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Abstract

Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life
sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of
a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The
computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into
a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope
with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has
turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an
alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of
single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast
tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based
solutions thus far.
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Introduction

Tomographic reconstruction derives the three-dimensional (3D)

structure of an object from a set of projection images acquired by

means of some imaging process. This technique is central in many

scientific and technical disciplines [1]. Electron tomography (ET),

where the imaging device is an electron microscope, allows

elucidation of the 3D structure at nanometric scale [2–5]. ET is

playing an essential role in life sciences. It has already made

possible a number of major breakthroughs in the last decade,

which have provided invaluable information about the cell

structure [6–11]. Tomographic reconstruction algorithms are the

core of the technique. They combine the information contained in

the projection images and yield the 3D structure. The projection

images taken from the biological sample usually present a size in

the range of 1024|1024 to 2048|2048. The number of images

commonly ranges from 60 to 200. The resulting 3D maps (also

known as tomograms) may reach a size in the order of several

GBytes (e.g. 2048|2048|512 voxels). There exist several

families of reconstruction algorithms that are commonly used in

the field [2].

The computational complexity of the algorithms, along with the

data size (number and size of the images), turns tomographic

reconstruction into a computationally demanding problem.

Historically, high performance computing (HPC) has been applied

to cope with those demands in ET [12]. There have been

proposals for supercomputers [13], distributed systems [14–16]

and computer clusters [17–22]. Most of these implementations

have approached linear speedup factors. Recently, the trend has

turned towards exploitation of graphics processing units (GPUs)

[23], and a number of approaches have been presented [24–29],

including the use of multi-GPU or hybrid strategies [30–33],

which have achieved outstanding speedup factors.

On the other hand, current stand-alone computers present

tremendous power thanks to technological and architectural

advances [34]. Specific features such as internal instruction-level

parallelism, vector instructions, multiple computing cores as well

as deeper and efficient memory hierarchies turn modern

computers into extraordinary computing platforms, with impres-

sive performance [35]. In the last few years, we have been

optimizing tomographic reconstruction algorithms for these plat-

forms. First we introduced the potential of vector processing and

showed preliminary results [36]. Later we introduced our software

package [37] (http://www.cnb.csic.es/%7ejjfernandez/tomo3d),

which makes use of vector processing and multithreading to

exploit the multiple cores available in modern computers. Our

software is now being extensively used in the ET field [38–43].

However, a thorough explanation and assessment of the

procedures behind is still lacking. Moreover, recently we have

made additional, important improvements related to the disk I/O

and dynamic load balacing, which contribute to further accelerate

the reconstruction process.

In this work we present a detailed description and evaluation of

our optimized implementation of tomographic reconstruction

algorithms for modern multicore computers. This article is

organized as follows. Section 2 reviews the most common

tomographic reconstruction algorithms in the field of ET. Section

3 then describes in detail our approach to fast tomographic

reconstruction. The experimental results are presented in Section
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4, where different performance aspects (processing time; I/O; load

balancing) are evaluated and comparisons with modern GPU

approaches and a standard program are included. The last section

provides some discussion and concluding remarks.

Overview of Tomographic Reconstruction
The standard data acquisition geometry in ET is the so-called

single tilt axis [3,4]. The specimen is placed within the electron

microscope and a beam of electrons is shot towards it in a direction

perpendicular to the single tilt axis. A projection image is formed

and recorded by CCD cameras. The specimen is then tilted

around the axis, and another beam of electrons is shot. This is

sketched in Figure 1 (a). Typically, the process is repeated over

a limited tilt range of [{600, z600], or [{700, z700], in small

increments of 1{20. Electron dose must be kept within tolerable

limits to prevent radiation damage to the specimen, which yields

projection images with extremely low signal-to-noise (SNR) ratio.

As a result of this data collection process, the so-called tilt series is

obtained, which is made up of all the images acquired from the

specimen at the different orientations.

The reconstruction problem is then to obtain the 3D structure

of the specimen from the set of projection images. Weighted back-

projection (WBP) [44] is currently the standard algorithm in ET.

WBP assumes that the projection images represent the amount of

mass density encountered by the imaging electron beam. The

method simply distributes the known specimen mass present in

projection images evenly over computed backprojection rays

(Figure 1 (b)). This way, the specimen mass is projected back into

a reconstruction volume (i.e. backprojected). When this process is

repeated for all the projection images in the tilt-series, back-

projection rays from the different images intersect and reinforce

each other at the points where mass is found in the original

structure. Therefore, the 3D mass of the specimen is reconstructed

from a series of 2D projection images. The backprojection process

involves an implicit low-pass filtering that makes reconstructed

volumes strongly blurred. In practice, in order to compensate the

transfer function of the backprojection process, a previous high-

pass filter (i.e. weighting) is applied to the projection images, hence

the term ‘‘weighted backprojection’’. This weighting is necessary

to properly represent the high frequency information in the

reconstruction [44]. For a detailed description of the method, refer

to [44]. The relevance of WBP in ET mainly stems from its

computational simplicity. Its disadvantage is the sensitivity to the

conditions found in ET, namely the limited tilt angle and low

SNR.

There exist alternative real-space reconstruction algorithms that

formulate the 3D reconstruction problem as a large system of

linear equations to be solved by iterative methods [1]. These

methods are more robust and overcome the limitations of WBP,

though they may present a problem of potential overfitting [19]. In

essence, these methods refine the volume progressively by

minimizing the error between the experimental projection images

and the equivalent projections calculated from the reconstructed

volume. A very well accepted iterative method in the ET field is

SIRT, which stands for Simultaneous Iterative Reconstruction

Technique [45]. In every iteration of SIRT, (1) projections from

the current volume are computed; (2) the error between the

experimental projections and those computed from the volume is

calculated; (3) the volume is refined by backprojection of the

average error (Figure 2).

For illustrative purposes, Figure 3 shows a comparison of the

performance of WBP and SIRT on a dataset of Vaccinia virus

[46]. The latter shows a dramatic improvement in contrast. The

advantages of the SIRT reconstruction for interpretation of the

structure are thus evident. Despite the great benefits of SIRT, its

use has been limited by its computational demands. Approxi-

mately, every iteration takes twice the time of WBP, and a number

of iterations in the range 20–50 is the standard, which makes it up

to two orders of magnitude slower than WBP. The use of HPC

techniques is therefore paramount to make SIRT competitive in

terms of turnaround time.

