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Abstract

The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-
specific proteolysis is one of the most important post-translational modifications. The key to understanding the
physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can
dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective
manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present
PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for
twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the
MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but
complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence
profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known
amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the
enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the
features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by
their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these
enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater
accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of
multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://
lightning.med.monash.edu.au/PROSPER/.
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Introduction

Proteases, also known as peptidases, proteinases or proteolytic

enzymes, are enzymes that hydrolyze amino acids bonds not only

in proteins, but also in peptides [1–6]. This process is used as a

biological switch to activate/deactivate protein function in

numerous biological processes. Indeed, controlled proteolysis is a

major pathway through which the estimated 1–1.5 million

peptides and proteins needed to fulfill the complexity of human

life are produced from ,26,000 human genes. Proteases represent

,2% of all gene products in humans (about 500–600 proteases),

reflecting their diverse functional roles in many biological

processes. Proteases thus have central roles in ‘‘life and death’’

processes, such as neural, endocrine and cardiovascular signaling,

digestion, degradation of misfolded or unwanted proteins,

immunity, cell division and apoptosis. Accordingly, proteases have

also been implicated in many disease processes [1–3].

The key to understanding the physiological role of a protease is

to identify the repertoire of its natural substrate(s) [7,8]. Proteases

act as processing enzymes that carry out either highly or

moderately selective cleavage of the scissile bond within the

cleavage site of their substrates. Thus, the specificity of proteases

varies, primarily depending on their active sites, which display

selectivity ranging from preferences for a number of specific amino

acids at defined positions, to more generic proteases with limited

discrimination at one position. In addition to the primary amino

acid sequence of the substrate, the substrate specificity of a

protease is also influenced by the three-dimensional conformation

of its substrates. In particular, proteases preferentially cleave

substrates within extended loop regions, while residues that are
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buried within the interior of the protein substrate are usually

inaccessible to the protease active site. In addition to the sequence

and structure determinants, substrate specificity and selectivity can

also be influenced by the presence of the so-called exosites that are

located outside the active site. Moreover, protease activity is also

regulated by co-factors, ligands or other proteins that reversibly

bind to proteases in an allosteric manner and finally affect the

activity [2,9,10]. This is particularly the case for proteases such as

the matrix metallopeptidases and thrombin. Through providing

additional binding regions not influenced by the primary

specificity subsites, exosite interactions can modulate the substrate

specificity of the protease. For certain substrates, exosite binding

and interaction is an absolute requirement in order for the

cleavage to occur. Finally, cleavage is regulated by the temporal

and physical co-location of the protease and the substrate. For

example, some proteases are sequestered within specific compart-

ments, with limited access to proteins, while others are able to

cleave multiple substrates in different physiological compartments

[8].

In recent years, high-throughput mass spectrometry techniques

or specificity profiling of peptide libraries have typically been used

to identify novel cleavage sites in protease substrates [11–20].

However, experimental identification of protease cleavage events,

in general, is a difficult, labor-intensive and time-consuming task

and requires access to specialised equipment. In addition, high-

throughput proteomics techniques suffer from some intrinsic

limitations. For example, while they tend to provide close-to-

complete fractional sequence coverage by detecting isolated

proteins or peptides, in most cases, they fail to detect low-

abundance proteins that might also be produced by proteolytic

events. As a result, the complete repertoire of protease substrates

remains to be fully characterized for most enzymes.

In contrast to experimental methods, in silico prediction of

substrate cleavage sites has emerged as a useful alternative

approach to provide valuable insights into complex enzyme-

substrate interaction relationships. Efficient computational tools

would reduce the number of experiments to be performed to

identify physiologically relevant substrates. A number of compu-

tational methods have been developed to predict substrate

cleavage sites for proteases. They can be broadly classified into

two types: machine learning-based or empirical scoring function-

based.

The first group applies machine learning algorithms to train

models from a training set of peptides with known cleavage site

information. These methods are based on selection and represen-

tation of useful features and training of predictive models from the

given samples. Various types of features and machine learning

methods have been explored [21–28]. These methods usually take

known substrate peptide sequences as the input to machine

learning models and the trained models can predict cleavage sites

with accuracies from 70% to 90%, based on different training

datasets. The second group of methods identify substrate cleavage

sites by learning the underlying rules based on the distribution of

positive and negative samples and building empirical scoring

functions to discriminate between the two classes. Tools falling in

this category include PeptideCutter [29], CasPredictor [30],

GraBCas [31], PoPS [32] and SitePrediction [33]. These methods

usually either calculate a frequency score for the positions

surrounding a potential cleavage site or use a similarity score

based on an amino acid substitution matrix in combination with

extra features, such as secondary structure and solvent accessibility

information, which might help to interpret prediction results (see

reference 8 for a comprehensive review).

Despite this recent progress in developing in silico prediction

tools for protease cleavage sites, they have certain limitations,

principally their prediction performance, which varies consider-

ably. A major underlying reason is the use of several different

training datasets of varying quality and size, but with high-quality

and high-throughput proteome-wide profiling data being depos-

ited in comprehensive databases [4,5,34,35], it is now imperative

and necessary that benchmark training and test datasets with high

quality be curated by taking full advantage of these resources. A

second issue is that only PeptideCutter [29], PoPS [32] and

SitePrediction [33] were implemented to model and predict

substrate cleavage sites for more than one protease family. For

instance, CasPredictor [30], GraBCas [31] and Cascleave [28] can

only be used to predict cleavage sites of caspases/granzyme B, but

it is not feasible to apply them to predict cleavage sites of other

proteases. The third issue is how to characterize efficient and

useful features that better describe the properties of protease

cleavage sites and contribute to performance improvement.

Recent work suggested that it was useful to include local sequence

environment surrounding potential cleavage sites and additional

features such as predicted structural information in the form of

secondary structure, solvent accessibility and native disorder

[27,28], to improve the prediction of cleavage sites of caspases,

but the overall contribution of these features needs to be examined

and validated across more protease families. In addition, there is a

need to address the highly imbalanced nature of protease

specificity data (cleavage sites are greatly outnumbered by sites

that are not cleaved) and how to filter out false positives. These

two issues have particularly important ramifications for proteome-

wide predictions, because only high-confidence predictions are of

interest.

To address the limitations of existing tools and to improve the

performance of protease substrate cleavage site prediction, here we

have developed a new bioinformatics tool- PROSPER (PROtease

substrate SPecificity servER). We addressed the problem of

predicting substrate cleavage sites for different protease families

based on the amino acid sequences of substrates, by formulating

the cleavage site prediction problem as a binary classification task

and solving it with sophisticated machine learning techniques.

High-quality large training datasets were curated by taking

advantage of the experimentally verified substrate cleavage sites

of various protease types in the MEROPS database [34,35]. The

curated datasets covered the four major catalytic types (aspartic,

cysteine, metallo and serine) and consisted of 24 different protease

types with varying substrate specificity profiles. PROSPER is an

integrated multiple feature-based tool, which we used to exten-

sively examine the influence of several different sequence encoding

schemes based on different combinations of features on the

prediction performance of the PROSPER models. These results

indicate that PROSPER provides superior prediction performance

in comparison with other tools. PROSPER was used to generate

high-stringency predictions of putative cleavage sites for caspases

and granzyme B enzymes, which might be useful in identifying

physiologically relevant substrates for these enzymes. Taken

together, PROSPER is anticipated to be a useful tool for in silico

identification of cleavage sites of proteases within physiological

substrates.

Materials and Methods

Data collection
Non-redundant Dataset Construction. We used the MER-

OPS database [34,35] as a comprehensive database for proteases

and their substrates and extracted protease-specific substrate

Predicting Protease-Specific Cleavage Sites
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sequences and their cleavage sites. We also cross-referenced the

CutDB [4] and PMAP [5] databases. All of the substrate cleavage

sites were experimentally verified. For the sake of efficient

construction of machine learning models, only proteases having

at least 40 experimentally verified substrates at the time of

inception of the study were considered. In addition, exopeptidases

(aminopeptidases, carboxypeptidases, etc) and oligopeptidases

were generally not included in this study. Moreover, because we

are interested in predicting cleavages within native proteins,

peptidases that work at pH extremes and are likely to degrade only

denatured proteins were also excluded. The issue of selection bias

in the curated datasets was addressed by performing sequence

homology reduction: the CD-HIT algorithm [36] was used with a

threshold of 70% sequence identity to cluster homologous

sequences in the current dataset. This step is necessary to

eliminate sequence redundancy and avoid overestimation of the

prediction performance of machine learning models.

After sequence homology reduction, the final dataset contains

24 proteases, 3520 substrate sequences and 5635 cleavage sites,

covering the four major catalytic types- Aspartic (A), Cysteine (C),

Metallo (M) and Serine (S). Table 1 lists the number, type and the

P4-P49 cleavage pattern of these proteases as described by

MEROPS. The complete list of substrate sequences and cleavage

sites for each protease can be found at http://lightning.med.

monash.edu.au/PROSPER/.

