p(tj,i) is the frequency

of the value tj,i in the time series. The relative information content

REj of each unmatched component time series j is then:

REj~
min dj

� �
’ Hj

� �
Xm

i~1

Hi

ð3Þ

Where dj is the smallest distance between the j-th unmatched

component time series and any component time series from the

smallest model; m is the dimension of the larger time series.

Therefore the overall entropy penalty EP that accounts for the

distance of the unmatched components is:

EP~
Xm{n

j~1

REj ð4Þ

This EP value is then added to the p-norm value obtained from

Equation 1.

The EP penalty however would be zero if all unmatched

univariate component time series were constant (since they would

have zero information content), but this would violate the identity

condition (see Figure 2 for an example). To avoid this and comply

with the identity condition, another penalty is therefore added to

account for the difference in dimensionality between the two time

series. This is done through the ratio of the difference of

dimensions to the sum of the dimensions:

Figure 2. Three similar models. Models A, B and C are very similar;
all three models contain an oscillating variable which behaves exactly
the same and a different number of variables that are constant (zero
entropy). Because SMETS also takes into account the difference of
dimensions it can distinguish between these models: the distance A–B
is the smallest (0.25), followed by the distance B–C (0.33) and then the
distance A–C (0.54).
doi:10.1371/journal.pone.0054201.g002

Semi-Metric for Multivariate Time Series
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P~
m{n

mzn
ð5Þ

Yet, simply adding P to EP gives too much weight to the

difference of dimensions and would result in that most multivariate

time series of different dimension would never be similar, despite

how well their components could be matched. Thus this last

penalty needs to be made weaker, which is achieved with a 2-

norm. Finally SMETS is described by Equation 6:

SMETS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk knzEP

� �2
zP2

q
, ð6Þ

which fulfills all the conditions of a semi-metric and is therefore an

appropriate means for indexing multidimensional time series of

arbitrary dimensions.

The reason for the addition of the second penalty (Equation 5) is

best explained using the graphical example of Figure 2. Three

models are presented, each of which contains a component time

series with an oscillation, plus a number of other components that

are static; the only difference between the models is the number of

components that are static. Thus, model A has two static

components, model B four, and model C nine, while all have

exactly one oscillating component. Without adding the penalty of

Equation 5, the distance between any pair would be exactly zero.

This is the case because the unmatched components are static and

therefore have zero entropy, so that in this case Equation 4 adds

no penalty. However, intuitively, model C is less similar to model

A than is model B because C contains a larger number of

unmatched components. Equation 5 thus deals with this by taking

into account the number of unmatched components. This penalty

ensures the property that only objects that are exactly the same

have zero distance, a requirement for semi-metrics [22,23].

Complexity
The time complexity of algorithms is important to ascertain

whether they scale to large problems. The SMETS algorithm

described here scales with the cube of the dimension of the largest

time series (i.e. the one of higher dimensionality): O(n3). This makes

the algorithm applicable to most practical applications, even in the

presence of large data sets.

Results

To demonstrate the application of SMETS we analyze four data

sets from different types of activities. The first is a financial data set

of stock market financial data where SMETS is used to compare

five different indices. In second place we analyze a set of time

series produced from dynamic models of biochemical networks.

The third data set is composed of economic data representing

trade of various commodities. Finally we analyze a data set

composed of electrophysiological sleep data.

Financial Time Series Data
Financial data represent an area where SMETS seems to be

well suited, as it consists largely of time series data analysis. We

illustrate how it can be applied to the estimation of similarities

between different stock indices. A number of stock market indices

are used as benchmarks to evaluate the ‘performance’ of financial

markets. Each index contains a certain number of stocks and a

weighted average is usually calculated to reflect their collective

performance, taken to reflect the overall performance of that

market. Thus the Dow Jones Industrial Average lists 30 stocks

representative of the American market, the NASDAQ-100 is an

index that tracks the 100 largest non-financial companies in the

National Association of Securities Dealers Automated Quotations

(NASDAQ) market, the FTSE100 is an index of the 100

companies with the largest capitalization traded in the London

market, the Deutscher Aktien indeX (DAX) includes 30 German

companies traded in the Frankfurt market, and the SSE-50 lists the

50 major Chinese companies traded in Shanghai. Each of these

can be seen as a set of connected stocks whose performance is

linked (it is not important here to discuss any mechanisms of how

they are linked), and therefore we consider their historic financial

data to consist of multivariate time series. Given that each of these

indices have different number of components, SMETS is

appropriate to compare them. Up until now they have been

compared only by the method of weighted averages (where the

weights are often the relative capital of each stock). Since the

weighted average destroys information, we think it may be useful

to apply SMETS since this uses all of the information contained in

all stocks.

