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Abstract

Most approaches to understanding human motor control assume that people maximize their rewards while minimizing
their motor efforts. This tradeoff between potential rewards and a sense of effort is quantified with a cost function. While
the rewards can change across tasks, our sense of effort is assumed to remain constant and characterize how the nervous
system organizes motor control. As such, when a proposed cost function compares well with data it is argued to be the
underlying cause of a motor behavior, and not simply a fit to the data. Implicit in this proposition is the assumption that this
cost function can then predict new motor behaviors. Here we examined this idea and asked whether an inferred cost
function in one setting could explain subject’s behavior in settings that differed dynamically but had identical rewards. We
found that the pattern of behavior observed across settings was similar to our predictions of optimal behavior. However, we
could not conclude that this behavior was consistent with a conserved sense of effort. These results suggest that the
standard forms for quantifying cost may not be sufficient to accurately examine whether or not human motor behavior
abides by optimality principles.
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Introduction

Many, if not most, approaches to modeling human motor

behavior are based on an assumed tradeoff between the potential

rewards and efforts of a behavior. For example, moving can result

in potential rewards, such as obtaining food, avoiding a hazard, or

any number of other gains. However, to move we must exert our

muscles. This requires effort, which may be judged by calories

consumed, muscle activity, force generated, fatigue, or any

number of similar expenses. While the rewards for any motor

behavior can change from task to task, the effort associated with

a specific motor behavior should remain constant. That is,

grasping a bowl of cherries and grasping a bowl of pits constitute

different rewards, but the effort of moving your arm should not

depend on what you have seized.

Optimal control is a prominent framework for modeling human

motor behavior[1–3]. Within this framework, the tradeoff between

effort and reward is quantified by a candidate cost function.

Behaviors that optimize this cost function can be computed using

sophisticated mathematical techniques. These optimal behaviors

are then compared with actual human behavior. Using this

approach, a wide range of behavioral patterns can be explained by

proposing subjects minimize relatively simple cost functions [4–

21]. The ultimate value of using this optimal control framework,

however, is that identifying a cost function used by the nervous

system will illuminate how motor behaviors in general are

organized.

Motor behaviors may be categorized by the properties of their

dynamics (linear or nonlinear) and their degree of uncertainty

(deterministic or stochastic). While many studies have investigated

if motor behaviors optimize various senses of effort in each of these

settings, they have been confined to a specific setting; e.g. linear

stochastic or nonlinear deterministic settings. Despite the assump-

tion that candidate costs should generalize, little is known about

the ability of a proposed sense of effort to make predictions that

generalize across these settings. Yet, if the nervous system

minimizes a consistent sense of effort, then we should be able to

predict motor behaviors in any setting if the rewards are known. If

this sense of effort does not generalize, then it is not clear whether

these costs are the causes of motor behavior, or simply descriptive

of them.

To examine how well this sense of effort generalizes, we

designed a motor task where the settings changed, but the reward

remained the same. Accordingly, a subject’s inferred cost function

was implicitly a fit to his or her sense of effort, relative to the task’s

reward structure. If a subject’s sense of effort remained constant,

then their overall cost function would generalize across the

different settings. Hence, by inferring this cost function in one

setting, we should be able to predict subject behavior in a different

setting if this sense of effort generalized. Using this logic, our

experimental task was designed such that the behaviors in each

setting would differ from each other in relatively small but distinct

ways. This helped ensure the fit cost functions would still be valid if

subjects used a conserved sense of effort, yet differ enough to allow

for non-trivial predictions.

Across the great majority of optimal control studies, a cost

function is proposed in terms of quadratic penalties on state and/

or task variables. For instance, the squared value of jerk [22],

squared torque rate [6], or the squared error from a target [23] are
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common proposals. In part this is done for mathematical

convenience, as analytical solutions exist for this class of problems.

A quadratic cost is also equivalent to the Taylor expansion of

a higher-order nonlinear cost for small deviations in state around

a nominal optimal solution [24,25]. Additionally, a quadratic

penalty was shown to closely approximate the actual measured

cost function on movement error [26]. As such, the choice of

quadratic cost functions to characterize motor effort is often

reasonable for a wide range of models and motor behaviors, and

one we made here.

We had subjects perform a motor task with invariant rewards in

3 different settings: linear, nonlinear, and nonlinear stochastic. In

all settings the goal was the same: to steer a virtual mass towards

a target. In the linear setting, subjects guided the mass by

isometrically pushing or pulling a handle. In the nonlinear setting,

the subjects had to guide the mass towards the target in the

presence of a virtual cliff. If the mass fell below the cliff, a virtual

gravity force would pull it downwards requiring the subjects to

produce large forces to get the mass back on target. In the

nonlinear stochastic setting, there was a virtual cliff and random

noise perturbing the mass’s trajectory. We found that the

optimization of a quadratic cost inferred from the linear setting

could predict the qualitative trends of subject behavior in the other

two settings. However, the results precluded us from concluding

quantitatively that this behavior was in fact due to a conserved

sense of effort. Our findings, though inconclusive, suggest that the

conventional form of cost function used is not sufficient for

analyzing the optimality, or lack their of, of human motor

behavior.