Positive (cleavage site) and negative (non-cleavage site) peptide

sequences of each protease were generated and used as training

data. A sliding window strategy was commonly employed to

extract local sequence features from both positive and negative

data, in which the P1 cleavage site is either symmetrically or non-

symmetrically flanked by upstream and downstream residues. As

described previously [28], peptide sequences in the positive and

negative datasets were extracted using a local sliding window

surrounding experimentally verified cleavage sites and other sites

that were not cleaved by the corresponding protease. Since

previous work indicated that predictive models based on a local

window of P4-P29 sites achieved the best overall performance [28],

in this study, the sequence-based features were also derived using

this fixed local window size in order to examine the influences of

sequence-based features on the predictive performances of the

PROSPER models. In addition, at the feature selection stage, we

extended the local window size to P8-P89 to perform extensive

feature selection to extract more relevant features (Table S6).

The number of negative samples is much larger than that of

positive ones (thousands of non-cleavage sites versus 5635 cleavage

sites), leading to a class imbalance problem and biased model

training in favor of negative samples. This issue can be addressed

by either increasing the size of the under-represented class by

random resampling of the original dataset or decreasing the size of

the over-represented class by random resampling of its samples

Table 1. Summary of the number, type and the P4-P49 cleavage pattern of protease substrates as described by the MEROPS
database.

Protease family Protease Merops ID
Number of substrate
sequences

Number of
cleavage sites

Cleavage pattern (P4-
P49) in MEROPS

Aspartic protease HIV-1 retropepsin A02.001 239 376 -/-/VE/L{L/EVA/-/-

Cysteine protease Cathepsin K C01.036 69 85 -/-/LPV/EA{GE/-/-/-

Calpain-1 C02.001 42 82 -/-/L/-{AS/-/-/-

Caspase-1 C14.001 41 50 DL/EV/-/D{SG/-/-/-

Caspase-3 C14.003 235 347 D/E/V/D{GS/-/-/-

Caspase-7 C14.004 74 89 DES/E/V/D{G/-/-/-

Caspase-6 C14.005 62 168 V/ED/-/D{-/-/-/-

Caspase-8 C14.009 41 58 DL/ES/-/D{GS/-/-/-

Metalloprotease Matrix metallopeptidase-2 M10.003 575 1185 -/P/-/-{LI/-/-/-

Matrix metallopeptidase-9 M10.004 44 211 G/PA/-/G{L/-/GA/-

Matrix metallopeptidase-3 M10.005 53 152 -/PA/A/-{L/-/-/-

Matrix metallopeptidase-7 M10.008 43 95 -/PAG/-/G{L/-/-G/-

Serine protease Chymotrypsin A (bovine) S01.001 161 293 -/-/-/YFL{-/-/-/-

Granzyme B (human) S01.010 235 276 V/-/-/D{-/-/-/-

Elastase-2 S01.131 154 249 -/-/-/VIAT{-/-/-/-

Cathepsin G S01.133 121 176 -/V/L/LHF{S/-S/A/V

Granzyme B (mouse) S01.136 148 154 V/-/-/D{-/-/-/-

Thrombin S01.217 76 94 -/-/PLAG/R{SAG/-/-/-

Plasmin S01.233 44 96 -/-/-/KR{-/-/-/-

Glutamyl peptidase I S01.269 377 703 -/-/-/E{-/-/-/-

Furin S08.071 72 82 R/-/KR/R{S/-/-/-

Signal peptidase I S26.001 269 269 -/A/-/A{A/E/-/-

Thylakoidal processing
peptidase

S26.008 42 43 PS/A/-/A{-/E/-/-

Signalase S26.010 303 303 -/AVS/-/A{A/-/-/-

‘‘{’’ indicates the substrate cleavage site after the P1 position.
doi:10.1371/journal.pone.0050300.t001
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[37,38]. We adopted the second strategy to overcome the

imbalance issue by setting the ratio of the positive to negative

samples at 1:3, as previously suggested [28,39].

Sequence-derived feature extraction. A schematic over-

view of our PROSPER approach is illustrated in Figure 1. Input

features used by PROSPER are briefly described below.

Binary encoding amino acid sequence (BEAA)

profiles. At the sequence level, sequence information is

encoded using binary encoding amino acid (BEAA) profiles, as

previously described [22,23,26,28]. Local amino acid sequences

that consist of a fixed number of amino acids on both sides of

cleavage sites were extracted and transformed into (L620)-

dimensional vectors using an orthonormal encoding scheme,

where L is the local window size defined as the number of residues

involved in the local sequence segment surrounding the potential

cleavage site, and each amino acid is represented by a 20-

dimensional binary vector with one element set to one and the rest

to zero. Local window sizes of L = 6 (i.e. P4-P29) and L = 16 (i.e.

P8-P89) were used to train and build the PROSPER models. The

latter is considered to include more informative features in feature

selection process.

Predicted structural features. In addition to local sequence

information, local structural determinants were taken into account

in the PROSPER models in the form of predicted secondary

structure, solvent accessibility and natively unstructured regions.

Secondary structure features. Although proteases are

generally thought to cleave solvent exposed, flexible, less

structured and disordered regions [40], analysis of caspase

substrates revealed a considerable proportion of the cleavage sites

located in a-helices and b-strands [7,14,27,28]. We predicted the

three-state (a-helix, b-strand and other) secondary structure

probabilities using PSIPRED [41], which were input to PROS-

PER models using a local window size of L. It has been shown that

PSIPRED-predicted secondary structure is useful for improving

the performance [42–49].

Solvent accessibility features
Appropriate surface presentation of cleavage sites in a solvent

exposed region is particularly important for efficient proteolysis

[8,27,50]. We thus predicted the two-state solvent accessibility for

each residue using ACCpro in the SCRATCH package [51],

which provides the estimated probability of a residue being solvent

exposed (E) or buried (B) within the substrate structure.

Incorporation of this feature has been shown to improve the

performance [44–46,52–54].

Native disorder features
Native disorder profiles for potential cleavage sites (or non-

cleavage sites) were extracted from the output of DISOPRED2

[55], which provides the predicted probability of a residue being

disordered (denoted by ‘‘*’’) or ordered (denoted by ‘‘.’’) within the

substrate, given a local window size of L. The extracted disorder

probability matrices were taken as inputs into PROSPER models.

Cleavage scoring of potential cleavage sites by a
machine learning approach

Substrate cleavage site prediction can be formulated as a binary

classification problem, i.e. being classified as either a cleavage or

non-cleavage site. Here, we employed a machine learning

technique, support vector machine (SVM), to solve the difficult

task of predicting substrate cleavage sites of different proteases.

SVM is an efficient classification algorithm suitable for solving

binary classification or multiple classification problems. Based on

structural risk minimization from statistical learning theory [56],

SVM is able to distinguish positive from negative samples by

Figure 1. Schematic overview of the PROSPER approach. There are several stages: (A) training datasets and independent test dataset of
protease substrates were extracted from multiple resources. These included major comprehensive databases such as MEROPS, CutDB and PMAP, as
well as recent proteome-wide profiling studies or the literature. (B) Useful sequence and structure features flanking the cleavage sites were derived
and investigated, including local amino acid sequences, predicted secondary structure, solvent accessibility and native disorder. (C) The derived
sequence and structural features were entered, following which cleavage probability models were built based on support vector regression (SVR)
from the training dataset. In particular, the bi-profile Bayesian feature extraction was applied to extract and integrate the derived features into SVR
models, which have been shown to be able to further improve prediction performance. (D) After building the PROSPER models, substrate sequence
scanning predictions were made, and (E) PROSPER was further validated using a set of recently identified novel substrates reported in the literature or
experimentally verified using positional proteomic approaches.
doi:10.1371/journal.pone.0050300.g001
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transforming the data into a higher dimensional space and

constructing an optimal separating hyperplane by the use of kernel

functions, where two linearly non-separable classes of samples can

become separable [57]. We used the support vector regression

(SVR) mode in SVM to make a quantitative prediction of the

cleavage probability scores for potential cleavage sites of proteases

from substrate sequences. The real-value probability score

generated by SVR represents the confidence of the prediction,

which is very useful and informative. Due to its excellent

regression ability, SVR has attracted recent interest with a

growing number of applications in the fields of bioinformatics

and computational biology [58–60].

The SVM_light software [56] was used as the SVR implemen-

tation. SVR classifiers were trained using the Radial Basis

Function (RBF) Kernel. In the RBF kernel, two important

parameters C and c need to be adjusted: C, also called cost factor,

is a regularization parameter that controls the trade-off between

maximizing the margin and minimizing the prediction error, while

c is a kernel-type parameter that dominates the generalization

ability of SVR by regulating the amplitude of the kernel function.

For each type of protease, we optimized the training parameters of

SVR based on 5-cross-validation tests, using a ratio of positive to

negative samples of 1:3 to build the models. In the final cleavage

site prediction, a peptide sequence with a predicted cleavage score

larger than a given threshold was accepted as cleavage, while those

with predicted cleavage scores lower than the given threshold were

predicted to be non-cleavage sites. However, the settings of this

threshold varied according to the protease type to obtain the best

predictive performance, which is subject to the balance of

Specificity and Sensitivity values. We could predict cleavage sites

with reasonable confidence at appropriate Sensitivity and Spec-

ificity levels by controlling the prediction stringency at proper

thresholds.