Daily adjusted closing stock price data for each company

represented in these indices for the period May 19, 2010 to April

18, 2011 was obtained from Yahoo Finance [24]. The data

included consists of: a) FTSE 100 index and all stocks included in

it have 234 data points, b) DAX 30 and all stocks included in it

have 238 data points, c) Dow Jones 30 and NASDAQ 100 and all

stocks included in both indices have 232 data points, d) SSE 50

and all stocks included in it have 229 data points. The differences

in number of data points is due to different markets having

different number of closing days (holidays, etc.).

Before applying the DWT the data were normalized by

subtracting their mean value and dividing by the standard

deviation. This operation is carried out on each univariate

component. This normalization results in that time series are only

different in their shape [25], since the differences in amplitude

have been removed.

The DWT requires sequences of length that are powers of two

[26]. For these data, we therefore added zeros to the end of each

component time series such that the length was 256 and then

transformed each one with the Haar DWT to a length 16 by

keeping only the 16 coefficients with largest magnitude. In every

component time series representation, the effect of zero padding

affects the last symbol of the representation, so we truncated the

representations to a length 15 by removing the last symbol of each

one [27]. This is important to eliminate the bias that the zero

padding would otherwise introduce in the comparisons.

SMETS was applied to the multivariate time series for each

index, which were constructed by grouping the appropriate sets of

companies. A distance matrix was established based on SMETS

and in parallel we used the traditional weighted averages (official

indices provided by each stock market) that represent each stock

(and are therefore univariate time series) and constructed a

Euclidean distance matrix between them. Hierarchical clustering

was applied to the two distance matrices. Figure 3 depicts the

dendrograms constructed based on the clustering results that used

weighted averages versus clustering results that used SMETS. The

corresponding distance matrices are shown as heat maps in

Figure 4. The results obtained from both the weighted average

method and SMETS are not too different, however with SMETS

the NASDAQ and Dow Jones indices are clearly within the same

cluster, while FTSE100 and DAX group in a different one. With

the weighted average method the four group within a single

cluster. It is also interesting that with SMETS the FTSE100 is

quite distant from the NASDAQ100. Both methods identify the

Semi-Metric for Multivariate Time Series
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SSE50 as the most dissimilar of all the indices. Plausibly these facts

are related to the composition of the indices (some stocks are

present in both NASDAQ100 and Dow Jones) and the nature and

frequency of trades within and between specific markets.

Biochemical Network Model Dynamics
Another area where SMETS will be useful is in modeling and

simulation. Dynamical models, for example based on ordinary

differential equations, represent various physical systems, such as

electronic circuits or biochemical networks. Such models can be

easily simulated given a certain initial condition producing time

series with the behavior of the model variables. During the process

of constructing and refining models it is often useful to seek other

models that have similar behavior to some target. SMETS is thus

well suited to this task as it allows one to find models that have

some overall behavior similar to some arbitrary specification.

In systems biology there is an initiative that is collecting all

published models in a database, BioModels [28], that are made

available in a standard markup language (SBML) [29]. Currently

this database is indexed using a number of chemical properties of

the parameters and variables in the models, but not by their

behavior. It would be ideal if one could ask which model in this

database behaves most similar to the one a modeler is developing.