Methods

Experimental Protocol
The Institutional Review Board at the University of Colorado

Boulder approved all experimental procedures. All participants

were naı̈ve to the goals of the experiment and were paid to

participate. Eight young adults (20–26 years, 4 Males) participated

in the experiment after providing written consent.

Subjects were instructed on a task designed to simulate walking

along the edge of a cliff. By pushing/pulling against the handle of

a force transducer, subjects’ accelerated/decelerated the vertical

trajectory of a virtual mass as it moved steadily, horizontally

toward a target on the far right end of the screen. In some trials,

the middle of the screen represented the edge of a cliff, such that if

the mass moved below it, it experienced a large downward

acceleration, requiring subjects to produce large forces to recover

the mass’ trajectory. In still other trials noise randomly perturbed

the mass’ height, increasing the possibility it would slip over the

edge of the cliff. Though the dynamics and uncertainty of the task

conditions varied, the rewards for landing on target were always

the same. Thus the task was designed to examine subject’s

subjective tradeoff between the effort involved in guiding the mass

and the potential rewards. Below we describe the experiment in

more detail.

Subjects were seated in front of an LCD screen at approximate

eye level (see Fig. 1) while grasping a handle rigidly mounted to

a force transducer (JR3, 6-axis force-torque sensor). Each trial

began with the cursor, representing a virtual mass, at the left edge

of the screen. Vertical starting locations were drawn from

a bimodal Gaussian distribution (modes at y = +/22.5 cm,

s= 1 cm), such that trials could begin with the cursor either

above or below the midpoint of the screen. The horizontal starting

locations did not vary. After a brief pause, the cursor would then

move horizontally across the screen with a constant velocity.

Subjects controlled the cursor’s vertical movement by isometrically

pushing or pulling on the handle. They were instructed to guide

the cursor towards the vertical target at the center of the right edge

of the screen (y = 0, depicted with a horizontal line across the

screen (Fig. 1). The y-component of the force measured at the

handle was used to accelerate the simulated cursor dynamics:

a frictionless point mass (m= 80 kg). Since the cursor’s horizontal

velocity was constant, all trials had the same duration (approxi-

mately 1.7 seconds) and ended when the cursor reached the right

edge of the screen. Points were awarded based on the cursor’s

terminal position with respect to the target. A maximum of 100

points was awarded for hitting the target directly. Terminal

positions off target were awarded points that decayed quadrati-

cally, such that the maximum target error (at the top or bottom of

the screen) yielded 0 points. After each trial, subjects were

informed of the points earned and a counter of their cumulative

points was located in the upper right hand corner of the screen at

all times. Force, and cursor position, velocity, and acceleration

were recorded and updated at 200 Hz.

In some conditions (see below) the midpoint (y = 0) represented

a virtual cliff; if the cursor (mass) moved below it, it experienced

a virtual downwards force. To bring the cursor back towards the

target once it had fallen below the cliff required relatively large

forces on the part of the subject. Thus the virtual cliff induced an

implicit penalty and nonlinearity in the cursor’s dynamics. In all

settings the cursor’s vertical acceleration was simulated as:

ak~
1

m
Fsub
k zF

cliff
k zwk

� �

Where a, Fsub, Fcliff, w are the cursor acceleration, subject-applied

force, nonlinear cliff force and additive noise, respectively. At each

time step, k, the additive noise, wk, was drawn from a zero-mean

Gaussian distribution with standard deviation s.

Each subject visited the lab twice and took part in 6 different

blocks: NULL, CLIFF, NOISE-SMALL, NOISE-LARGE, CLIFF+-

Figure 1. Experimental set up and display. Subjects were seated
in front of a screen, holding a handle mounted to a force transducer. By
pushing/pulling on the handle subjects accelerated/decelerated the
vertical motion of a cursor that moved horizontally across the screen.
On the right edge of the screen was a color-coded target that depicted
rewards decreasing quadractically from the central target.
doi:10.1371/journal.pone.0053759.g001
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NOISE-SMALL, and CLIFF+NOISE-LARGE. In the linear NULL

block, cliff dynamics and additive noise were not present (Fcliff = 0,

s= 0). In the NOISE blocks, two different levels of noise were

added to cursor acceleration in the vertical axis (ssmall = 75 m/s2,

slarge = 120 m/s2). These trials, though not analyzed here,

familiarized the subjects with the noisy perturbations to the

cursor. In the nonlinear CLIFF block, a nonlinear environment

was simulated with a virtual cliff at the midline of the screen

(Fcliff =265 N). If the cursor fell below the cliff, subjects had to

exert significant effort to counter this additional force and return

the cursor above the midline, where the cliff dynamics were not

present. In the nonlinear stochastic CLIFF+NOISE blocks, both the

noise (ssmall or slarge) and nonlinear cliff dynamics (Fcliff =265 N)

were present.