Sequence encoding scheme
The derived features were encoded into SVR models using bi-

profile Bayesian feature extraction [28,39]. In our previous work,

we showed that bi-profile Bayesian feature extraction was useful

for improving performance [28]. In this study, a sliding window

technique was used to extract and encode features surrounding the

cleavage sites using the bi-profile Bayesian feature extraction

approach. In addition to the binary encoding amino acid (BEAA)

profile, features extracted could be divided into four different

types: (i) bi-profile Bayesian amino acid profile (BPBAA); (ii) bi-

profile Bayesian secondary structure profile (BPBSS); (iii) bi-profile

Bayesian solvent accessibility profile (BPBSA); and (iv) bi-profile

Bayesian disordered profile (BPBDISO). Given a potential

cleavage site, its feature vector for entry into the model will be

encoded by concatenating the constitutive features of the

corresponding scheme. For example, in the case of the encoding

scheme ‘‘BEAA+BPBAA+BPBSS+BPBSA+BPBDISO’’ (also

called ‘‘ALL’’ because it combines all features) and a local window

size of L, the residues will be represented in a feature vector with

(L620+L62+L62+L62+L62 = 28L) elements.

Feature selection
We further selected the optimal features from a total feature set

of 448 using an extended local window of P8-P89, which was based

on the sequence encoding scheme ‘‘ALL’’ and which includes all

the relevant sequence and structure features. The importance of

various features in the set is measured using the mean decrease

Gini index (MDGI) by the random forest (RF) algorithm

(implemented by the R random forest package) [61]. The MDGI

score represents the importance and contribution of an individual

element in the feature vector for correctly classifying a residue into

a cleavage site or non-cleavage site. To identify more informative

features compared to other features in the feature set, a Z-score is

calculated for the Gini score of each vector element as:

Zx~
Gx{�GG

s

where Gx is the Gini score for the x-th feature, �GG is the average

Gini score for all the features in the set and s is the standard

deviation. Features with a Z-score greater than a given threshold

were considered to be more informative and would be used for

training the cleavage site prediction model. Vector elements with a

Gini Z-score greater than 1.0 were selected as the optimal features.

The MDGI-based feature selection was successfully used by Ebina

et al. to significantly improve the prediction of protein domain

linkers [62]. It is especially attractive for optimal feature selection

from a large set with hundreds or thousands of different features.

Performance evaluation
To objectively evaluate the predictive performance, we

performed 5-fold cross-validation, self-consistency and indepen-

dent tests. In the case of 5-fold cross-validation, substrate

sequences in the dataset were randomly divided into 5 equally

sized subsets. In each validation step, one subset was reserved as

test data, while the remainder were used as training data. This

procedure was repeated five times using each subset independently

as the evaluation test set. In the case of self-consistency test,

substrate sequences in the training set were predicted with a self-

trained model. The accuracy of the self-consistency test reveals the

fitting ability of the data, reflecting the rigor and consistency of the

prediction system. In independent test, the set of cleavage sites

used to derive the training model were independent from that used

to test the model, with no overlap between the two datasets.

The predictive performance was evaluated using the following

measures:

1) Sensitivity (percentage of correctly predicted substrate

cleavage sites):

Sensitivity~
TP

TPzFN

2) Specificity (percentage of correctly predicted non-cleavage

sites):

Specificity~
TN

TNzFP

3) Accuracy (percentage of correct predictions for both

cleavage and non-cleavage sites):

Accuracy~
TPzTN

TPzTNzFPzFN

4) Matthew’s Correlation Coefficient (MCC), a measure of the

quality of binary classifications [63]. MCC = 1 signifies a

perfect classification, while MCC = 0 indicates a completely

random classification. It is defined as:

Predicting Protease-Specific Cleavage Sites
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MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p

The F-score, which is a harmonic mean of precision and recall,

is given as:

F{score~
2|TP

2|TPzFPzTN

In each of these measures, TP, TN, FP and FN denote the number

of true positives, true negatives, false positives and false negatives,

respectively. The Area under the receiver-operating curve (AUC)

was also calculated to compare the performance between different

models. We also performed an independent test to compare the

performance of PROSPER with other previously developed tools.

Results and Discussion

Amino acid preferences in substrate cleavage sites
Based on the compiled substrate datasets, we analyzed the

statistical distributions in substrate cleavage sites for the twenty-

four proteases (Table 1). According to the nomenclature of

Schechter and Berger [64], amino acids in the substrate sequence

are numbered outward from the cleavage site as …-P4-P3-P2-P1-

P19-P29-P39-P49-…, with the scissile bond located between the P1

and P19 sites. Taking caspases and granzyme B as an example, the

amino acid occurrences in the P6-P69 positions for the cleavage

sites of caspase-1, 3, 7, 6, 8, granzyme B (human) and granzyme B

(mouse), were calculated to generate heat map and sequence logo

diagrams, which were helpful to identify conserved and frequently

occurring amino acids at positions flanking the cleavage site

(Figure 2 and 3, respectively). More results regarding other

proteases may be found in Figure S1 and the online webpage of

PROSPER (http://lightning.med.monash.edu.au/PROSPER/

downloads.html).

In general, stronger amino acid preferences were noted on the

non-prime side (especially P1 to P4 positions) of the cleavage sites;

in contrast, less selectivity was observed on the prime side, except

for the P19 position. As expected, one of the hallmarks of the

substrate specificities of caspases is that they preferentially cleave

after Asp residues at both P1 and P4 positions (Figure 2), forming

the well-known canonical DXXD motif [65,66]. This applies to all

of the caspases, including caspase-1, 3, 7, 6 and 8. According to

our analysis, depending on the caspase, 99.7–100% of caspase

substrates have a P1 Asp residue, and 14–53% of caspase

substrates have a P4 Asp residue. The serine protease, granzyme

B (both human and mouse), shared a similar primary specificity in

that it cleaved after a P1 Asp residue. Around 24 and 17% of the

granzyme B substrates have P1 and P4 Asp residues, respectively.

Aside from the P1 site specificity, we noted a modest preference for

Glu residues at P3 (from 17 to 52%) and Gly residues at the P19

position (from 9 to 47%) for both caspases and granzyme B.

Furthermore, upon closer examination, we were able to identify

subtle, but important differences in the substrate specificities

between different proteases. For example, in addition to the

apparent requirement for Asp residues at the P1 and P4 positions,

caspase-1 prefers large, hydrophobic amino acids in the P4

position, while for caspase-3, the P4 Asp residue appears to be

preferred in most cases for efficient hydrolysis. Substitution of this

residue with other amino acids resulted in a .100-fold decrease in

the kcat/km value, indicating the critical importance of having an

Asp residue at this position [67]. Comparison of different caspase

and granzyme B substrates also revealed distinct patterns of subsite

specificities for different enzymes in the P6 to P69 sites. For

caspase-1 substrates, a Ser residue was preferred at P19, while

caspase-3, 7 and 8 substrates tended to have a Gly residue at P19,

with only modest preferences for serine at this position. The

differences in substrate specificities between different proteases

highlight the necessity to train machine learning models based on

their own substrate datasets in order to identify putative family-

specific substrates.

Analysis of structural determinants that characterize the
protease substrate specificity

A comprehensive analysis was performed to reveal important

structural determinants that characterize the protease substrate

specificity, based on the curated substrate datasets. We analyzed

the assignments of secondary structure (H, helix; E, strand; C,

coil), solvent accessibility (E, exposed; B, buried) and native

disorder (‘‘*’’, disordered; ‘‘.’’, ordered) at each position from P6 to

P69. The results for caspase-1, 3, 7 and 6 are shown in Figure 4 A–

D, while those for caspase-8, granzyme B (human) and granzyme

B (mouse) are shown in Figure S2 E–G.

Previous studies have indicated that certain proteases are more

likely to cleave substrates within flexible, solvent-exposed, disor-

dered and secondary structure-depleted regions [27,68]. Indeed,

we note that some proteases frequently cleave substrates within

coils or loops, which is consistent with recent proteomics-based

profiling studies [7,14]. Depending on the cleavage site and the

protease type, the majority of cleavage sites (72–84%) are observed

to be located within predicted coiled regions. However, it is

notable that 14–24% of cleavage events take place within a-

helices. In contrast a minority of cleavage sites (2–6%) are present

in b-strands (Figure 4 and Figure S2). The cleavage of substrates in

structural regions such as a-helices and b-strands has been

attributed to presence of structural dynamics or conformational

switching in these regions upon substrate binding and catalytic

hydrolysis by the protease [14,28,69]. According to our present

understanding of protease-substrate interactions, it would require

considerable unfolding for a helical segment to bind into the active

sites of a protease in a manner appropriate for catalysis. In

addition, the appropriate presentation to the protease of a cleavage

site on a solvent accessible surface is a key factor that determines

whether a substrate can be accessed and cleaved by the enzyme. A

large percentage of cleavage sites (80–92%) are predicted to be

solvent accessible (Figure 4), while only a small fraction of cleavage

sites (8–20%) are predicted to occur in solvent inaccessible regions.