Assuming voxels as basis functions to represent the volume, the

3D reconstruction problem can then be decomposed into a set of

independent two-dimensional (2D) reconstruction subproblems

corresponding to the 2D slices perpendicular to the tilt axis [12]

(see Figure 1 (a) where a slice is sketched). The reconstruction of

a 2D slice is computed from the corresponding set of 1D

projections (so-called sinogram, Figure 4), using the same

algorithms but now working in 2D. The 3D volume is then

Figure 1. Image acquisition and tomographic reconstruction. (a) Single-tilt axis data acquisition geometry. The specimen is imaged in the
microscope by tilting it over a typical range of [{600 ,z600] or [{700 , z700] in small tilt increments. The specimen can be considered as being
composed of slices perpendicular to the tilt axis, as sketched. Hence, every projection image holds information about all the slices. (b) Three-
dimensional reconstruction from projections with backprojection. The projection images are projected back into the volume to be reconstructed.
doi:10.1371/journal.pone.0048261.g001

Multicore-Optimized Tomographic Reconstruction
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Figure 2. Three-dimensional reconstruction with SIRT. The reconstruction is progressively refined by minimizing the average error between
the experimental and the calculated projections. (a) Calculation of projections from the volume at the current iteration. (b) Computation of the error
with respect to the experimental projections. (c) Refinement of the volume by backprojection of the error. If i[½1,n� and represents the current
iteration, then Vi{1 denotes the volume reconstructed in the previous iteration.zVi{1 indicates that the volume generated in the previous iteration
is taken into account to build the volume of the current iteration. In general, the volume is initialized to 0, that is, V0~0.
doi:10.1371/journal.pone.0048261.g002

Figure 3. Three-dimensional reconstruction of Vaccinia virus. Tomogram obtained with WBP (left) and 30 iterations of SIRT (right). A 1.64 nm
thick XY plane of the 3D reconstruction is shown. The tilt-series contained images in the range + 60 degrees at an interval of 2 degrees.
doi:10.1371/journal.pone.0048261.g003

Multicore-Optimized Tomographic Reconstruction
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obtained by stacking the reconstructed 2D slices. This decompo-

sition has been extensively used for the development of efficient

HPC approaches to this problem [12–14,22,26,28,29]. In ET, the

tilt axis typically runs along the Y axis. Therefore, the 2D slices are

in the XZ plane, which is the convention used hereinafter.

The 2D tomographic reconstruction process by WBP and SIRT

can be mathematically expressed in simple terms as the following

formulae, respectively:

sj~
Xn

i~1

Bj,iW (pi) 1ƒjƒm ð1Þ

skz1
j ~skj z

Xn

i~1

pi{
Pm

l~1

Ai,l s
k
l

Pm

l~1

A2
i,l

Ai,j for1ƒjƒm ð2Þ

where p denotes the set of experimental 1D projections (i.e. the

sinogram) and s is the reconstructed slice, with size n and m

respectively. n~ntiltsnbins, with ntilts being the number of pro-

jection angles and nbins the number of projection values obtained

for every projection angle, and m~mxmz, with mx and mz being

the number of voxels in the x and z dimensions of the slice,

respectively. k represents the iteration index in SIRT. W ()
represents the high-pass filtering operation involved in WBP. The

coefficient Ai,j of the matrix A is a weighting factor representing

the contribution of the voxel j to the projection value i, and its

Figure 4. How a sinogram is built. All projection images are stacked and the 1D projections (or, simply, projections) that belong to the same slice
(those between the vertical dotted lines) are grouped into a sinogram. This process is repeated for every slice. Therefore, there will be as many
sinograms as slices.
doi:10.1371/journal.pone.0048261.g004

Figure 5. SIMD execution model. Source 1 and Source 2 are vector registers. Each one contains several data elements, which can be integer or real
numbers. The same operation (op) is carried out between the two registers as indicated and the result is stored in another one (Destination).
doi:10.1371/journal.pone.0048261.g005
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value only depends on the geometry of the projections. This

matrix is sparse, i.e. many coefficients are zero since the

contribution of every voxel is associated with a small subset of

projection values. In particular, for a given tilt angle h, a voxel

(x,z) of the slice is projected to the point r~x cos (h)zz sin (h) in

the projection vector. The matrix B is the transpose of matrix A.

Methods

In this section, our approach to fast tomographic reconstruction

is presented. We disect the different optimizations applied to the

reconstruction process, which can be divided into three main

groups: (1) basic optimizations, (2) vector processing and, lastly, (3)

multithreading and disk I/O enhancement. Figure S1 shows

a flowchart of the optimization procedure.

Basic Optimizations
Basic optimizations mission is to provide fast, sequential

algorithms upon which parallel versions could be risen. Here we

include a set of single-processor code optimization techniques that

have been proved to improve the performance in scientific

computing [47].

Efficient use of the cache memory. During the reconstruc-

tion process, both slices and sinograms are divided into blocks to

make the most of processor cache. This procedure is very similar

to the blocking technique widely used in scientific computing [47].

Its goal is to minimize the exchange of information with main

memory by reusing the data kept in cache to a great extent. To

this end, the data are split in small blocks that fit into cache

memory and the code is reorganized so as to operate with a block

as much as possible before proceeding with a different block. An

optimal block size is selected automatically at runtime. It is

typically set up as a portion (around 1/6) of the available cache

memory.

Projection symmetry. This optimization takes advantage of

the symmetry existing in the projection of a slice: if a point (x,z) of

the slice is projected to a point r~xcos(h)zzsin(h) in the

projection corresponding to the tilt angle h, it is easy to see that the

point ({x,{z) of the slice is then projected to rs~{r in that

projection (note that (0,0) is the centre of the slice). Therefore, for

a given tilt angle h, there is only need to compute the point r in the

projection for half of the points (x,z) in the slice, hence obtaining

a gain in speed. To further increase cache efficiency (see previous

section), in this work symmetric points are put together in the data

structures.