On the first visit 5 subjects were tested in the NULL, NOISE-

SMALL, CLIFF, and CLIFF+NOISE-SMALL blocks. On a second

day of testing, they performed the remaining NOISE-LARGE and

CLIFF+NOISE-LARGE blocks. For the remaining subjects the

order in which they experienced the NOISE blocks was reversed.

In each block subjects first performed 50 practice trials where

points were not awarded. This was followed by a testing session,

consisting of 300 trials in the same condition, for which points

were tallied for their final score. During the practice trials, half

started above the midline. In the testing sessions the order of trials

starting above or below the midline/cliff was pseudo-randomized

such that one in every 4 trials in the testing session started below

the midline/cliff. Since our analysis focused on subjects’ behavior

in trials starting above the cliff we wanted to maximize the number

of these trials. However, trials that started below the cliff were still

needed to ensure the subjects experienced the cliff dynamics. To

maintain consistent initial conditions across trials, a trial only

began when the forces exerted by the subject on the handle were

negligible (|Fsub|,0.25 N).

Behavioral Analysis
Based on preliminary data we found that after approximately

100 trials, subjects converged to a steady behavior. Therefore only

the last 200 successful trials in each block were examined.

Successful trials were those where the cursor never moved off the

screen (above or below the screen dimensions), and never fell

below the cliff by more than 10 cm. By neglecting the 50 practice

trials plus the additional first 100 test trials of each block we

mitigate any learning effects that might skew our analysis. As we

are interested in how subjects behave when there is the threat of

encountering the cliff and the nonlinear change in dynamics, we

limited our analysis of the cliff blocks to trials beginning above the

cliff.

To compare the effects of the different conditions we used 4

outcome measures meant to characterize the influence of risk and

uncertainty on subject behavior: the peak vertical cursor

displacement from the cliff, the mean cursor position (above the

cliff), and the peak positive and negative force values, during a trial.

We performed one-way repeated-measures ANOVAs with block

as a factor. Significance levels were set at a= 0.05.

Model Analysis
To predict optimal behavior we first need to identify a set of

variables and a dynamical model that describes how these

variables evolve over time. Then, by inferring an approximate

cost function in terms of these variables in the NULL block, we can

predict his or her behavior in the subsequent settings. Below we

explain this procedure in detail.

Each subject’s cost function approximated how he or she

weighted the cursor’s motion, and a trial’s ultimate reward against

the effort they employed. Effort has been quantified in many

different ways including metabolic cost [20,27], neural command

[11], mechanical work [28], force generation [29], and rate of

force generation [6,10]. Based on practical considerations, and

owing to the fact that subjects performed the task isometrically, we

assumed effort could be quantified in terms of the handle force and

its rate of change. Accordingly we chose to define a cost function

in terms of the cursor’s position, velocity, and the subject’s handle

force and its derivative, or symbolically, y, v, F, dF/dt.

Obtaining a dynamical model for these variables is straightfor-

ward. The cursor dynamics, simulated discretely during each trial,

were known accurately. The relation between the handle force and

its derivative is similarly straightforward. As such, the variables of

concern could be defined through the state space dynamics,

Xkz1~AXkzBukzLvk

Where the state was defined as X= [y, v, F], and the command u

as = dF/dt. The matrices were appropriately defined as A= [1, dt,
0; 0, 1, dt/m; 0, 0, 1], and B= [0; dt; 0], where dt = 0.05 s.

Allowing for the subject’s own variability, as well as the random

perturbations during the noisy cliff conditions, noise terms were

also modeled; L= [0; dt; 0], and v was assumed to be a Gaussian

random variable, drawn from a zero-mean distribution with

subject-specific standard deviation. The resulting discrete-time

linear dynamical system could be used to quantify the optimal

cursor and force trajectories for a given candidate cost function.