This task can be easily carried out with SMETS. To illustrate this

we have extracted a small subset of eight random models from the

BioModels database (models 4, 21, 131, 152, 217, 331, 357 and

405). These were then loaded into the COPASI simulator [30]

which produced time series for each model by integration of their

differential equations. Note that each model has a different

dimension, the smallest having 3 variables and the largest 64

variables. We then applied SMETS (using the same data

preprocessing as above: normalization by subtracting mean and

dividing by standard deviation, followed by the Haar DWT

representation using the largest 16 coefficients) to these data and

used the resulting distances to establish a hierarchical clustering. In

parallel we applied the average method to calculate distances that

were also clustered with the same algorithm. Figure 5 depicts the

classifications of the models based on each approach and Figure 6

represents the distance matrices as heat maps. It is obvious that the

classification based on SMETS is different from the one based on

averages. We argue that the SMETS-based classification is

superior. Model 357 is clearly the most similar to 405, as

identified by SMETS, however the averages method pairs it with

model 4. Even qualitatively it is obvious that model 4 has sustained

oscillations while model 357 does not. Model 217 is also similar to

357 and 405– its variables go through large changes in the early

part of the time series and relax towards a steady state in the final

part, just like the other two. But the average method pairs model

217 with model 152, yet model 152’s variables display large

changes in the initial part as well as in the end of the time series

(SMETS paired this one with model 131, which has a similar

behavior)

Economic Time Series Data
One of the main types of data studied in economics is the

volume of trade of various commodities. Much like the financial

data discussed earlier, these data are published both as time series

Figure 3. Hierarchical clustering of five stock indices. Indices were clustered based on the traditional weighted average method and on
SMETS. The dendrogram reveals the relative distances between each entity. The time series considered by each method are represented to the left.
doi:10.1371/journal.pone.0054201.g003

Figure 4. Distance matrices for the five stock indices. Distance
values were measured using the weighted average and SMETS and are
encoded in grayscale.
doi:10.1371/journal.pone.0054201.g004
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of single commodities (coffee, oil, etc.) as well as weighted averages

of certain groupings of commodities (energy, food, etc.). Primary

commodities are a set of raw materials that can be processed and

transformed to manufacture goods. Fluctuations in the price of a

primary commodity can influence the price of the rest of the

commodities or the prices of the final goods and have a significant

influence in global economics. Therefore, different sets of primary

commodities time series can be treated as multivariate time series.

The International Monetary Fund (IMF) collects the prices of

primary commodities and studies the economic development of

different countries. The primary commodities are categorized in

groups in order to investigate the status and trends of the global

economy. For each group of primary commodities’ time series a

weighted average is also published that reflects the overall

performance of the group.

We obtained commodity price time series data, and the group

weighted averages, from the IMF website [31]. This consisted of

monthly average prices of the primary commodities and the

indices of different commodity groups for the period of January

2002 to August 2012. Each univariate time series has a length of

249 data points; a total of 10 groups of commodities are provided,

each one having different number of component time series.

Additionally some individual time series appear in more than one

group, for example ‘‘bananas’’ appears in the following groupings:

‘‘food’’, ‘‘food and beverage’’, ‘‘non-fuel commodities’’ and ‘‘all

commodities’’. The groupings of the primary commodities, i.e. the

multivariate time series, are: a) All Commodities, b) Non-Fuel, c)

Food and Beverage, d) Food, e) Beverages, f) Industrial Input, g)

Agricultural Raw Material, h) Metals, i) Energy, j) Crude Oil.

Before creating the Haar wavelet representations, each compo-

nent time series was normalized by subtracting the mean value

and divided by the standard deviation. Time series were padded

Figure 5. Hierarchical clustering of eight systems biology models. Models were obtained from the BioModels database [28] using average
versus SMETS. The dendrogram reveals the relative distances between each entity. The time series considered by each method are represented to the
left.
doi:10.1371/journal.pone.0054201.g005

Figure 6. Distance matrices for the systems biology models.
Distance values were measured using the average and SMETS distances
and are encoded in grayscale.
doi:10.1371/journal.pone.0054201.g006

Semi-Metric for Multivariate Time Series
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with 7 zeros at the end of each component time series to make a

length of 256. In order to eliminate bias form the zero padding,

the representation was truncated to a length of 15 data points.

A SMETS distance matrix was created for the different sets of

commodities. In parallel, an Euclidean distance matrix was

created by using the IMF indices (time series weighted averages)

for comparison. Agglomerative hierarchical clustering was applied

to each distance table. Figure 7 illustrates the results of hierarchical

clustering in terms of dendrograms of the weighted averages and

SMETS. Figure 8 depicts the distance matrices as heat maps.

The results of the two approaches are significantly different.