Other optimizations. A wide spectrum of single core

optimizations has been applied to further accelerate the code

[47]. Among them, we highlight (1) an instruction level parallelism

Figure 6. Arrangement of data for vector processing. Four different slices are sketched (coloured in grey, blue, red and green), and also the
four sinograms associated with them. Every sinogram is composed of two projections. (a) Native data layout. (b) Data arrangement to take advantage
of vector units. (c) Vector processing between data elements.
doi:10.1371/journal.pone.0048261.g006
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increase, (2) pre-calculation of data that are extensively used

during the reconstruction process (e.g. sines, cosines, rays, limits

for projections), (3) inlining of functions, (4) replacement of power

of two divisions and multiplications by shifts, (5) replacement of

some divisions by multiplications, (6) loop unrolling and (7)

conditionals removal.

Vector Processing
Today’s processors offer the programmer a set of vector units,

which need to be explicitly programmed if maximum exploitation

is sought. We have used the SSE (Streaming SIMD Extensions)

instructions present in all current processors from Intel and AMD

to further accelerate the tomographic reconstruction. These

instructions are able to carry out the same operation (e.g.

a division) over several data elements in just one step (Figure 5).

Among the data types they can deal with, we highlight single-

precision floating point numbers (32 bits), since in the ET field the

points of a tomogram are usually in this format. SSE registers are

128-bit long, which means they can hold up to four floats.

Modern compilers, such as the Intel compiler or the GNU

compiler (gcc), are able to perform an automatic vectorization of

the source code, but in practice this is restricted to rather simple

loops. For that reason, it becomes imperative to hand-write the

code to really take advantage of vector units. We have selected the

C language and compiler intrinsics for our algorithms.

Figure 6 depicts our vectorized approach to tomographic

reconstruction, whose purpose is to reconstruct four slices

simultaneously. The key lies in the fact that voxels belonging to

different slices, but located at the same coordinate, are linked with

the same value of r when the formula r~xcos(h)zzsin(h) is

applied, as the formula only depends on the coordinate (x,z) and

the angle h. For example, by choosing h~00, the black pixel in the

grey slice located at (x~0,z~1) ((0,0) is the centre) will be linked

with the black pixel in the grey sinogram located at r~0 (Figure 6

(a)). If we focus on the other slices, we will realize this is also true

for their pixels placed at (x~0,z~1).
Operations carried out between the two black pixels are exactly

the same that the ones performed between the two dark blue

pixels, the two dark red pixels and the two dark green pixels. This

leaves the door open for processing them through vector

instructions. Nonetheless, it is not possible because of the current

data layout, i.e. pixels we are interested in are placed in non-

contiguous memory locations. If we arrange (pack) the data as

presented in Figure 6 (b), those pixels will be together. As it can be

noted, the first column of each slice is put firstly, then the second

ones come, then the third ones and so on. Now it is feasible to read

in parallel the four pixels of the slices and the four pixels of the

Figure 7. Schemes using multithreading. Each one represents four (working) threads as black parallel horizontal lines. ‘I’ stands for input (i.e. disk
read), while ‘O’ means output (i.e. disk write). (a) is the static scheme. Note that every thread fills its input buffer before starting to reconstruct. (b) is
the dynamic scheme. The manager is in charge of I/O operations. (c) is the dynamic with asynchronous I/O scheme. Here the manager is replaced by
the so-called I/O threads (the reader and the writer). The reader needs to start shortly before the working threads in order to fill the input buffer. It
finishes when there are no more sinograms to read. The writer begins when some slices have been reconstructed and finishes when it writes to disk
the last pack of reconstructed slices.
doi:10.1371/journal.pone.0048261.g007
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sinograms. They will be loaded into vector registers and will be

operated by means of vector instructions (Figure 6 (c)). Finally, the

result will be stored into the corresponding memory location.

Now four pixels are being reconstructed at the same time, each

one belonging to a different slice. In contrast, the sequential

versions of WBP and SIRT are obliged to repeat the process for

each pixel individually. Once reconstructed, the SSE slice has to

be unpacked to get the four slices (i.e. the previous data

arrangement is undone). These operations (pack and unpack) take

an extra time, but it is negligible if compared to that required by

the reconstruction algorithms.

For the weighting process involved in WBP, the FFTW (the

Fastest Fourier Transform in the West) library has been employed

[48]. This library takes advantage of SSE instructions internally

and, therefore, vectorization is used throughout the WBP pro-

cedure.

Multithreading and Disk I/O Optimization
Current commodity processors are shipped with several cores

(e.g. 2 to 8), and modern computers may have several of such

processors. If full exploitation of those computing cores is

intended, they must be explicitly programmed. To that end, we

have used the Pthreads library, by which it is possible to split an

application into threads making each one completing a piece of

the total workload. As we have already mentioned, a 3D volume

(or tomogram) can be divided into 2D slices that can be

reconstructed independently. In our multithreaded approach, we

create as many threads as available cores, and the slices are

distributed among those threads. Every one runs a reconstruction

algorithm (WBP or SIRT) previously optimized using the basic

optimizations and vector processing. We have developed three

schemes (Figure 7), which differ in the workload distribution

strategy and the way disk I/O is performed.

Figure 8. Workload distribution. (a) Static scheme. All threads (T0, T1, T2, T3) are allowed to perform disk I/O. Here I/O buffers are private and
every thread has an identical pre-assigned amount of slices to reconstruct. (b) Dynamic schemes. Disk I/O is not carried out by threads anymore.
There exist a shared input buffer where threads go to look for work. Once reconstructed, the slices are put in the shared output buffer. In (a) and (b)
sinograms and slices are allotted to threads in slabs of four. Slabs in grey have been already processed, while those coloured (green, red, blue,
orange) are being processed. The white ones have not been used yet. (c) An I/O buffer. If the buffer holds sinograms, it is called ‘input buffer’. On the
other hand, if it keeps slices, it is called ‘output buffer’. The number of entries in an input buffer does not need to match the number of entries in an
output buffer.
doi:10.1371/journal.pone.0048261.g008
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Workload distribution can be static or dynamic. In the static

case (Figure 8 (a)), the slices are equally allotted to the threads.

Once the distribution is carried out, it cannot be undone, which

makes load balancing absent. In the dynamic case (Figure 8 (b)),

the 3D volume is seen as a warehouse or pool of slices where the

threads autonomously go to look for work. This fact makes

possible load balancing as faster threads will get more slices to

process. Slices are delivered in slabs of four to be reconstructed

through vector processing.