In general, a cost function for a motor control problem such as

this would be expressed as the sum of two components. The first is

an instantaneous cost that gets summed over all the time steps of

the trial; for example, how hard the subject pushes against the

handle at any moment. The second component is a terminal cost;

for example, the mass’s final distance from the target. In the

experiment, the task score was defined quadratically in terms of

the cursor’s final distance from the target; subjects received the

maximum score when they landed on target, y= 0, and a score/

penalty that decreased/increased quadratically as the error

increased (/y2). This was by design, since for reasons of

mathematical convenience, and broad applicability, the two

components of a cost function usually take the form of quadratic

penalties,

J~
1

2
XT

NWXNz
1

2

XN

k

XT
k QXkzru2

Where W is the penalty on the terminal state, Q is the

instantaneous penalty for having non-zero position, velocity and

force during the task, and r is the cost on the derivative of the

force. While subjects only received points based on the final cursor

position, this cost function allows for the possibility that subjects

implicitly assign costs to other variables either during the trial or at

its conclusion. For example, this form of cost function allows for

terms such as, y*F*Q1,3. While subjects could be using a more

complicated, higher-order cost function, this form can be viewed

as a Taylor expansion of a higher-order cost function, expanded

around the state X= 0. Similarly, subjects could weigh the effort in

pushing or pulling against the handle differently. However, we

assumed this was not the case, and that the effort of pushing with

one unit of force was equivalent to the effort of pulling with one

unit of force.

In general this cost function has 13 free parameters (the

elements of the symmetric W, Q, and the scalar r) and the model

dynamics have one free parameter (subject motor noise, v). Since

The Generalizability of Motor Costs
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the problem is linear, and the cost quadratic, for any choice of

these free parameters we could solve the associated value function

and obtain the resulting optimal distribution of trajectories and

their mean. To avoid over-fitting we only considered diagonal

matrices for the cost function. Importantly, the terminal penalty

for the cursor position, W1,1 was set to the actual value based on

the point penalties explicitly imposed in the experiment. Since the

penalty for the cursor’s position correctly corresponded with the

rewarded points for the experiment, our approximate cost function

can be viewed as a patient-specific sense of effort relative to the

task’s point system. The remaining 7 free parameters were fit to

each subject.

Minimizing the RMS error between subject data and the

model, as well as a small regularizing term, these seven free

parameters were fit to each subject. The RMS error term was

computed in terms of mean cursor position, velocity, and force as

well as their associated standard deviations in the NULL block.

The use of a small regularizing term (here, 1E-7) is common

practice in parameter estimation, penalizing non-zero parameter

values and helping to establish a unique solution. Matlab’s

constrained function minimizing routine, fmincon, was used to find

these seven parameters. The resulting cost function was an

approximate representation of how each subject weighed their

effort relative to the true numeric score for the task. Importantly,

this subject-specific fitting procedure was performed only once and

only based on data in the NULL block, a linear, deterministic

movement setting.

These subject specific cost functions were then used to predict

optimal solutions in the subsequent settings. A discrete-time

nonlinear stochastic optimal control algorithm [30] was used to

approximate the subject-specific predicted optimal distribution of

trajectories for each block. 5,000 simulated trials for each block

were computed and used for quantitative comparisons with subject

behavior. Using this approach we can compare not only the mean

trajectories of the subject and model, but also trial-by-trial

variability.

Just as with the subjects, for each model the four behavioral

metrics were calculated. We determined the effect of movement

setting on these metrics using a repeated measures ANOVA,

similar to the analysis performed on the behavioral data.

Additionally we performed three planned comparisons using

paired t-tests on both the behavioral and model metrics to quantify

differences between the following blocks: CLIFF/NULL; CLIFF+-
NOISE-SMALL/CLIFF; CLIFF+NOISE-LARGE/CLIFF. These

tests assessed the predicted influence of movement setting on

optimal behavior.

To specifically compare the subject and model results, a series of

comparisons were made. For an overall quality of subject-specific

fits, correlations (R) between subject and model were computed for

each experimental block between the position profiles, as well as

the combined correlation between the position, velocity, force, and

their corresponding variability profiles. To compare behavioral

metrics, we performed a linear regression between subject and

model data; a slope of 1 would indicate a perfect correspondence.

Finally, to determine whether individual model behavioral metrics

matched (i.e. could not be distinguished) from the subject

behavioral metrics, two sample t-tests were performed. The

criteria for statistical significance was set at a= 0.05.

Results

Overview
Subjects (n = 8) guided a cursor towards a target in linear,

nonlinear and nonlinear stochastic settings. Overall subjects had

little difficulty with the task and were able to land the cursor close

to the target on most of the trials. As the settings became

increasingly difficult (linear, NULL to nonlinear, CLIFF, to

nonlinear stochastic, CLIFF+NOISE), the number of successful

trials decreased and subject strategies, evidenced by their

movement and force trajectories, became distinct. The data from

the linear setting was used to infer each subject’s cost function,

quantifying the tradeoff between effort and reward. The cost

functions were then used to predict each subject’s behavior in the

subsequent settings, assuming they optimized that same subject-

specific costs. The observed subject behaviors, quantified through

several metrics, were compared with their model predictions to

examine if they were consistent with the optimization of a single

cost function.