Natively disordered or unstructured regions have no stable

structures without their interaction partners. They are especially

abundant in eukaryotic proteomes, where ,30–60% of eukaryotic

proteins are predicted to contain long stretches of natively

disordered residues [70,71]. It is increasingly clear that they are

often functionally important and commonly associated with

molecular assembly, protein modification, molecular recognition

and protein degradation events [72–79]. It was shown that

cleavage of caspase and granzyme B substrates tends to occur on

flexible, disordered regions of substrates [68] and native disorder

features have been used to improve the prediction performance of

caspase cleavage sites and phosphorylation sites [80]. In this study,

we found that the majority of cleavage sites (66–78%) are localized

in natively disordered regions. We also performed enrichment

analysis of natively disordered residues and solvent exposed

residues across different protease substrate types, as shown in

Figure S3. Our finding is in agreement with other studies [27],

where the amount of predicted disorder in caspase and granzyme
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B substrates was found to be greater than that in the non-cleaved

sequences. All of these results suggest that substantial dynamics in

the structure of cleavage sites of protease substrates must occur.

Cleavage of substrates within natively disordered regions and

outside of structured domains might present potential advantages

since less conformational change in the substrate would be

required, thus facilitating more efficient hydrolysis of such

substrates by proteases.

In summary, there is a clear preference for known cleavage sites

(in the P6 to P69 positions) to be located within looped, solvent

accessible and natively disordered regions, which are specified

respectively by three different structural features: secondary

structure, solvent accessibility and native disorder. The results

obtained here highlight the value of using these predicted

structural features to further enhance the performance of cleavage

site prediction.

Performance evaluation of PROSPER based on different
sequence encoding schemes

To evaluate the performance of PROSPER for cleavage site

prediction of multiple proteases, we carried out a 5-fold cross-

validation test on each type of protease under investigation in this

study. We trained PROSPER models based on combinations of

sequence and structure profiles with gradually increasing com-

plexity of features, and examined the influences of different feature

types on the predictive performance. Table 2 summarizes the

performance of PROSPER for cleavage site prediction based on

the encoding scheme ‘‘BEAA+BPBAA+BPBSS+BPBSA+BPB-

DISO’’ using a local window size of P4-P29. We also assessed

the predictive performances of different sequence encoding

schemes on cleavage site prediction for different proteases by

plotting the ROC (receiver operating characteristic) curves

(Figure 5 and Figure S4).

Overall, the performances of PROSPER generally increased

with the addition of input features to the SVR models. PROSPER

models that combined sequence profiles such as ‘‘BEAA’’, along

with other types of structural features usually achieved better

results than using the sequence profile alone. In particular,

PROSPER achieved the best performance when using the

encoding scheme ‘‘BEAA+BPBAA+BPBSS+BPBSA+BPBDISO’’

(for brevity, we call this ‘‘ALL’’ hereafter) [see Table 2 and Tables

S1,S2,S3,S4 for performance comparison between different

sequence encoding schemes]. Based on these results, it is apparent

that a combination of different types of features usually

outperformed the individual components alone. This trend can

also be seen from the ROC curves (Figure 5 and Figure S4). With

the addition of different features, most of the ROC curves based

on encoding schemes with more features have higher correspond-

Figure 3. Sequence logo representations of the occurrences of amino acid residues in the cleavage site P8-P89 positions of caspase-
1, 3, 7, 6, 8, granzyme B (human) and granzyme B (mouse). Panels A–G correspond to caspase-1, 3, 7, 6, 8, granzyme B (human) and granzyme
B (mouse), respectively. Here, extended window sizes for the P8-P89 sites were examined in order to cover more specificity determining positions. The
sequence logo diagrams were generated using the WebLogo program [96]. To better reflect the occurrence rate of each amino acid type, the
sequence logo ordinates have been scaled in bits.
doi:10.1371/journal.pone.0050300.g003

Figure 2. Amino acid occurrences in P6-P69 positions for the cleavage sites of caspase-1, 3, 7, 6, 8, granzyme B (human) and
granzyme B (mouse), displayed in the form of a two-dimensional heat map. Panels A to G correspond to caspase-1, 3, 7, 6, 8, granzyme B
(human) and granzyme B (mouse), respectively. Heat map diagrams were rendered using the pro Fit program from QuantumSoft [15].
doi:10.1371/journal.pone.0050300.g002
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ing AUC values, in contrast to the previous encoding schemes with

fewer features (see the ROC curves in Figure 5 and Figure S4).

Nevertheless, in the case of matrix metallopeptidase-2 and

chymotrypsin A (bovine), performance based on the encoding

scheme ‘‘ALL’’ (Table 2) is worse than that based on ‘‘BEAA’’

(Table S1), which possibly means that redundant information

exists in the feature sets of these protease substrates.

Improving the predictive performance by incorporating
sequence-derived structural feature

We further assessed the relative contributions of secondary

structure, solvent accessibility and native disorder features to

cleavage site prediction of different proteases by gradually adding

each of these feature types into PROSPER models in a step-wise

manner and plotting the resulting F-score and MCC measures

based on different encoding schemes in Figure 6. The relative

contribution of each feature type can be quantified and assessed

based on the performance difference between related encoding

schemes. As shown in Figure 6, Table S1, S2, S3 and S4, for the

majority of the proteases, PROSPER indeed achieved an

improved predictive performance after the incorporation of more

features, such as measures of secondary structure, solvent

accessibility and native disorder. There are six proteases for

which PROSPER has achieved satisfactory performance, as

judged by having both F-score and MCC values greater than

80%: caspase-3, caspase-6, granzyme B (human), granzyme B

(mouse), furin and signal peptidase I. Cleavage sites for the MMP

family (MMP-9, MMP-3, and MMP-7) appear to be more difficult

to predict, because the F-score and MCC scores for these proteases

are smaller than 50%. One important aspect of peptidase

specificity that might explain the difficulty in predicting cleavage

sites is the importance of exosites. Many proteases have additional

binding sites, often on domains other than the protease domain,

which effectively restrict the specificity to a very limited number of

substrates. The matrix metallopeptidases have hemopexin-like

domains that interact with collagens, and the action of thrombin is

Figure 4. Structural determinants of protease substrate specificity based on occurrences at the P6-P69 positions for cleavage sites.
In each panel, from the left to right, are the assignments at each position for secondary structure (three states: ‘‘H’’, helix; ‘‘E’’, strand; ‘‘C’’, coil), solvent
accessibility (two states: ‘‘e’’, exposed; ‘‘b’’, buried) and native disorder (two states: ‘‘*’’, disordered; ‘‘.’’, ordered), respectively. (A) caspase-1; (B)
caspase-3; (C) caspase-7 and (D) caspase-6.
doi:10.1371/journal.pone.0050300.g004
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also limited by an exosite, which may explain why so few cleavage

sites were correctly predicted for these proteases. We advise that

future efforts be made to better characterize the substrate

specificities of these proteases and extract more useful features in

order to improve performance in predicting their cleavage sites.

For these substrates, exosite binding and interaction (also termed

as allosteric regulation) is an absolute requirement in order for the

cleavage to occur.

In summary, we conclude that i) incorporation of all relevant

features does not necessarily lead to the overall best performance;

and ii) it is necessary to be selective about which features to include

in the analysis and carefully examine the contribution of each

feature type to performance.

Feature selection by random forest algorithm
Since it is likely that sequence-derived features contain

redundant information, we carried out feature selection experi-

ments to reduce the initial feature sets by filtering out those

features that are regarded as not making a contribution to the

predictive performance [81–83], as described previously in the

Section, Feature selection. The random forest algorithm was used to

estimate the importance of the twenty different feature types given

an entered local window of P8-P89. Figure 7 shows the relative

importance of various feature descriptors for caspase-3 and their

contribution to the overall prediction performance. As can be seen

from Figure 7, the most important features are BPBAA, P1,

BPBDISO, BPBSS, BPBSA, P19, P4, P2, and P3. The feature

Figure 5. Assessing the performance of PROSPER models for cleavage site prediction of eight proteases, based on gradually
increased features to evaluate the relative contribution of each type of feature. For clarity, the ROC curves with high prediction
specificities were displayed. Panels A–H correspond to caspase-3, 7, 6, 8, granzyme B (human), granzyme B (mouse), MMP-2 and MMP-3, respectively.
Yellow: ROC curves of the trained PROSPER models based on the sequence encoding scheme ‘‘BEAA’’ which includes the binary encoding amino acid
sequence profile surrounding the cleavage site; green: ROC curves based on the sequence encoding scheme ‘‘BEAA+BPBSS’’, which includes the
binary encoding amino acid sequence profile plus the bi-profile Bayesian secondary structure profile; blue: ROC curves based on the sequence
encoding scheme ‘‘BEAA+BPBSA’’, which includes the binary encoding amino acid sequence profile plus the bi-profile Bayesian solvent accessibility
profile; cyan: ROC curves based on the sequence encoding scheme ‘‘BEAA+BPBDISO’’, which includes the binary encoding amino acid sequence
profile and bi-profile Bayesian native disorder profile; orange: ROC curves based on the sequence encoding scheme ‘‘BEAA+BPBAA+BPBSS+BPB-
SA+BPBDISO’’, which includes all of the relevant features; red: ROC curves based on the most informative features as selected by a random forest
algorithm.
doi:10.1371/journal.pone.0050300.g005

Table 2. Performance of PROSPER for predicting cleavage sites of 24 protease families under consideration in this study, measured
by Accuracy, Sensitivity, Specificity, F-score and MCC, respectively.