Disk I/O is performed using custom-made buffers. A buffer is

just a structured memory region that temporarily stores sinograms

(input buffer) or slices (output buffer) (Figure 8 (c)). During the

reconstruction process, sinograms are not read from disk one by

one. Instead, a set of them is loaded into the input buffer, which is

in charge of feeding the threads. Similarly, slices are not

immediately written to disk when reconstructed, but temporarily

stored in the output buffer. Depending on the scheme, the input

buffer will be reloaded when it is entirely empty or it will be

inspected from time to time to replace those sinograms already

processed. Likewise, the output buffer will be dumped to disk when

completely filled or it will be checked periodically to physically

write already reconstructed slices, thus making space for new ones.

The goal of I/O buffers is to decrease the number of disk accesses,

hence reducing the time I/O operations need.

First scheme: static load distribution. In this approach

(Figure 7 (a) and Figure 8 (a)), all the threads receive the same

amount of slices to reconstruct. For example, if there are 4 threads

and 64 slices, each one will receive 16 slices. If the number of slices

is not divisible by the number of threads, then the fairest

distribution is carried out. For instance, assuming 3 threads and 64

slices, two threads will receive 20 slices and the remaining one, 24

(note that the minimum workload unit is four because of vector

processing). Here the threads are completely independent and so,

there are no communication latencies. The price paid for

independence is a fixed workload distribution that cannot be

undone at runtime and makes load balancing impracticable.

Table 1. Reconstruction times.

WBP SIRT

Optimization 512 1024 2048 512 1024 2048

Original 163.48 659.07 2658.91 – – –

Basic 26.30 106.25 424.15 1655.31 6622.12 26421.20

Speedup 6.22 6.20 6.27 – – –

SSE 7.45 30.72 124.42 447.44 1821.40 7323.16

Speedup 21.94 (3.53) 21.45 (3.46) 21.37 (3.41) 3.70 3.64 3.61

2T 3.80 15.62 62.95 223.88 912.10 3666.85

Speedup 43.02 (1.96) 42.19 (1.97) 42.24 (1.98) 7.39 (2.00) 7.26 (2.00) 7.20 (2.00)

4T 1.90 7.91 32.19 111.97 456.65 1843.53

Speedup 86.04 (3.92) 83.32 (3.88) 82.60 (3.86) 14.78 (4.00) 14.50 (3.99) 14.33 (3.97)

8T 0.99 4.21 15.90 56.78 239.25 1014.69

Speedup 165.13 (7.52) 156.55 (7.30) 167.23 (7.82) 29.15 (7.88) 27.68 (7.61) 26.04 (7.22)

Reconstruction times (in seconds) for WBP (left) and SIRT with 30 iterations (right). Speedups not in brackets are accumulated, while those in brackets are the
contribution of individual optimizations. Some data were previously presented in [37].
doi:10.1371/journal.pone.0048261.t001

Figure 9. Speedup. Both WBP and SIRT have been taken into account. (a) Speedup provided by individual optimizations. Using the basic
optimizations we reach a speedup slightly higher than 6x, with SSE instructions we are close to the theoretical 4x, and with two and four threads we
can say that the speedup is linear with the number of cores. With eight threads it decreases a little. (b) Accumulated speedup. If we include basic
optimizations and SSE instructions, the speedup is around 20x. When using two, four and eight threads, it rises above 40x, 80x and 160x, respectively.
doi:10.1371/journal.pone.0048261.g009
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Independence also forces to duplicate resources and thus, I/O

buffers are private, that is, each thread has its own input and

output buffer.

The scheme works as follows. Every thread fills its input buffer

by reading a set of sinograms from disk. Then, the slices are

stored in the output buffer as they are reconstructed. When

a thread detects its input buffer is empty, it will reload the buffer

with new sinograms. In a like manner, when its output buffer is

full, the thread will dump the reconstructed slices to disk. This

process is repeated until all the threads have their allotted slices

reconstructed.

Figure 10. Ratio Tprog:=Trec: in WBP. The larger the I/O buffers, the lower the ratio. The asynchronous I/O is the scheme with the lowest ratio,
particularly when using two hard disks. In this case, it is very close to 1 with buffers of size 128 or 256, which means that almost all the I/O is being
overlapped. Note that the ratio of the dynamic scheme is similar to that obtained by the static one, except for 256. Though we have seen that the
dynamic approach is better, here we are including smaller volumes (4 GB versus 8 GB) and the differences between this two strategies are mitigated.
doi:10.1371/journal.pone.0048261.g010

Figure 11. Ratio Tprog:=Trec: in SIRT. The asynchronous I/O is the best of the three schemes, but in SIRT there is not a significant difference
between using one or two hard disks. It can also be observed that buffers as big as in WBP are not needed to obtain good ratios. The dynamic
scheme behaves the worst since it has the highest ratios.
doi:10.1371/journal.pone.0048261.g011

Multicore-Optimized Tomographic Reconstruction

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48261



Apart from the absence of load balancing, this approach has

several disadvantages. One is a high memory consumption.

Basically, memory usage depends on two factors: the size of I/O

buffers and the reconstruction dimensions. For example, assuming

I/O buffers with 64 entries and 140 projection images of

2048|2048 pixels to yield slices of the same size (every pixel is

a 4-byte single-precision float), an input buffer would require

70 MB, while an output buffer would need 1 GB. Since I/O

buffers are replicated as many times as threads, these numbers

have to be multiplied by the thread count. Nowadays it is common

to find processors with four, six or even eight cores, not to mention

that many are hyper-threaded and that some computers are

equipped with more than one processor. If we exploit all the cores,

the system could easily run out of memory.

Another disadvantage of this approach is that all threads are

allowed to perform I/O, which can result in an inefficient disk

access. When a read operation is ordered, more data than

requested are stored in the disk cache. This cache has a limited

size, and if more than one thread is reading from disk, data inside

the cache will be constantly overwritten. On the other hand, we

could be forcing a constant hard disk head-positioning as we

would not be reading or writing sequentially.

Second scheme: dynamic load distribution. This strategy

(Figure 7 (b) and Figure 8 (b)) aims to solve the problems the static

scheduling has, that is, absence of load balancing, high memory

consumption and inefficient disk access. The main difference is

that now I/O buffers are not replicated: there only exist one input

buffer and one output buffer, which are shared among all threads.

Because of this, the amount of required memory does not depend

on the number of threads anymore. In contrast, it is mandatory

a mechanism to control the access to I/O buffers, or more than

one thread could reconstruct the same slab of slices. Thus,

accessing buffers becomes a critical section and only one thread is

granted the permission.