Linear Setting
Subjects first completed the NULL block in the linear setting.

This was done to familiarize them with the task, and to find a cost

function that could account for their data. Subjects easily achieved

the task in the linear setting, achieving an average score per trial of

99.95+/20.06 (mean +/2 standard deviation), indicative of

approximately 1 mm of error. Subjects generally guided the cursor

through a smooth path from its initial location towards the target.

Trajectories starting above and below the mid point of the screen

were qualitatively similar and symmetric on average (see Fig. 2 for

examples); the peak forces (2.24 N+/22.5 N, and 27.15 N+/

24.77 N) above and below the midline were also indistinguishable

(paired t-test: p.0.5). This supported our assumption of symmetric

costs for pushing and pulling in this context. Across subjects, peak

distances above the midline were low (2.57 cm+/20.02 cm), as

was the mean distance (1.80 cm+/20.38 cm), illustrating that

subjects generally did not move further away from the midline

than the original starting position.

The behavior during this setting was used to infer each subject’s

cost function relative to the task’s scoring system. The model fits to

this data were generally good, with small RMS errors and high

correlations. The average correlation between subject and model

cursor position was high (0.97+/20.04). Similarly, the average

correlation between subject and model when comparing the

combined data of position and force profiles was high (0.82+/

20.09; Fig. 2). The model’s predicted behavioral measures were

qualitatively similar to the subject metrics (peak distance:

2.63 cm+/20.07 mean distance: 1.65 cm+/20.28 cm; peak

positive force: 2.46 N+/21.97 N; peak negative force:

23.82 N+/22.02 N). Overall, these results suggest our choice of

variables and inferred weights produced a good approximation to

individual subject motor costs.

Nonlinear Setting
In the nonlinear CLIFF block, the task was no longer

symmetric. In a deterministic sense, trajectories beginning above

the cliff need not differ from the previous linear setting. However,

owing to the subject’s inherent motor noise, we assumed their

behavior would change. This would serve as our first test for the

possibility that a single cost function generalized across different

settings. Subjects had little difficulty with the task and were able to

land the cursor close to the target on most of the trials. In trials

where the cursor began above the cliff, subjects were either slow in

forcing the cursor’s downward motion, or simply moved the cursor

in the opposite direction, away from the cliff, initially. As a result

the cursor remained relatively far from the cliff’s edge until the end

of the trial, at which point the subjects forced it to quickly

approach the target (see Fig. 3 for examples).

The Generalizability of Motor Costs
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This change in the cursor’s trajectories was captured by the

mean distance above the cliff in this setting (2.06 cm+/20.19 cm)

relative to the linear setting, (p = 0.02). The peak negative forces

were also slightly greater in this setting (212.10 N+/29.38 N;

p = 0.07). However, the peak distance above the cliff and peak

positive force were similar between settings (2.60 cm+/20.05 cm,

1.63 N+/21.37 N; p = 0.19 and p = 0.42, respectively). These

results indicate that on average subjects avoided the cliff for

a longer time before forcing the cursor to the target.

To examine whether subjects appeared to be optimizing

a conserved cost to produce these movements, we then used the

subject-specific costs inferred from the linear setting to predict

each subject’s behavior in this nonlinear setting. Subject behavior

was qualitatively consistent with the optimal model predictions

with high correlations for position profiles, as well as the combined

correlation between position and force profiles (0.94+/20.04,

0.77+/20.12, respectively). Model behavioral metrics also ex-

hibited similar trends to the subject data. The implicit risk of the

cliff increased the peak distance from the cliff to 3.06 cm+/

20.42 cm, with a mean distance of 2.19 cm+/20.39 cm. There

were commensurate changes in the forces, with the peak

maximum forces now 3.36 N+/21.76 N, and the negative forces

increased to 27.59+/25.4 N. Model predictions exhibited small,

yet significant differences between linear and nonlinear settings in

peak distance, mean distance, and peak negative force (p = 0.014,

0.017 and 0.032, respectively). In accordance with subject

behavior, peak positive force was similar between settings

(p = 0.08).

Nonlinear Stochastic Setting
Following the nonlinear setting, subjects performed the task in

two versions of a nonlinear stochastic setting, the CLIFF+NOISE-
SMALL block and the CLIFF+NOISE-LARGE block. The added

stochasticity made avoiding the cliff more difficult and subjects

would need to compensate for the block-specific noise properties if

they were to avoid the cliff. These two blocks would serve as our

second and third test for a conserved sense of effort.