With the classical weighted average approach the Energy, Crude Oil

and All Commodities are grouped together, whereas with SMETS,

All Commodities are clustered with Non-Fuel commodities. It should be

noted that All Commodities includes all of the univariate time series

that are also included in all other groups. Obviously there are

common components between itself and any of Energy, Crude Oil

and Non-fuel commodities. But there is nothing in common between

Non-fuel commodities and either of Energy or Crude Oil. When SMETS

encounters a component that is exactly equal in the two

multivariate time series, it will be always matched. So the SMETS

distance is smaller for the case when two multivariate time series

will have the largest number of common components. In this case

it is clearly All Commodities and Non-Fuel commodities, which share 45

common components. While Energy has only 7 in common, and

Crude Oil only 3 in common. Because the weight of the Crude Oil

and Energy components is very large, then the weighted average

causes the effects of all other commodities to be minimized.

Electrophysiological Sleep Data
Neurophysiology studies the function of the nervous system and

its underlying dynamics. Various nervous system functions are

Figure 7. Hierarchical clustering of primary commodity prices. Distances were measured using the weighted average method versus SMETS.
The dendrogram reveals the relative distances between each entity. The time series considered by each method are represented to the left.
doi:10.1371/journal.pone.0054201.g007

Figure 8. Distance matrices for the primary commodity prices.
Distance values were measured using the average and SMETS distances
and are encoded in grayscale.
doi:10.1371/journal.pone.0054201.g008
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investigated by means of recording and analyzing the time-

dependent electric signals.

PHYSIONET [32] is a resource that gives access to many

electrophysiological data sets obtained experimentally [33]. In this

example sleep data from the Sleep-EDF database [34–35] is used.

The study of sleep has identified several stages that healthy

individuals go through while asleep. These studies may also

provide insight into pathologies that manifest during sleep.

We obtained data from the SLEEP-EDF dataset in PHYSI-

ONET, which consists of 8 sleep recordings, where 4 of them were

obtained from healthy volunteers with no sleep difficulties [35] and

the other 4 were obtained from healthy volunteers with mild

difficulties in falling asleep [34]. The recordings from the

volunteers with no sleep difficulties contained the following

component time series EOG, FpzCz, PzOz, EEG, submental-

EMG envelope, oro-nasal airflow and rectal body temperature

components [35]. The recordings from the individual with the

sleeping difficulties contain measurements of EOG, FpzCz, PzOz,

EEG and submental-EMG envelope [34]. Thus half of the data

are 7-dimensional time series, while the other half are 5-

dimensional time series. Since 5 dimensions are common among

all data, one could think that removing the two extra dimensions

(the oro-nasal airflow and rectal body temperature, in half of the

data) would provide a better classification. This is, of course, not

needed for application of SMETS since it deals well with the extra

dimensions. To demonstrate this, the data were analyzed in two

different ways. First we apply SMETS to the unmodified data set

(half of the data 7D, the other half 5D), and then we removed the 2

extra component time series in the data from normal volunteers

[35] and applied SMETS to the resulting data set entirely

consisting of 5-dimensional time series.

All time series were composed of 6000 data points, which were

zero-padded to a length of 8192. The Haar wavelet transform was

applied and the 64 largest coefficients were retained. Then the

representations were truncated to a length of 47 time points (to

remove the effect of zero-padding).

The resulting distance matrices obtained by applying a)

Euclidean distance between the averages of all the component

time series, b) SMETS applied to the unmodified data set, c)

Euclidean distance between the averages of the 5 common

component time series, and d) SMETS applied to a data set that

was entirely composed of the 5 common component time series.

Clustering of these data resulted in dedrograms depicted in

Figures 9 and 10 and heat maps in Figure 11, and 12.

The results are not too different with any of the four methods;

essentially all cluster the normal individuals together. In the

complete data set (7D/5D) SMETS shows a better separation

between normal individuals and those with sleep problems.

However it is possible that this is the result of the bias introduced

by the difference of dimensions (because all normals are 7D and all

sleep disorders 5D). To remove this possible bias in the data, we

eliminated the extra two components in the data of normal

individuals. In this case both the averages method and SMETS

show a somewhat less demarked separation. But clearly both

methods still are capable of separating normals from disorders.

Discussion

We propose a method – SMETS – for comparing multivariate

time series with different dimensionalities. It calculates the distance

between the most similar components of two multivariate time

series, and then adds penalty values to account for the difference in

their dimensionalities. The penalty value is calculated using

Shannon’s entropy of the unmatched components. Thus, SMETS

uses all of the information contained in both time series, despite

their different dimensionality, which makes this method unique.