A thread inside the critical section should leave it as soon as

possible or performance will degrade to a large extent. In our case,

a thread just asks for a slab of slices not yet reconstructed and it

receives a pointer to the corresponding sinograms and a pointer

where the slices have to be stored. Then, it exits. These pointers

point to the input and output buffer, respectively.

In this scheme we have an additional thread called the manager.

The manager creates the working threads (those which reconstruct

slices) and prepares the I/O buffers, i.e. fills the input buffer with

sinograms and makes ready the output buffer so that reconstructed

slices can be stored inside. After that, the working threads start

running and the manager stays listening. When a thread detects

that the input buffer is empty or the output buffer is full, it notifies

the manager and goes to sleep. Then, the manager reloads the

input buffer with new sinograms and dumps reconstructed slices to

disk, hence making new space in the output buffer. Once I/O

buffers are again ready, the manager wakes up the working

threads. If there were no more slices to reconstruct, the working

threads would be informed and terminated.

Now a slow thread will not delay the reconstruction as much as

in the static approach: it will simply request less slices, which

results in an implicit and dynamic load balancing. However, it is

possible for a slow thread be a burden for the others. This can

happen when there are no more sinograms to process in the input

buffer or there is no space left in the output buffer and a slow

thread is reconstructing the last slab of slices it took. The other

threads cannot continue because I/O buffers are not ready and

the manager cannot prepare them because the slow thread has not

finished yet.

I/O operations are now put in order since the manager is the

only one allowed to perform them. This should correct the

inefficiencies discussed in the previous section, but this rises a new

matter: during the time the manager is doing I/O, the working

Table 2. Load balancing in WBP.

WBP WBP with overload

Scheme Tprog. T0 T1 T2 T3 Tprog. T0 T1 T2 T3

Static scheme 49.95 512 512 512 512 301.64 512 512 512 512

Dynamic scheme 53.23 512 512 512 512 91.71 256 832 128 832

Asynchronous I/O (1 disk) 54.41 508 512 508 520 78.53 224 848 128 848

Tprog: (in seconds) and the number of slices reconstructed by each thread (T0, T1, T2, T3) are shown. The static scheme is deeply affected by the delay, while the

dynamic approach responds well to the abnormal situation. When the asynchronous I/O is used, the best results are obtained because there are no synchronization
points where the threads need to wait for each other.
doi:10.1371/journal.pone.0048261.t002

Table 3. Load balancing in SIRT.

SIRT SIRT with overload

Scheme Tprog. T0 T1 T2 T3 Tprog. T0 T1 T2 T3

Static scheme 472.09 512 512 512 512 712.76 512 512 512 512

Dynamic scheme 477.49 512 512 512 512 572.02 448 640 384 576

Asynchronous I/O (1 disk) 473.28 516 504 504 524 543.57 464 600 384 600

Tprog: (in seconds) and the number of slices reconstructed by each thread (T0, T1, T2, T3) are shown. The static scheme is deeply affected by the delay, while the

dynamic approach responds well to the abnormal situation. When the asynchronous I/O is used, the best results are obtained because there are no synchronization
points where the threads need to wait for each other.
doi:10.1371/journal.pone.0048261.t003
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threads are sleeping and therefore no slices are being recon-

structed.

Third scheme: dynamic load distribution with

asynchronous I/O. In this last scheme (Figure 7 (c) and

Figure 8 (b)), the dynamic load distribution is kept thanks to the

shared I/O buffers, but the manager is replaced by two threads in

charge of performing I/O operations. One is called the reader and

it is responsible for filling the input buffer with new sinograms as

working threads process them. The other is the writer, which

dumps reconstructed slices to disk. Since I/O operations are

uncoupled (i.e. they are carried out by separated threads), they can

run in parallel if two different hard disks are used, one for reading

and another for writing.

I/O threads are sleeping most of the time. They wake up from

time to time to check the state of I/O buffers and run concurrently

with working threads. If there are sinograms already processed in

the input buffer, they will be replaced with new ones. If there are

reconstructed slices in the output buffer, they will be dumped to

disk and the space will become available again. Due to this

behaviour, I/O is asynchronous and overlaps with computation,

that is, the working threads do not need to wait for I/O operations

to complete as they can reconstruct slices while I/O takes place.

It is not always possible to overlap all the I/O, particularly when

it takes more time than computation. For instance, the output

buffer can have no free entries to accommodate new reconstructed

slices if working threads are so fast to completely fill it before the

writer is able to dump some slices. In these cases, working threads

will go to sleep while I/O buffers become ready again.

Using this scheme, a slow thread cannot delay the others

because there are no synchronization points where the working

threads have to wait for each other, something that could happen

in the previous approach. Of course, a slow thread will always

delay the execution, but here the effect is mitigated regarding the

other schemes.

Results and Discussion

We have grouped our experimental results into several sections.

The first presents reconstruction times, the second analyses disk I/

O times, the third focuses on load balancing, the fourth compares

our implementation of WBP and SIRT with some others written

for GPUs and, finally a comparison with a standard package in the

ET field is carried out in the last one. All the experiments were

carried out on the Linux operating system and the Intel C/C++
compiler was used to compile our algorithms.

Reconstruction Times
We have evaluated the performance of our reconstruction

algorithms on a server-based computer equipped with two quad-

core Intel Xeon processors E5405 at 2 GHz (each one with

12 MB of L2 cache) and 16 GB of RAM. Three different volumes

were reconstructed: 512|512|256, which is typical of real-time

environments, 1024|1024|256, which is currently a standard

volume, and 2048|2048|256, which will be adopted as the

standard in the near future. These volumes were derived from

datasets with projection images of size 512|512, 1024|1024 and

2048|2048, respectively. Each dataset was composed of 140

projection images that were taken in the tilt range ½{700,z690� at

intervals of 10.

Table 1 shows the reconstruction times obtained for WBP (left)

and SIRT with 30 iterations (right). 512, 1024 and 2048 represent

the volumes 512|512|256, 1024|1024|256 and

2048|2048|256, respectively. Original denotes the original

version of WBP, that is, the one used as a starting point and not

optimized. In the case of SIRT, we did not have an original

version and, thus, this algorithm was written directly using the

basic optimizations. Basic refers to the times achieved when only

the basic optimizations were taken into account, while SSE means

that vectorization was also included. In the previous cases, a single

core was employed to run the algorithms. 2T, 4T and 8T indicate

that two, four and eight threads (one per core) were utilised,

respectively. Every experiment was launched five times, and the

average computation time was then calculated and expressed in

seconds. In WBP, the speedups not in brackets were determined

regarding the original version (for which automatic vectorization

was enabled) and, in SIRT, regarding the basic optimizations.