Figure 2. Example subjects and model data in the NULL block (velocity profiles not shown). A), D) Across-subject/model average
trajectories for position and force, respectively. B), E) The subject and model with the best fit. C), F) The subject and model with the poorest fit. In all
panels solid and dashed lines indicate subject and model mean trajectories, respectively. Shaded regions represent either +/2 SEM (panels A and D)
or +/2 standard deviation across trajectories (remaining panels).
doi:10.1371/journal.pone.0053759.g002
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CLIFF+NOISE-SMALL Block
Subjects altered their strategy relative to the previous settings by

moving the cursor away from the cliff initially and only driving it

towards the target during the final moments of each trial (Fig. 4).

Endpoint error increased significantly to 5.5 mm +/25.9 mm,

compared to the CLIFF block (p = 0.04). In contrast to the

transition from NULL to CLIFF, the transition from CLIFF to

CLIFF+NOISE-SMALL led to differences in all four metrics (all p’s

,0.001). The new peak displacements increased to 7.02 cm+/

20.81 cm with new mean distances of 3.73 cm+/20.47 cm. The

peak forces similarly increased/decreased to 26.19 N+/28.73 N

and 249.87 N+/29.28 N. These differences made it clear that

subjects’ behavior was influenced by the added noise, and in

a manner consistent with a fear of the cliff.

Using the same cost functions inferred from the linear setting,

the model predictions correlated well with subject behavior

(0.88+/20.13, 0.80+/20.07). Model-predicted metrics exhibited

similar trends as the subject data, with all four metrics increasing

between CLIFF and CLIFF+NOISE-SMALL (all p’s ,0.001). Here

the across model average peak displacement increased to

8.94 cm+/23.35 cm with a mean distance of 5.33 cm+/

21.73 cm. Average model peak forces were 16.99 N+/24.85 N

and 239.12 N+/221.68 N.

CLIFF+NOISE-LARGE Block
If subjects were optimizing a cost sensitive to the risks of noise,

then increasing the noise would lead to changes in behavior. In

this block of trials, the experimentally introduced noise was nearly

doubled. This increased the difficulty of the task and average

endpoint error increased to 13.5 mm+/28.4 mm, significantly

greater than the error observed in CLIFF+NOISE-SMALL setting

(p = 0.012). There were changes in the behavioral metrics as well.

The across subject peak displacement was 10.0 cm+/21.25 cm

with a mean distance of 4.99 cm+/20.87 cm. The across subject

average peak forces were 31.87 N+/211.96 N and 259.45 N+/

211.25 N. Compared to the CLIFF block (deterministic), subjects

in CLIFF+NOISE-LARGE block avoided the cliff to a greater

degree and used greater forces (see Fig. 5, all p’s ,0.001). These

differences were also evident, albeit to a lesser degree, when

behavior was compared to the CLIFF+NOISE-SMALL block

Figure 3. Example subjects and model data in the CLIFF block (velocity profiles not shown). A), D) Across-subject/model average
trajectories for position and force, respectively. B), E) The subject and model with the best fit. C), F) The subject and model with the poorest fit. In all
panels solid and dashed lines indicate subject and model mean trajectories, respectively. Shaded regions represent either +/2 SEM (panels A and D)
or +/2 standard deviation across trajectories (remaining panels).
doi:10.1371/journal.pone.0053759.g003
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(p = 0.0001, 0.0007, 0.158, 0.0069, respectively). Thus, the

observed behavior was clearly influenced by the level of noise.

Finally, subject cost functions were used to compute model

predictions. These predictions resulted in high correlations with

subject behavior when compared against the position profiles, and

the combined position and force profiles (0.95+/20.02, 0.64+/

20.32, respectively). Just as with the subjects, the optimal models

demonstrated changes in behavior and moved away from the cliff.

The new across model peak displacement was 11.68 cm+/

23.11 cm with a mean distance of 6.69 cm+/21.63 cm. The

average model peak forces were 26.08 N+/25.29 N and

251.75 N+/222.29 N. Model-predicted metrics also exhibited

significant increases in distance from the cliff and force compared

to model-predicted metrics in the CLIFF+NOISE-SMALL block (all

p’s ,0.001 for peak distance, mean distance and peak forces).

Once again, the high correlations and similar trends between

subjects and their models were at odds with the clear differences

between their trajectories (Fig. 5).

Comparison of Subject Behavior and Model Predictions
The results thus far have demonstrated that subject behavior

and subject-specific model predictions follow the same trends.

Specifically, as the movement settings changed from linear, to

nonlinear, to nonlinear stochastic, the risk of the virtual cliff

elicited increases in peak and mean distance from the cliff, as well

as peak maximum and minimum forces. These changes were

statistically significant for both subjects (rmANOVA, all p’s

,0.0001) as well as models (rmANOVA, all p’s ,0.0001).

Additionally, across all movement conditions, there were high

average correlations between subjects’ trajectories and their model

predictions. Thus the experimental conditions evoked behavior

from the subjects and their models that was distinct and well

correlated across settings.