Protease family Protease Merops ID Accuracy (%) Sensitivity (%) Specificity (%)
F-score
(%) MCC

Aspartic protease HIV-1 retropepsin A02.001 85.5 75.0 89.0 72.1 0.678

Cysteine protease Cathepsin K C01.036 79.6 47.1 90.6 53.7 0.527

Calpain-1 C02.001 80.2 38.3 94.2 49.2 0.496

Caspase-1 C14.001 87.5 52.0 99.3 67.5 0.658

Caspase-3 C14.003 94.6 82.8 98.5 88.5 0.858

Caspase-7 C14.004 89.6 60.7 99.3 74.5 0.720

Caspase-6 C14.005 93.7 76.6 99.4 85.9 0.832

Caspase-8 C14.009 89.7 65.5 97.7 76.0 0.729

Metalloprotease Matrix metallopeptidase-2 M10.003 87.0 77.4 90.2 74.8 0.704

Matrix metallopeptidase-9 M10.004 81.2 28.9 98.6 43.4 0.463

Matrix metallopeptidase-3 M10.005 79.9 33.6 95.4 45.5 0.470

Matrix metallopeptidase-7 M10.008 81.6 31.6 98.2 46.2 0.483

Serine protease Chymotrypsin A (bovine) S01.001 88.5 79.5 91.5 74.5 0.733

Granzyme B (human) S01.010 97.1 96.4 97.3 94.3 0.926

Elastase-2 S01.131 82.9 37.8 98.0 52.5 0.530

Cathepsin G S01.133 81.0 71.6 84.1 65.3 0.613

Granzyme B (mouse) S01.136 93.2 80.5 97.4 85.5 0.824

Thrombin S01.217 90.2 64.9 98.6 76.7 0.738

Plasmin S01.233 87.8 64.6 95.5 72.5 0.691

Glutamyl peptidase I S01.269 91.4 84.5 93.7 83.1 0.793

Furin S08.071 93.0 72.0 100 83.7 0.811

Signal peptidase I S26.001 94.6 82.5 98.6 88.4 0.858

Thylakoidal processing
peptidase

S26.008 89.5 69.8 96.1 76.9 0.738

Signalase S26.010 85.8 50.5 97.6 64.0 0.622

doi:10.1371/journal.pone.0050300.t002
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selection results for caspase-3 are consistent with the heat map and

sequence logo representations of its substrate specificity (shown in

Figure 2B and 3B, respectively), because most of the important

sequence and structural determinants of its substrate specificity are

retained after feature selection. For example, P1, P19, P4 and P2

are known to play important roles in the substrate selectivity of

caspases and they are retained in the final feature sets.

For each protease, features with a Z-score larger than 1.0 were

selected as the optimal features to incorporate into the PROSPER

models based on sequence encoding scheme ‘‘ALL’’ with feature

selection. We then calculated the AUC values from the ROC

curves and listed the results in Table S5. After feature selection,

approximately 92–99% of the features in the initial feature sets

were reduced. However, with the reduced feature sets, we

obtained slightly inferior prediction performances and, in some

cases, even superior performances with increased AUC values in

comparison with the encoding scheme ‘‘ALL’’ without feature

selection. This is particularly the case for calpain-1, caspase-3,

caspase-7, chymotrypsin A, cathepsin G, granzyme B (mouse),

plasmin, thylakoidal processing peptidase and signalase (Table S5).

Since different proteases have different substrate specificities, the

selected optimal features sets vary from one to another. The full

lists of the selected optimal features and all features vectors of the

encoding scheme ‘‘ALL’’ are provided in Table S6 and S7,

respectively.

Figure 6. Relative contributions of secondary structure, solvent accessibility and native disorder features to the predictive
performance of PROSPER evaluated using F-score (A) and MCC (B), respectively. The predictive performances of four different encoding
schemes were compared, including ‘‘BEAA’’, ‘‘BEAA+BPBSA’’, ‘‘BEAA+BPBDISO’’ and ‘‘ALL’’. See the main text for details of different sequence
encoding schemes.
doi:10.1371/journal.pone.0050300.g006
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Comparison with other prediction tools
In recent years, several general tools have been developed to

predict cleavage sites for various proteases, such as PoPS [32] and

SitePrediction [33]. To objectively compare the prediction results,

we first tested these three tools on the same training and testing

datasets, based in turn on the compiled substrate datasets. Since

PoPS and SitePrediction output all of the ranked predicted

cleavage sites based on their own selected thresholds, we evaluated

their performance by calculating the percentages of correctly

predicted cleavage sites in the testing sets. We submitted the

substrate datasets to the web servers of PoPS and SitePrediction,

analyzed the substrate sequence scanning results and calculated

the percentage of correctly predicted cleavage sites by the tools

(Table 3).

PoPS is a comprehensive bioinformatics tool for modelling and

predicting substrate cleavage sites for various proteases [32]

(http://pops.csse.monash.edu.au/). It allows users to build com-

putational models of protease substrate specificity that can be used

to predict and rank potential cleavage sites for the protease of

interest. SitePrediction is another general tool for predicting

substrate cleavage sites of proteases [33] (http://www.dmbr.ugent.

be/prx/bioit2-public/SitePrediction/). It combines the amino

acid frequency score with an amino acid substitution matrix score

that indicates the similarity of the potential cleavage sites to the

known cleavage sites. The final score is calculated as the product of

these two scores. In contrast to PROSPER, which was developed

based on machine learning techniques, both PoPS and SitePredic-

tion are regarded as empirical scoring-based prediction tools,

which makes it particularly interesting to compare the perfor-

mance of different types of methods.

Since all of the compared tools have pre-defined thresholds to

select predicted cleavage sites, we adjusted the different Specificity

levels as close as possible to 99.9, 99.8, 99.5, 99.0 and 98.0% and

compared the corresponding sensitivities. This comparison strat-

egy has been suggested in previous studies [80]. In order to

comprehensively evaluate the performance of PROSPER with

other prediction tools, we trained PROSPER models without and

with feature selection based on 5-fold cross-validation and self-

consistency tests. The corresponding PROSPER models are

termed PROSPER5CV, PROSPERselect and PROSPERSelf, re-

spectively, in Table 3 below. It can be seen from Table 3 that

PROSPERSelf achieved higher sensitivity in most cases when

compared with PoPS and SitePrediction. Another finding is that

PROSPERselect based on feature selection performed much better

than PROSPER5CV without feature selection, indicating the

importance of efficient feature selection to improved prediction

performance. In most cases, SitePrediction achieved greater

sensitivity at the given specificity level compared to PoPS,

especially for caspases. This can be explained by the fact that

SitePrediction combines the use of a frequency score that indicates

whether the amino acids of potential cleavage sites are likely to

occur at the position and an amino acid substitution matrix that

indicates the similarity of the potential cleavage sites [33], while

PoPS relies on a position-specific scoring matrix (PSSM) based on

amino acid frequency to build predictive models [32]. Altogether,

the prediction performance of PROSPER is at least comparable to

the other two tools.

The prediction consistency among the different tools is shown in

Figure 8. Venn diagrams show the distribution of correctly

predicted cleavage sites: 768 known cleavage sites were correctly

predicted by all three tools; 277 known cleavage sites were

correctly predicted by both PROSPER and PoPS; 149 known

cleavage sites were correctly predicted by both PROSPER and

SitePrediction, while 90 were correctly identified by PoPS and

SitePrediction. The family-specific distributions showed that the

numbers of correctly predicted known cleavage sites by PROS-

PER, in most cases, were higher than those predicted by PoPS and

SitePrediction. Nevertheless, there are also significant number of

known cleavage sites that were correctly predicted by PoPS and

SitePrediction, yet were not identified by PROSPER. This

suggests that a meta or consensus approach could potentially be

developed to make a better prediction by integrating the

prediction results of all three tools.

Moreover, we further tested the predictive powers of these three

tools to recognize novel protease substrates by performing an

independent test based on cleavage sites of protease substrates that

were recently experimentally verified, as well as using the recent

update of MEROPS. Due to limitations in data availability, we

could only perform a comparison for four proteases: caspase-3,

MMP-2, granzyme B (human) and granzyme B (mouse). The

performance comparison shown in Table 4 indicates that

PROSPER yielded higher accuracies than PoPS and SitePredic-

tion, except in the case of caspase-3, for which PoPS achieved a

9% higher accuracy.

Proteome-wide substrate cleavage site prediction
We applied PROSPER with a high stringency at 100%

Specificity level to scan the human and mouse proteomes

extracted from the IPI database [84], which have 87,040 and

Figure 7. The relative importance of various feature descrip-
tors. Given a local window of P8-P89, there are twenty different types of
feature descriptors in total, including the BEAA profile for each subsite
from P8-P89, and the BPBAA, BPBSS, BPBSA, and BPBDISO profiles. Here,
caspase-3 was used as an example to calculate the MeanDecreaseAc-
curacy value for each feature type based on the feature set.
doi:10.1371/journal.pone.0050300.g007
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Table 3. Performance comparison of PROSPER with PoPS and SitePrediction for predicting cleavage sites for selected enzymes.