Those in brackets give the acceleration factor provided solely by

the corresponding optimization.

With regard to WBP (Table 1 (left)), a speedup around 6x is

Table 4. Comparison CPU vs. GPU (backprojection).

GPU/CPU 60 90 120 VV2K

GTX 295 [27] 6.19 7.95 9.54 26.05

E5405 (8T) 7.96 10.78 12.11 32.82

Q9550 (4T) 10.83 14.46 18.24 42.75

We are comparing our implementation of backprojection with [27], where
a NVIDIA GTX 295 was employed. Although the GPU performs better, it is
important to note that the differences are small, specially when the E5405 is
used.
doi:10.1371/journal.pone.0048261.t004

Table 5. Comparison CPU vs. GPU (SIRT, 1 iteration).

GPU/CPU Dataset A Dataset B Dataset C

GTX 280 [29] 2.10 10.66 58.47

Tesla C1060 [28] 0.53 4.80 51.28

GTX 285 [28] 0.46 3.90 42.32

Tesla C2050 [28] 0.57 3.70 37.91

Q9550 (4T) 0.48 4.03 32.17

E5405 (8T) 0.35 2.94 24.55

All the GPUs are from NVIDIA. The Q9550 clearly outperforms the GTX 280 and
it gives times of the same order as those obtained with the other GPUs. The
E5405 is the absolute winner of the benchmark. Some data were previously
presented in [37].
doi:10.1371/journal.pone.0048261.t005

Table 6. Comparison with IMOD.

WBP SIRT

Implementation 1024 2048 1024 2048

IMOD 59.66 218.82 462.48 1800.46

Our approach - Tprog:

(1 disk)

23.17 85.58 60.16 249.24

Our approach - Tprog:

(2 disks)

14.55 49.48 59.03 248.43

Our approach - Trec. 6.91 28.50 55.82 243.64

Wall time (in seconds) spent by IMOD and our approach (Tprog:) to reconstruct
the 1024 and 2048 datasets with WBP and SIRT (5 iterations). Trec: denotes the
time spent solely in the reconstruction, i.e. without I/O, by our approach.
doi:10.1371/journal.pone.0048261.t006
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achieved using the basic optimizations, no matter the volume

reconstructed. If we focus on SSE instructions, we see that the

overall acceleration factor is very close to 3.5x, which is great

taking into account that the theoretical maximum is 4x. If we join

these two optimizations, we obtain an accumulated speedup

higher than 20x that rises to 40x, 80x and 160x when using two,

four and eight threads, respectively. As far as the use of

multithreading is concerned, it approaches linear speedup with

the number of threads, though with eight threads it decreases

slightly.

With regard to SIRT (Table 1 (right)), the acceleration factor

given by the SSE instructions is again quite good (around 3.6x),

actually somewhat better than in WBP. The speedup provided

by two and four threads is once more linear with the number of

cores (2x and 4x, respectively). With eight threads, it decreases

a little, but keeps staying close to the maximum (always greater

than 7.2x). Although SIRT was written directly using the basic

optimizations, it is based on WBP and, thus, it is reasonable to

think that a similar speedup would be obtained with those

optimizations over a hypothetical original version. This fact

would be reinforced by the other optimizations (SSE, 2T, 4T and

8T) as the acceleration factors achieved in both WBP and SIRT

have the same order of magnitude. This way, if we multiply the

accumulated speedups of SIRT by 6, we get a global speedup

around 20x, 40x, 80x and 160x for vector processing, two, four

and eight threads, respectively.

Figure 9 (a) presents the acceleration factor each optimization

gives by itself. To build this graph, the speedups in brackets shown

in Table 1 were used. For each optimization, the mean was

calculated taking into account the speedups related to both WBP

and SIRT. Similarly, Figure 9 (b) exhibits the accumulated

acceleration factor as we add optimizations to the reconstruction

algorithms. In this case, the speedups not in brackets were used

and the mean was again computed. For SIRT, we considered that

the gain over a hypothetical original version was 6x and, thus, we

multiplied the corresponding speedups by 6.

The final processing time that has been obtained for both

methods is remarkable. The calculation of the tomogram 512 with

WBP on 8 cores is ready in just 1 second, which definitely enables

real-time reconstruction. On the other hand, the tomograms 1024

and 2048 reconstructed with SIRT using 8 cores are available in

just 4 and 17 minutes, respectively. These turn out to be

reasonable reconstruction times from the user’s point of view. If

an unoptimized SIRT code was used, the processing time for this

method would be prohibitive, which traditionally has precluded its

extensive application in the field.

I/O Times
In the previous section, we have analysed the reconstruction

times, but nothing has been said about the time required to read

datasets from disk and write volumes to disk. When huge volumes

are reconstructed, disk I/O can consume a significant portion of

the program time (i.e. wall time) and can even be higher than the

reconstruction one. Here we compare the three multithreaded

strategies discussed earlier (i.e. static, dynamic and dynamic with

asynchronous I/O) and examine how our optimizations related to

I/O behave. To that end, we have reconstructed a volume of

2048|2048|512 voxels that totals 8 GB. We wanted a big

volume to exhibit the differences among strategies and we selected

this one. It was derived from a dataset composed of 140 projection

images, each with a size of 2048|2048 pixels. This dataset needs

560 MB of hard disk space (in this dataset every pixel takes up

a byte). The computer chosen for the experiments was equipped

with an Intel Core 2 Quad processor (four cores) Q9550 at

2.83GHz and 8 GB of RAM. It had also two SATA hard disks at

7200 rpm. Every experiment was run five times and then, the

mean (in seconds) was calculated. WBP and SIRT were launched

with the best configuration, that is, basic optimizations plus vector

processing plus one thread per core. Only 5 iterations of SIRT

were used as they were adequate for our purposes. In order not to

distort the experiments, the disk cache was emptied between runs.