Despite the consistent trends, there were often clear and

qualitative departures between subject data and model predictions

(see Fig.’s 3, 4, 5). Note that while the subject and model often had

similar cursor trajectories, the velocity (not shown) and force

profiles often differed considerably. For instance, though the

Figure 4. Example subjects and model data in the CLIFF+NOISE SMALL block (velocity profiles not shown). A), D) Across-subject/model
average trajectories for position and force, respectively. B), E) The subject and model with the best fit. C), F) The subject and model with the poorest
fit. In all panels solid and dashed lines indicate subject and model mean trajectories, respectively. Shaded regions represent either +/2 SEM (panels A
and D) or +/2 standard deviation across trajectories (remaining panels).
doi:10.1371/journal.pone.0053759.g004
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correlations between subject and model trajectories were relatively

large, they consistently (though not significantly) decreased as the

movement settings became increasingly challenging. Similarly, the

RMS error between subject and model trajectories significantly

increased (p,0.001) as the movement settings became more

challenging. These findings called into question our ability to

accurately assess subject specific value functions and optimal

behavior.

To further examine whether subject behavior was consistent

with minimizing a conserved sense of effort, we directly compared

model and subject behavioral metrics in each block using two-

sample t-tests. Despite the often-high correlations, every subject

was significantly distinct from their model in at least one

behavioral metric, in each movement setting. With only one

exception, each subject’s metrics became increasingly distinct from

their model as the settings became more challenging. To illustrate,

across the 4 tests for the 8 subjects there were 19, 25, 29 and 27

failed tests (out of 32) in the NULL, CLIFF, CLIFF+NOISE-SMALL

and CLIFF+NOISE-LARGE blocks, respectively. Thus, on the

whole, there wasn’t a single subject that was consistently

indistinguishable from their model predictions across all settings.

As a further examination, each subject’s average behavioral

metrics were regressed against their model predictions to examine

the trend across settings; a slope of unity would denote a perfect

correspondence (Fig. 6). With the exception of peak positive force,

a slope of unity fell outside the 95% confidence interval of all

regressions. Taken together, our results suggest that while subjects

behavior shared many qualitative features with what is optimal

given our inferred subject-specific costs, we could not conclude

that they were in fact optimal according to a conserved cost

function.

Discussion

Here we examined whether or not motor behaviors under

different circumstances could be explained as the result of

optimizing a single cost. Subject-specific costs were fit to a linear

motor task, allowing us to interpret the behavior in terms of an

optimized criterion. To validate these cost functions, we then had

Figure 5. Example subjects and model data in the CLIFF+NOISE LARGE block. A), D) Across-subject/model average trajectories for position
and force, respectively. B), E) The subject and model with the best fit. C), F) The subject and model with the poorest fit. In all panels solid and dashed
lines indicate subject and model mean trajectories, respectively. Shaded regions represent either +/2 SEM (panels A and D) or +/2 standard
deviation across trajectories (remaining panels).
doi:10.1371/journal.pone.0053759.g005
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subjects perform the same task in nonlinear and nonlinear

stochastic settings. In these settings subject behavior changed in

small but distinct manners consistent with the added risk of the cliff

and noise. Though these changes followed similar trends as their

optimal predictions, they were distinct in many regards. As such

we could neither conclude subjects used a conserved sense of

effort, nor rule out this possibility. What we could conclude is that

the conventional, and often used, quadratic penalty was in-

adequate to critically evaluate optimality. Ultimately our results

indicate that a critical evaluation of the optimal motor control

paradigm may require mathematical and experimental techniques

more sophisticated than those commonly employed in the motor

control field.

Given that the model predictions and subject behavior were

often statistically distinct, we could not rule out the possibility that

motor behaviors are optimizing a single cost function. Assuming

that subjects actually did use a conserved sense of effort to generate

behaviors then, broadly speaking, there are two possible reasons

for this discrepancy: either the subjects are ‘‘wrong,’’ or the model

is.

On the one hand, the subjects might have been performing sub-

optimally. For example, it could be that subjects were not

practiced enough at the task to reflect their optimal policies. The

addition of nonlinearities and increased variability may also

necessitate further practice before subjects could correctly arrive at

their final policy. Additionally, we note that relative to many

motor control studies, subjects in our task were producing large

forces (regularly in excess of 60 N). Eliciting a broad range of

varying responses from subjects was a benefit for the experimental

paradigm, though it may have increased the difficulty of the task.