Current methods for comparing multivariate time series like

the Euclidean distance, dynamic time warping [16], weighted

sum singular value decomposition (WSSVD) [17], principal

component analysis similarity factor (SPCA) [18] and extended

Frobenius norm (EROS) [19] are limited to applications where

the time series are of equal dimensionality. SMETS removes

this restriction and allows distances to be calculated even when

the data are of different dimensions. The examples presented

demonstrate that SMETS can identify similarities without being

too influenced by the difference in dimensions. A distinctive

example is the case of the behavior of two biological models

from the BioModels database: Model 131 contains only 3

variables while model 152 contains 64 variables, yet despite this

large difference, their SMETS distance is small, allowing them

to cluster together (Figures 5 and 6). This is entirely justified

because both models display similar temporal behavior:

variables from both models change rapidly in the initial stage

and then again towards the end of the observation, while in

between they have little variation. By contrast, the traditional

weighted average obscures their similarity.

Both the financial and biological model examples reveal an

advantage of using SMETS over the weighted averages method.

Averaging all of the component time series destroys a great deal of

information but SMETS avoids this and uses all of the data

contained in all components. The matched components all

contribute to the calculation of similarity, while the unmatched

components add a penalty to the distance. Both Figures 3 and 5

show cases where the original multivariate time series are very

different, but the average of their components is similar. This is

especially obvious in the biological models example where even

visual inspection (Figure 5) shows that the classification is more

accurate with SMETS. For example the BioModels 217 and 152

have a similar average behavior but are quite distinct when

considering all their component time series. This is less clear in the

dendrograms of the financial data, probably because those time

series are quite similar to start with (i.e. the stocks included in those

indices are strongly correlated). However both distance matrices,

when viewed as heat maps (Figures 4 and 6), show that SMETS

reveals more structure in the data than method of averages.

The example with economic data presents an interesting case

where some component time series are common between

multivariate time series. This is because the classes are hierarchical

and, for example the component West_Texas_Intermdiate belongs to

Crude Oil, as well as to Energy and to All Commodities. When applying

SMETS these components are guaranteed to be matched. The

SMETS analysis puts emphasis on the similarity of time-

dependent patterns, whereas the IMF weighted average puts

more emphasis on commodities that have large trades. The result

is that with SMETS All Commodities is closer to Non Fuel Commodities

while with the IMF weighted averaging All Commodities is closer to

Crude Oil and Energy. If the objective of the comparison is to find

what part of the economy has the largest weight then the weighted

averages is the most suitable. On the other hand, SMETS is best to

identify which multivariate time series are most similar based on

their time dependent patterns.

One of the growing trends in data mining is the use of very large

data sets (sometimes known as ‘‘big data’’). Searching for patterns

in such datasets is often hard due to their size and dimensionality.

SMETS is applicable to such datasets because it can easily be

combined with time series representations that compress the data

by orders of magnitude. In the examples above we used a wavelet

transform representation and the distance calculations were
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Figure 9. Hierarchical clustering of unmodified electrophysiological sleep data. Distances were measured using the weighted average
method versus SMETS. The dendrogram reveals the relative distances between each entity. The time series considered by each method are
represented to the left. Note that series sc4102e0, st7022j0 st7121j0 contain only 5 dimensions, while the other four contain 7 dimensions (see
Results section for details).
doi:10.1371/journal.pone.0054201.g009

Figure 10. Hierarchical clustering of modified electrophysiological sleep data. Distances were measured using the weighted average
method versus SMETS. The dendrogram reveals the relative distances between each entity. The time series considered by each method are
represented to the left. All time series have only 5 dimensions, by removing the two extra dimensions from series sc4012e0, sc4112e0, sc4102e0 and
sc4002e0 (see Results section for details).
doi:10.1371/journal.pone.0054201.g010
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carried out in that space, allowing for the full time series to be

discarded as only the representations are needed for calculations.

SMETS is, to our knowledge, the only method that allows

comparing multivariate time series of different dimensionality that

uses all of the information contained therein. Therefore we

propose that SMETS will be a useful tool for time series data

mining.
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