Table S1 shows the results for WBP (left) and SIRT (right). Five

different sizes for I/O buffers have been used: 16, 32, 64, 128 and

256. For example, 64 means that the input buffer could hold 64

sinograms and the output buffer, 64 slices. Trec: represents the

reconstruction time, TI=O stands for disk I/O time and Tprog:

signifies program time. Usually, Trec:zTI=O will approach Tprog:.

In the case of asynchronous I/O, TI=O indicates the amount of I/

O that could not be overlapped. Mem. denotes the amount of

RAM memory (in gigabytes) consumed by the reconstruction.

In general, as we increase the buffer size, TI=O decreases, no

matter the reconstruction algorithm or the multithreaded strategy.

There is just one case where this is not true: when the size is 256

and the static scheme is used. Probably, the reason is that the

memory required (more than 5 GB) is too high. Although the

computer we chose had 8 GB of RAM, we have to take into

account that the memory must be shared between our data

structures and those used by the operating system. So, it is very

likely that our I/O buffers do not fit in RAM and, thus, swapping

is occurring. On the other hand, the static strategy is the one that

needs more memory throughout all the experiments.

With regard to WBP (Table S1 (left)), we can observe that I/O

is very heavy since TI=O is consistently higher than Trec:, except

when the asynchronous I/O scheme is used with two hard disks.

The static scheme behaves the worst as TI=O is always greater than

100 seconds while the others can approach 60 seconds, not to

mention that asynchronous I/O with two hard disks gives I/O

times just slightly above 10 seconds. As it can be seen, small sizes

for I/O buffers, particularly 16 and 32, should be avoided

regardless of the scheme. 64 seems enough for the static approach,

while 128 is a good trade-off between memory consumed and I/O

time in the case of the dynamic ones. In summary, the static

strategy provides the poorest results. The dynamic and the

dynamic with asynchronous I/O schemes are similar, but the

latter is the best of the two, specially when two hard disks are used.

With regard to SIRT (Table S1 (right)), the I/O behaviour is

different from that observed in WBP. The main difference is that

I/O times are much shorter now than before, even though we are

reconstructing the same volume and, therefore, we are reading

and writing the same amount of data. The reason lays in the way

I/O is performed by the operating system (Linux for us). When we

order a ‘write to disk’ operation, the data we want to write (slices in

our case) are not physically written immediately. Instead, they are

temporarily stored in the disk cache implemented by Linux. When

Linux deems appropriate, it dumps to disk the content of the

cache. As SIRT has a towering computational load, dumping the

cache can take place while new slices are reconstructed. In

contrast, WBP is very fast and quickly fills the disk cache, forcing

Linux to carry out a physical write. So, a ‘write to disk’ operation

(which is what we can measure) usually means ‘write to disk cache’

in SIRT, while often signifies ‘write to disk cache and perform

a physical write’ in WBP. Of course, the latter is much more

expensive in terms of time. As a consequence, to perform an

efficient disk access, I/O buffers can be smaller in SIRT (we can

state that 64 is a good choice, no matter the strategy employed)

and there is no need to use two hard disks in the asynchronous I/

O scheme.
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If the dynamic scheme is used, it can be observed in SIRT that

Trec:zTI=O does not approximate to Tprog:. This is caused by the

dependency between threads that exists when I/O buffers need to

be prepared by the manager. As threads have to wait for each

other in this synchronization point, the waiting times increase the

program time. This effect is also present in WBP, but the waiting

times are imperceptible since this algorithm is much faster. The

problem is completely solved by the asynchronous I/O. In

summary, now the dynamic scheme behaves the worst, then the

static one comes and the winner is again the approach that uses

asynchronous I/O.

Figure 10 and Figure 11 shows the ratio Tprog:=Trec: for WBP

and SIRT, respectively. The closer the ratio is to one, the closer

the reconstruction time is to the program time and, thus, the

lighter the disk I/O is. This way, if the ratio equals to 1, then

Tprog:~TI=O, which is the main aim of the I/O optimizations

presented in this work. Two more volumes were taken into

account to build these graphs (1024|1024|1024 and

2048|2048|256, each one taking up 4 GB), although we have

not included the tables with the results here.

Load Balancing
Here we show the results related to load balancing. The

computer and the volume chosen for the experiments were the

same used in the previous section (I/O times). That volume

(2048|2048|512 with 140 angles) was selected because it

requires considerable processing time and so, it would highlight

the differences among strategies. Again, 5 iterations of SIRT were

picked as this amount was enough for the tests carried out here.

Five runs were done of every experiment and the average time (in

seconds) was then calculated. Both WBP and SIRT were launched

with the best configuration, that is, basic optimizations plus vector

processing plus four threads (one per core). I/O times were faded

by writing the volume to/dev/null in order to focus on the

reconstruction time.

To simulate a situation where the system is overloaded, we

artificially delayed the threads 0 and 2. This delay consists of

calling the function sleep() when those threads proceed to

reconstruct a slab of slices. Each time this happens, thread 0 (T0)

is paused one second and thread 2 (T2), two seconds. Table 2 and

Table 3 show the results for WBP and SIRT, respectively. Each

one is composed of two parts. The one to the left presents the

results of a normal execution, while the one to the right exhibits

the results of an overloaded execution. In addition to the execution

time Tprog: (in seconds), the number of slices each thread

reconstructs is shown. As it can be noted, the static distribution

is deeply affected by the delay since the workload distribution is

fixed and cannot be undone at runtime. In contrast, the dynamic

scheduling adapts well to the abnormal situation, employing much

less time to perform the same reconstruction. Nonetheless, because

of the dependency between fast and slow threads that exists in this

scheme when I/O buffers needs to be prepared by the manager,

asynchronous I/O becomes the winner strategy, either in WBP or

SIRT. On the other hand, it is observed that the delayed threads

(T0 and T2) reconstruct less slices when using any of the dynamic

schemes, that is, a load balancing is carried out. On the contrary,

with the static approach all the threads process the same amount

of slices.

When the scheme with asynchronous I/O is used and the

system is not overloaded, it can be seen that some threads

reconstruct some more slices than others, no matter the re-

construction algorithm. This is a normal behaviour which is just

the result of a load balancing. Although we do not force a delay

here, there can exist threads faster than others, for example,

because a core can be shared by one of our threads and a process

that belongs to the operating system in a certain moment. This

could also happen in the dynamic scheme, but in this case fast

threads must wait for the slow ones when I/O buffers need to be

prepared. Therefore, the advantage that fast threads have is

dropped.