Given these considerations it is conceivable that significant

amounts of experience with a motor task are necessary before

subjects arrive at a behavior that correctly satisfies their inherent

costs. Indeed, this may be a reason for the difference between

novices and experts in other demanding motor tasks such as those

used in team and competitive sports [31]. However, we provided

each subject with many practice trials (150), and multiple days on

the task. Moreover, a preliminary study on the same task found

that subjects’ trajectories converged to stereotyped patterns after

approximately 100 trials. This suggests that subjects were

Figure 6. The four averaged behavioral metrics (peak vertical displacement, mean cursor position, peak positive and negative
forces) of individual subjects plotted against their model predictions. The dashed line represents a one-to-one relationship between
subject behavior and model predictions while the blue line is the least squares regression fit to the data. The slope and 95% confidence interval for
each fit are displayed in the plots. Individual subjects are depicted with various shapes and the four blocks are color-coded (NULL: light blue, CLIFF:
pink, CLIFF+NOISE-SMALL: green, and CLIFF+NOISE-LARGE: purple).
doi:10.1371/journal.pone.0053759.g006
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adequately practiced on the task. However, recent evidence has

found that motor learning may persist even while movements

remain invariant [27].

On the other hand, it could be that subjects were in fact

behaving optimally and the model is wrong. This would imply that

the fit cost functions are poor approximations to the subject’s true

motor costs. This would not be surprising given that many other

cost functions, not obviously consistent with the ones used here,

have been argued to be the causes of motor behaviors. For

instance, the subject’s true cost functions might include higher-

order terms and variables not modeled (e.g. better indicators of

effort and metabolic cost [20,27]). Even in the NULL condition,

where the cost functions were fit to the data, there were many

significant differences between the subjects and their models. This

implies that a quadratic cost function is not always adequate to

capture subject behavior even in a linear, noise-free setting.

This conclusion has important implications for other studies

that examine motor behavior in the optimal control framework,

since the cost function we’ve used here, despite accurately

modeling the true costs of the task, is the eminent form. Indeed,

the form used here can recover both minimum jerk, torque rate

and conventional motor command costs [5,6,10,11]. Importantly,

the typical quadratic cost assumes penalties on commands and

states are additive. Future cost functions may investigate not only

higher-order terms, but cross-terms as well. This is work we are

currently pursuing.

The model could also be wrong in the assumption of a single

cost function. The experiment was designed to control for many

external factors such that a single cost function should generalize

to the different settings. Based on previous studies and con-

ceptualizations of motor control, there is no obvious reason why

the cost function in the linear setting would not generalize to the

other settings if the subject’s sense of effort didn’t generalize.

However, it could be the case that subjects simply do not use

a single cost function. Instead, different behaviors could use

different cost functions, or similarly, cost functions might evolve as

subjects become more familiar with a task.

This possibility too has important implications for motor

control. If people choose their movements based on a cost

function, but this cost function changes over time, and with

behaviors, then future studies will require new innovative

techniques to probe motor behavior and examine in which way

it is optimal. Indeed, this may render an already difficult

mathematical treatment of motor behavior intractable. Finally,

perhaps most nihilistically, it could be the case that there is no cost

function involved in the choice of motor behaviors [32–34]. Here

again, researchers would have to consider new approaches to

examining motor control.

It is worth noting that, theoretically, all behaviors are potentially

optimal. That is, for any single motor behavior, there exists at least

one criterion for which it is an optimal solution: the degenerate

cost function, minimize deviations from the observed behavior.

The existence of multiple optimal criteria is a potential hazard for

all endeavors that attempt to examine the optimality of motor

control. With this in mind, questioning the optimality of motor

behaviors is less meaningful than asking what the motor costs are.

While the quadratic cost function we have analyzed here was

inadequate for critically evaluating optimality, it can be used for

the more pragmatic undertaking of model comparison. For

example, candidate cost functions that only penalize terminal

errors, or only motor effort, can be used to generate optimal

predictions. Statistical tests such as BIC, AIC and Bayes’ factor

can then be used to compare the relative evidence of these

different costs to explain the data. Successive model comparisons

could then be used to refine what are more likely (and unlikely)

costs. This approach would trade the search for the true cost

function for an arbitrarily precise description.

An important contribution of this work is how we address the

generalizability of motor costs across settings of varying dynamics.

In examining whether or not motor costs generalize, we are

questioning the validity of an approach used in many optimal

studies of motor behavior. In these studies, a cost function that fits

the data overall is argued to be the underlying cause of a motor

behavior. Implicit in this proposition is the assumption that this

cost function can predict motor behaviors in other settings as well.

If not, the cost function and optimal predictions amount to little

more than a sophisticated exercise in curve fitting. Here we have

attempted to rigorously test the assumed conserved cost functions

on a subject-specific basis. By fitting the optimal models with

training data, and then validating these models with distinct data

sets, we have avoided the problems of over-fitting, and more

importantly, used a stringent standard for claims of optimality.

Future studies investigating the existence of optimality strategies in

motor control might consider similar requirements to move from

the assumption of optimality to a rigorous examination.
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