Caspase-1 MMP-2

PoPS PoPS

Sp (%) 99.9 99.8 99.5 99.0 -a Sp (%) 99.9 99.8 99.5 99.0 -

Sn (%) 14.0 34.0 48.0 72.0 - Sn (%) 4.2 5.8 15.4 27.2 -

SitePrediction SitePrediction

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 60.0 68.0 72.0 86.0 92.0 Sn (%) 6.7 12.4 22.2 36.4 50.8

PROSPER5CV PROSPER5CV

Sp (%) 99.9 99.8 99.5 98.9 98.0 Sp (%) 99.8 99.7 99.4 99.0 98.1

Sn (%) 12.0 14.0 36.0 56.0 80.0 Sn (%) 8.8 15.3 23.9 31.0 43.8

PROSPERSelect PROSPERSelect

Sp (%) 99.9 99.8 99.4 99.0 98.0 Sp (%) 99.9 99.7 99.5 99.0 98.1

Sn (%) 22.0 40.0 66.0 80.0 88.0 Sn (%) 10.3 17.9 23.0 32.1 39.7

PROSPERSelf PROSPERSelf

Sp (%) 99.9 99.8 99.5 99.0 98.1 Sp (%) 99.8 99.7 99.4 99.1 98.0

Sn (%) 10.0 36.0 88.0 94.0 98.0 Sn (%) 8.1 18.0 36.0 48.2 67.5

Caspase-3 MMP-9

PoPS PoPS

Sp (%) 99.9 99.8 99.5 99.0 - Sp (%) 99.9 99.8 99.5 99.2 -

Sn (%) 42.6 50.4 72.3 86.6 - Sn (%) 2.8 9.5 12.8 22.3 -

SitePrediction SitePrediction

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 52.5 62.7 81.6 91.2 97.4 Sn (%) 2.4 7.6 14.7 21.3 41.7

PROSPER5CV PROSPER5CV

Sp (%) 99.9 99.7 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 28.6 56.3 68.2 81.9 93.6 Sn (%) 2.4 6.2 12.3 20.4 29.9

PROSPERSelect PROSPERSelect

Sp (%) 99.8 99.7 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 51.3 66.2 76.7 86.0 93.6 Sn (%) 3.3 6.2 10.4 17.1 28.4

PROSPERSelf PROSPERSelf

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 98.9 98.0

Sn (%) 30.0 76.1 92.4 97.4 99.4 Sn (%) 3.8 9.5 28.4 48.8 61.6

Caspase-7 GrB (human)

PoPS PoPS

Sp (%) 99.9 99.8 99.5 99.0 - Sp (%) 99.9 99.8 99.5 99.0 -

Sn (%) 56.2 65.2 79.8 93.3 - Sn (%) 17.4 23.6 34.1 43.8 -

SitePrediction SitePrediction

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) - - - - -

Sn (%) 57.3 66.3 76.4 89.9 96.6 Sn (%) - - - - -

PROSPER5CV PROSPER5CV

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.6 99.0 98.0

Sn (%) 33.7 49.4 75.3 85.4 87.6 Sn (%) 19.9 37.0 53.3 67.8 83.0

PROSPERSelect PROSPERSelect

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 40.4 58.4 84.3 87.6 89.9 Sn (%) 12.7 24.3 35.9 55.1 71.0

PROSPERSelf PROSPERSelf

Sp (%) 100 99.8 99.5 99.1 98.1 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 61.8 97.8 100 100 100 Sn (%) 23.9 47.5 83.7 93.8 98.6
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56,687 proteins, respectively (note that the IPI database includes

splice variants, thus the number of human proteins is much greater

than the number of human genes mentioned previously). Since

caspase-1, 3, 7, 6, 8, granzyme B (human) and granzyme B

(mouse) represent proteases with well-known substrate specificities

and the performances of PROSPER for their cleavage sites

prediction are more accurate compared to other proteases, we

applied their respective PROSPER models to scan the whole

human and mouse proteomes to identify putative cleavage sites,

resulting in many predictions with high-confidence scores.

The statistics of predicted cleavage sites are shown in Table 5.

The distribution of Gene Ontology assignments [85] for the

predicted substrates can be seen in Figure S5 and all the

predictions are available at http://lightning.med.monash.edu.

au/PROSPER/. Taking caspase-3 as an example, membrane,

nucleus and cytoplasm were the three largest categories containing

predicted caspase-3 substrates and account for 38, 17 and 10% of

the annotations, respectively. Intracellular, mitochondrion, golgi

apparatus and cytosol represent 9, 3, 3 and 3% of the annotations,

with the final 14% of annotations split between the remaining

biological process categories. To further investigate the function of

the potential substrates of caspase-3 (and other proteases), we used

ToppFun, which is a gene list enrichment analysis and candidate

gene prioritization tool [86]. The results indicate that the majority

of the predicted caspase-3 substrates (using the human genome as

control) have molecular functions such as enzyme binding,

nucleoside-triphosphatase, GTPase regulator, pyrophosphatase,

hydrolase, transferase, kinase and phosphotransferase activity

(Table 6). Our analysis also revealed that most of the predicted

substrates are involved in biological processes such as cell

projection organization, cell adhesion, nucleotide catabolic

processes, neurogenesis, etc. (Table 6). In addition, we found that

the majority of the predicted substrates of caspase-3 have cellular

components in compartments such as cell projections, nucleo-

Caspase-6 GrB (mouse)

PoPS PoPS

Sp (%) 99.9 99.8 99.5 99.0 - Sp (%) 99.9 99.8 99.5 99.0 -

Sn (%) 20.4 23.4 44.9 68.3 - Sn (%) 14.9 20.5 33.6 50.8 -

SitePrediction SitePrediction

Sp (%) 99.9 99.8 99.5 99.0 98.0 Sp (%) - - - - -

Sn (%) 20.4 37.1 80.2 92.8 95.2 Sn (%) - - - - -

PROSPER5CV PROSPER5CV

Sp (%) 99.9 99.8 99.4 99.0 98.0 Sp (%) 99.9 99.8 99.5 98.9 97.9

Sn (%) 15.0 25.8 53.3 66.5 83.8 Sn (%) 21.4 34.4 45.5 55.8 73.4

PROSPERSelect PROSPERSelect

Sp (%) 99.9 99.8 99.5 98.9 98.1 Sp (%) 99.9 99.8 99.5 99.1 98.1

Sn (%) 16.8 29.9 55.7 77.8 92.8 Sn (%) 18.2 29.2 46.8 63.6 79.2

PROSPERSelf PROSPERSelf

Sp (%) 99.9 99.8 99.5 99.0 98.1 Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 15.6 50.9 68.3 84.4 98.8 Sn (%) 27.9 54.6 77.9 92.9 98.0

Caspase-8

PoPS

Sp (%) 99.9 99.8 99.5 99.0 -

Sn (%) 48.3 60.4 77.6 91.4 -

SitePrediction

Sp (%) 99.9 99.8 99.5 99.0 -

Sn (%) 48.3 69.0 89.7 96.6 -

PROSPER5CV

Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 22.4 36.2 46.6 69.0 77.6

PROSPERSelect

Sp (%) 99.9 99.8 99.6 99.0 98.0

Sn (%) 25.9 51.2 62.1 84.5 91.4

PROSPERSelf

Sp (%) 99.9 99.8 99.5 99.0 98.0

Sn (%) 13.8 41.4 91.4 98.3 98.3

a‘‘-’’ denotes that the prediction result at this specificity level is not available by this tool.
Specificity (Sp) levels were set as close as possible to one another among the different tools. For PROSPER, 5-fold cross-validation 6 feature selection and self-
consistency tests were performed to compare to PoPS and SitePrediction. The 3 different types of PROSPER models built are named PROSPER5CV, PROSPERselect and
PROSPERSelf, respectively. Sensitivity (Sn) values at different Sp levels were compared. The best prediction performance at each Specificity level is highlighted in bold.
doi:10.1371/journal.pone.0050300.t003

Table 3. Cont.
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plasm, cytoskeleton, cell junction, synapse, etc. The significantly

enriched GO terms of the predicted substrates of other proteases

that are available to be analyzed by gene list enrichment analysis

can be found in Table S8.

For a particular protease of interest, users can further filter out

the false positives and only retain ‘meaningful’ predictions. By

‘meaningful’ predictions, we mean that the protease and the

predicted substrates should in principle share the same subcellular

localizations so that they can co-localize in vivo in order for the

substrate cleavage to occur, which can be accomplished according

to the accompanied GO annotations. In this sense, these

predictions provide a valuable resource for further experimental

Figure 8. Venn diagrams showing the prediction consistency between PROSPER, PoPS and SitePrediction. The different colored circles
denote different prediction tools: PROSPER, red; PoPS, blue; SitePrediction, green. The sum of the numbers in each color represents the number of
known cleavage sites that were correctly predicted by the tool. The number in each overlapping region represents the number of known cleavage
sites that were correctly predicted by two or all tools. For example, for MMP-2, 276 sites were correctly predicted by PROSPER and by no other tool, 78
were correctly predicted by PROSPER and SitePrediction, 24 by PROSPER and PoPS and 193 by all three tools. The number in the inner circle ‘‘Overall’’
represents the total number of correctly predicted known cleavage sites by the corresponding tool.
doi:10.1371/journal.pone.0050300.g008

Table 4. Performance comparison of PROSPER with PoPS and SitePrediction based on independent test datasets extracted from
recent proteomics profiling studies and a recent update of the MEROPS database.

Protease Merops ID Percentage of correctly predicted known cleavage sites (%)

PoPS SitePrediction PROSPER

Caspase-3a C14.003 92.7 45.6 83.6

Matrix metallopeptidase-2b M10.003 17.6 3.9 29.4

Granzyme B (human)a S01.010 47.8 -c 76.9

Granzyme B (mouse)a S01.136 65.1 - 77.4

aSubstrate datasets extracted from a recent update of the MEROPS database [34,35];
bSubstrate dataset extracted from experimental data derived from N-terminal positional proteomics [20];
c‘‘-’’ denotes that the prediction result for this protease family is not available for this tool.
Note that these data are only available for a few proteases, including caspase-3, MMP-2, granzyme B (human) and granzyme B (mouse). The accuracy or sensitivity was
calculated as the percentage of the known cleavage sites that were correctly predicted.
doi:10.1371/journal.pone.0050300.t004
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validation of novel protease substrates and the proposition of

useful hypotheses.

The implementation of PROSPER webserver
The online webserver of PROSPER has been implemented as a

result of this work and has been made publicly available at http://

lightning.med.monash.edu.au/PROSPER/ for academic users.

The server accepts a single amino acid sequence in the FASTA

format as an input. After job submission, the server will first run a

few programs to extract the sequence and structural features and

then generate the SVM input file, which will be further submitted

to the PROSPER models to make predictions. We also made

available a job queue processing system, so that each of the

multiple tasks submitted simultaneously to the server can be

processed one by one in a timely manner. Once the task is

completed, users will receive a notification Email with a link to the

result webpage. It contains the ranking of predicted cleavage sites

according to the cleavage probability scores, the P4-P49 sequence,

the estimated sizes of the cleavage products, and the native

disorder plot (Figure 9). The PROSPER server is currently

configured on an Intel i7 920 processor with eight cores, running

Unbuntu 9.10, with a 12GB memory and 4TB hard-disk. The

server scripts are written in Perl. Although the calculation time is

dependent on the length of the submitted sequence, a typical task

for a query sequence with ,500 residues will take approximately

8–12 minutes.

With the recent advancement of N-terminal labeling and

positional proteomics approaches, the substrate data for a number

of proteases is accumulating rapidly. In addition to the online web

server, we are currently in the process of implementing a stand-

alone version of PROSPER based on Java programming

language, which will allow users to build their own customized

prediction models based on substrate sets specified by users.

Case studies
We illustrate the predictive power of PROSPER by performing

a case study where proteolytic cleavage of the protein, huntingtin

(Htt), by caspase-3 and caspase-6 was examined. The Htt protein

plays a critical role in nerve cell function and regularly interacts

with proteins found only in the brain. Mutant Htt is highly

variable due to the polyglutamine-expansion in its N-terminus

[87–89]. Proteolysis of Htt at specific residue positions has been

recently found to be critical to the pathogenesis of the disease

[88,90]. Experimental studies have indicated that Htt contains

four experimentally verified cleavage sites for caspase-3:

DSVD|LASC (Position: 513), DEED|ILSH (Position: 530),

DLND|GTQA (Position: 552) and IVLD|GTDN (Position:

586), and one cleavage site for caspase-6: IVLD|GTDN 586.

We performed substrate sequence scanning using PROSPER,

PoPS and SitePrediction to predict the potential cleavage sites for

both caspase-3 (Figure 10) and caspase-6 (Table S9) for Htt. All

four experimentally verified cleavage sites for caspase-3 in Htt

were correctly predicted and were within the top 20 ranking hits

for all three tools. Another experimentally verified cleavage site for

caspase-6 was also correctly predicted (among the top 20 hits). In

the case of PROSPER, the highest ranking result for one of the

known caspase-3 cleavage sites was for DEED|ILSH, with a

ranking of fifth place, whereas the other three known cleavage sites

ranked 18th to 20th. PoPS and SitePrediction also included three

common cleavage sites in their lists: DSVD|LASC, DEED|ILSH

and DLND|GTQA. Altogether, these results suggest that in silico

sequence scanning of substrates is helpful for identifying putative

cleavage sites.

Conclusions

Predicting putative protease substrates is a critical step towards

better understanding of protease systems biology and enhancing

our capability for the design of novel inhibitors as therapeutics to

control and regulate protease functions. The recent data

accumulation regarding substrate cleavage sites of proteases has

increased the demand for efficient bioinformatic approaches that

are capable of accurately predicting substrate cleavage sites of

proteases. Here we have presented PROSPER, a novel bioinfor-

matics tool which has formulated cleavage site prediction as a

binary classification problem and solved it using a machine

learning algorithm. The tool has taken advantage of the excellent

generalization abilities of machine learning techniques to capture

the key characteristics underlying complex protease-substrate

interactivity by using kernel functions to build predictive models.

The tool, especially when used with efficient feature selection, has

been shown to be robust and high performing here using rigorous,

independent evaluation protocols. In comparison to existing tools,

such as PoPS and SitePrediction, PROSPER achieved at least

comparable sensitivity at the varying specificity levels. Further,

with the improved performance of PROSPER, we applied it to

perform proteome-wide predictions of cleavage sites in the human

and mouse proteomes for caspase-1, 3, 7, 6, 8, granzyme B

(human) and granzyme B (mouse), resulting in many predictions

with high-confidence scores. Due to the limited availability of

substrate data which meets the rigorous demands that we have set

for inclusion, at present PROSPER is only able to predict the

cleavage sites of twenty-four different proteases (Table 1). With the

Table 5. Proteome-wide substrate cleavage site predictions at the 100% Specificity level by PROSPER.

Protease Merops ID
Number of predicted cleavage sites
(Human proteome)

Number of predicted cleavage sites
(Mouse proteome)

Caspase-1 C14.001 592,172 44,0217

Caspase-3 C14.003 3,339 2,425

Caspase-7 C14.004 22,322 16,590

Caspase-6 C14.005 58,021 43,778

Caspase-8 C14.009 117,891 87,109

Granzyme B (human) S01.010 127,045 93,043

Granzyme B (mouse) S01.136 57,149 40,935

This specificity level was used to generate high-confidence prediction results.
doi:10.1371/journal.pone.0050300.t005
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increasing availability of high-quality substrate specificity data

[4,5,34,35], it will now be possible to improve the quality of

predictive models and regularly update the PROSPER models

and make available prediction models for other proteases.

There are a number of ways to improve predictive performance

in the future. Firstly, more informative and complementary

features surrounding the potential cleavage sites can be incorpo-

rated. For example, sequence features that are descriptive of

sequence-order context might be helpful to identify cleavage sites

of proteases that cleave substrates in a cooperative manner

[91,92]. Secondly, high resolution structures showing the active

site of the protease complexed with the corresponding P4-P49

residues of substrates could be used to predict the preference each

subsite has for a particular amino acid residue [8]. Such atomic-

Table 6. The significantly enriched Gene Ontology (GO) terms of the predicted caspase-3 substrates.

Gene Ontology category Rank ID Name P-value

Term in
predicted
substrates

Term in
human
Genome

Molecular Function 1 GO:0019899 enzyme binding 9.166E-23 677 834

2 GO:0017111 nucleoside-triphosphatase
activity

3.865E-22 627 768

3 GO:0030695 GTPase regulator activity 1.187E-20 397 464

4 GO:0016462 pyrophosphatase activity 2.433E-20 645 799

5 GO:0016818 hydrolase activity, acting on
acid anhydrides, in phosphorus-
containing anhydrides

6.651E-20 646 802

6 GO:0016817 hydrolase activity, acting
on acid anhydrides

9.754E-20 647 804

7 GO:0016772 transferase activity, transferring
phosphorus-containing groups

4.995E-19 775 984

8 GO:0016301 kinase activity 6.297E-19 681 854

9 GO:0016773 phosphotransferase activity,
alcohol group as acceptor

2.039E-18 588 728

10 GO:0060589 nucleoside-triphosphatase
regulator activity

2.880E-18 402 477

Biological Process 1 GO:0030030 cell projection organization 8.327E-25 640 776

2 GO:0007155 cell adhesion 2.443E-22 713 884

3 GO:0022610 biological adhesion 2.443E-22 713 884

4 GO:0006195 purine nucleotide catabolic
process

2.949E-19 449 536

5 GO:0072523 purine-containing compound
catabolic process

6.385E-19 452 541

6 GO:0009203 ribonucleoside triphosphate
catabolic process

1.148E-18 411 487

7 GO:0009154 purine ribonucleotide catabolic
process

1.156E-18 414 491

8 GO:0009207 purine ribonucleoside
triphosphate catabolic process

1.509E-18 410 486

9 GO:0022008 neurogenesis 2.076E-18 796 1015

10 GO:0009261 ribonucleotide catabolic process 3.434E-18 416 495

Cellular Component 1 GO:0042995 cell projection 1.922E-21 835 1069

2 GO:0005654 nucleoplasm 5.390E-19 1018 1341

3 GO:0015630 microtubule cytoskeleton 9.487E-18 552 689

4 GO:0044451 nucleoplasm part 3.247E-14 608 782

5 GO:0030054 cell junction 7.553E-13 494 628

6 GO:0045202 synapse 2.918E-12 380 472

7 GO:0005626 insoluble fraction 5.411E-12 830 1111

8 GO:0044430 cytoskeletal part 6.123E-12 836 1120

9 GO:0005624 membrane fraction 3.573E-11 796 1067

10 GO:0005730 nucleolus 2.223E-10 838 1133

The significantly enriched GO terms of the predicted caspase-3 substrates according to three major categories (Molecular Function, Biological Process and Cellular
Component) were obtained using the gene list enrichment analysis tool, ToppFun [86]. The P-value of each GO term in the predicted substrates was calculated by
randomly sampling the whole genome.
doi:10.1371/journal.pone.0050300.t006
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level structural modelling of the protease-substrate interaction

would most likely help to reduce the significant number of false

positives. Thirdly, improving the representation of ‘true negatives’,

i.e. sites that really cannot be cleaved under any given

physiological conditions [28], could provide better represented

positive and negative datasets, allowing optimal sequence and

structural feature selection that can be performed to further

improve the prediction accuracy of the predictors. Finally,

performance improvement can possibly be achieved by utilizing

ensemble learning approaches or meta approaches that combine

Figure 9. A sample output from the PROSPER server for the substrate, serine/arginine-rich splicing factor 1 (SRSF1) (Uniprot ID:
Q07955).
doi:10.1371/journal.pone.0050300.g009
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multiple independent basic classifiers to perform a final consensus

prediction [93–95]; this might be useful to further enhance

prediction accuracy. On the other hand, it is important to note

that failure of active site-based methods can be an important

indicator that other factors, such as exosites, are important for a

particular protease and this can provide an important indication to

researchers that they need to consider regions outside of the active

site in further research on the enzyme.

Characterizing the protease substrate specificity and under-

standing the underlying mechanisms for cleaving multiple in vivo

substrates is a common practice in protease systems biology today.

In silico prediction of substrate cleavage sites could provide

valuable insights with regard to the identification of novel protease

substrates and hypothesis-driven experimentation within the

context of proteolytic pathways. To our knowledge, PROSPER

is the first comprehensive server capable of predicting cleavage

sites of multiple proteases within a single substrate sequence using

machine learning techniques. The PROSPER server provides a

user friendly interface and only requires a single amino acid

sequence of the substrate as an input and an Email address of the

user to send the prediction result webpage. In addition, we also

make available a stand-alone version and the source code of

PROSPER for download such that bioinformaticians and

computational biologists can run predictions of multiple sequences

locally. Finally, we anticipate PROSPER to be a powerful

bioinformatics tool to mine the repertoire of protease substrates

and facilitate the discovery of novel substrates.

Figure 10. Full-length sequence scanning of huntingtin protein by PROSPER for caspase-3 cleavage sites, with the zoomed-in view
of the region flanking experimentally verified cleavage sites of huntingtin. The horizontal axis represents the amino acid position; the
vertical axis represents the cleavage probability score generated by PROSPER. The predicted solvent exposed and natively disordered regions on the
top of each figure are highlighted by green and red, respectively. A higher threshold value of 0.8 for making the positive cleavage site prediction is
denoted by a dashed red line. P4-P49 sites of the experimentally verified cleavage sites are labeled.
doi:10.1371/journal.pone.0050300.g010

Predicting Protease-Specific Cleavage Sites

PLOS ONE | www.plosone.org 20 November 2012 | Volume 7 | Issue 11 | e50300



Supporting Information

Figure S1 Sequence logo representations of the occurrences of

amino acid residues in the substrate cleavage site P8-P89 positions.

To better reflect the occurrence rate of each amino acid type, the

sequence logo ordinates have been scaled in bits (Schneider and

Stephens, 1990). Panels A–P correspond to: A, HIV-1 retropepsin;

B, cathepsin K; C, calpain-1; D, MMP-9; E, MMP-3; F, MMP-7;

G, chymotrypsin A (bovine); H, elastase-2; I, cathepsin G; J,

thrombin; K, plasmin; L, glutamyl peptidase I; M, furin; N, signal

peptidase I; O, thylakoidal processing peptidase; and P, signalase,

which are presented according to the alphabetical order of their

MEROPS ID in Table 1.

(TIF)

Figure S2 Analysis of structural determinants of protease

substrate specificity based on the occurrences in P6-P69 positions

for cleavage sites. In each panel, from the left, middle to right, are

the distributions of secondary structure (three states: ‘‘H’’, helix;

‘‘E’’, strand; ‘‘C’’, coil), solvent accessibility (two states: ‘‘e’’,

exposed; ‘‘b’’, buried) and native disorder (two states: ‘‘*’’,

disordered; ‘‘.’’, ordered), respectively. (E) caspase-8; (F) granzyme

B (human); (G) granzyme B (mouse).

(TIF)

Figure S3 Enrichment analysis of natively disordered residues

and solvent exposed residues across different protease substrate

types. Left: protease substrate categories that are enriched in

natively disordered residues; Right: protease substrate categories

that are enriched in solvent exposed residues. Higher percentage

on the x-axis indicates greater enrichment of either native disorder

or solvent accessibility.

(TIF)

Figure S4 Assessing the performance of PROSPER models for

cleavage site prediction of the 16 proteases, based on gradually

increased features to evaluate the relative contribution of each type

of feature. Panels A–P correspond to: A, HIV-1 retropepsin; B,

cathepsin K; C, calpain-1; D, MMP-9; E, MMP-3; F, MMP-7; G,

chymotrypsin A (bovine); H, elastase-2; I, cathepsin G; J,

thrombin; K, plasmin; L, glutamyl peptidase I; M, furin; N,

signal peptidase I; O, thylakoidal processing peptidase; and P,

signalase, which are presented according to the alphabetical order

of their MEROPS ID in Table 1. For clarity, the ROC curves with

high prediction specificities (90–100%) were displayed.

(TIF)

Figure S5 Distribution of the Gene Ontology annotations of the

predicted protease substrates. A) caspase-1; B) caspase-3; C)

caspase-7, D) caspase-6, E) caspase-8, F) granzyme B (human), G)

granzyme B (mouse), and H) the background distribution based on

the whole human proteome.

(TIF)

Table S1 Predictive performance based on singe sequence

inputs only (sequence encoding scheme ‘‘BEAA’’), with the local

window size of P4-P29. The results were obtained by 5-fold cross-

validation tests.

(DOC)

Table S2 Predictive performance based on singe sequence

inputs only (sequence encoding scheme ‘‘BEAA+BPBSS’’), with

the local window size of P4-P29. The results were obtained by 5-

fold cross-validation tests.

(DOC)

Table S3 Predictive performance based on singe sequence

inputs only (sequence encoding scheme ‘‘BEAA+BPBSA’’), with

the local window size of P4-P29. The results were obtained by 5-

fold cross-validation tests.

(DOC)

Table S4 Predictive performance based on singe sequence

inputs only (sequence encoding ‘‘BEAA+BPBDISO’’), with the

local window size of P4-P29. The results were obtained by 5-fold

cross-validation tests.

(DOC)

Table S5 The AUC (area under ROC curve) values for

PROSPER models based on different sequence encoding schemes:

‘‘BEAA’’, ‘‘BEAA+BPBAA+BPBSS+BPBSA+BPBDISO’’ (termed

as ‘‘ALL’’ here) without feature selection, and ‘‘BEAA+BP-

BAA+BPBSS+BPBSA+BPBDISO with feature selection. An

extended local window of P8-P89 was used to build the PROSPER

models. See the main text for details of different sequence

encoding schemes.

(DOC)

Table S6 List of the more informative features selected using

random forest algorithm. Features with a Z score greater than 1.0

are selected and considered to be more informative. An extended

local window size of P8-P89 was used to perform feature selection

in order to extract more relevant features.

(DOC)

Table S7 The numbering and categorization of all feature

vectors in the encoding scheme ‘‘ALL’’. An extended local window

size of P8-P89 using the sequence encoding scheme ‘‘ALL’’ was

used to perform feature selection in order to extract more relevant

features.

(DOC)

Table S8 The significantly enriched Gene Ontology (GO) terms

of the predicted substrates of caspase-1, 7, 6, 8, granzyme B

(human) and granzyme B (mouse) that were available to be

analyzed by the gene list enrichment analysis tool ToppFun. The

significantly enriched GO terms of the predicted substrates are

listed according to three major categories: Molecular Function,

Biological Process and Cellular Component. The P-value of each

GO term in the predicted substrates was calculated by randomly

sampling the whole genome.

(DOC)

Table S9 Summary of the caspase-3 cleavage site prediction by

PROSPER for huntingtin, compared with the prediction results by

PoPS and SitePrediction, respectively. The top 20 ranking results

of these three tools are listed, where experimentally verified

cleavage sites are colored by black and bold. The cleavage score of

PROSPER was generated by the regression models of PROSPER.

Cleavage score of PoPS is calculated as a summation of individual

scores of the P4, P3, P2, P1 and P19 positions. The final cleavage

score of SitePrediction is calculated as the product of both the

frequency and similarity scores. The higher the cleavage score, the

more likely a cleavage site is predicted to be cleaved. Here, ‘‘|’’

indicates the substrate cleavage site after the P1 position.

(DOC)
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