Comparison with GPUs
In the last few years, GPUs have shaken up the HPC field

because of their tremendous computing power at an incomparable

performance-to-cost ratio [23]. The ET community has rapidly

adopted them and a number of GPU approaches for fast

tomographic reconstruction have been proposed [24–29]. Here

we compare our optimized multicore implementations of WBP

and SIRT with the fastest GPU implementations reported thus far

[27–29]. To facilitate the comparison, the same datasets as in [27–

29] were used. The computers where we ran the experiments were

the Q9550 and the E5405, whose characteristics have been

already shown in previous sections. Table 4 presents the results for

WBP, while Table 5 shows the ones obtained in SIRT. Again, the

processing times (in seconds) are the mean of five runs. Only one

iteration was selected for SIRT. For a fair comparison, we only

took into account the reconstruction times, hence ignoring I/O

times. Both WBP and SIRT were launched with the best

configuration, that is, basic optimizations plus vector processing

plus one thread per core.

In the case of WBP (Table 4), four different datasets were

picked. Three of them were composed of (60, 90 and 120,

respectively) 1024|1024 projection images. All these datasets

yielded volumes with dimension 1024|1024|1024 voxels. The

fourth dataset had 61 projection images of size 2048|2048

(VV2K) and was used to generate a volume whose size was

2048|2048|960 voxels.

In the case of SIRT (Table 5), three datasets were selected.

They comprised 61 projection images of size 356|506 (Dataset A),

712|1012 (Dataset B) and 1424|2024 (Dataset C), respectively.

These datasets yielded volumes with dimensions 356|506|148,

712|1012|296 and 1424|2024|591 voxels, respectively.

In general, the performance of our WBP is very close to that

published in [27]. If we focus on SIRT, our implementation is

faster than those appeared in [28] and [29].

Comparison with a Standard Package
In this section, we compare our approach with a standard

software package in the field of electron tomography: IMOD [49]

(http://bio3d.colorado.edu/imod). It is equipped with parallel

implementations of WBP and SIRT. Essentially, they split the

volume to be computed into chunks, which are subsequently

reconstructed in parallel and finally reassembled to yield the

definite tomogram.

In this comparison, we focused on the turnaround time, i.e. the

total time that includes that used for reading input datasets and

writing the results. The experiments were run on the computer

based on Intel Core 2 Quad processor Q9550 used previously,

which had two SATA hard disks at 7200 rpm. The parallel

implementations in IMOD were used to exploit the four cores

available in the computer. In our approach, the best configuration

for processing (i.e. basic optimizations, vector processing, one

thread per core, dynamic load balancing with asynchronous I/O)

was set. The I/O buffers were configured to 128 entries and the

possibility of taking advantage of the two hard disks was also

exploited.

The experiments consisted of reconstructing volumes of

1024|1024|256 and 2048|2048|256 from 140 images of
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1024|1024 and 2048|2048, respectively, with WBP and SIRT.

In the particular case of SIRT, only 5 iterations were employed for

this evaluation. In order to obtain fair time measurements and

avoid distortion, the disk cache was emptied between runs.

The results of these experiments are summarized in Table 6.

They clearly show that our approach outperforms IMOD. In the

case of WBP, ours is faster than IMOD by a factor ranging from

around 2.55 to 4.25, depending on whether one or two disks are

used, respectively. In the case of SIRT, our approach achieves

a remarkable speedup factor of 7.5 with regard to IMOD. As

discussed previously, the influence of using one or two disks in

SIRT is negligible. It is important to note that the parallel

implementations available in IMOD rely heavily on I/O

operations, which severely penalizes the performance. The good

performance of our implementation stems not only from the

optimizations at the basic, vectorization and multithreading levels,

but also from the improvements to minimize I/O latencies. This is

confirmed by the difference between the reconstruction time (Trec:)

and the actual program time (Tprog:) in Table 6, especially in

SIRT.

Conclusions
In this work, we have presented a detailed description and

evaluation of a fast approach to tomographic reconstruction on

multicore computers. We have developed highly optimized

implementations of the algorithms WBP and SIRT. Different

kinds of optimizations have been applied, which we have

organised into three categories: (1) basic optimizations to build

fast, sequential algorithms that could be used as a point of

departure for parallel versions, (2) vector processing to take

advantage of the vector capabilities of modern processors and (3)

multithreading to capitalize on the various cores provided by

multicore computers. Thanks to all these improvements, speedups

of up to 160x have been reached. As a consequence, standard

volumes can be reconstructed in a few seconds using WBP and

several minutes through SIRT. This makes our algorithms

competitive with current GPU solutions and suitable for real-time

tomographic environments.

Apart from enhancing the reconstruction time, this work has

also focused on two other topics: how to access the hard disk

efficiently and how to balance the workload among the available

cores. Regarding the first matter, we have proposed the use of I/O

buffers in order to minimize the number of disk accesses. Also, we

have designed a mechanism to overlap I/O operations with

computation that allows reading and writing in parallel when two

different hard disks are employed. As a result of these optimiza-

tions, the program time (i.e. wall time) approaches the re-

construction time. With regard to the second topic, we have

elaborated a scheme which dynamically assigns more workload to

the fastest threads, hence adapting itself to the system where it

runs. This fact leaves the door open to use our scheme in

heterogeneous architectures, i.e. those equipped with devices with

different computing power. In addition, the tomographic re-

construction problem is also susceptible to application of more

sophisticated dynamic load balancing techniques developed in the

HPC field.

The approach to tomographic reconstruction discussed here

does not need any special hardware (e.g. GPU or cluster) to run:

just a standard computer with a multicore processor is required.

This facilitates the distribution and usage of the software (i.e. the

user will not have to worry about libraries and will not have to deal

with a cluster). Furthermore, the comparative study carried out

here has revealed that our approach outperforms a standard

package in the field. It is thus expected to be very useful in

laboratories of structural biology as the people who work there

demand fast and easy to manage software solutions.

In the future, this work could be extended by using the new

SIMD instructions introduced by Intel in their most modern

processors. These instructions are known as AVX (Advanced

Vector eXtensions) and are able to process eight single-precision

floating-point numbers at a time. This would let us reconstruct

eight slices at once, therefore potentially doubling the speed of our

algorithms. On the other hand, many of the optimizations

analysed here could be applied to other reconstruction algorithms

(e.g. ART (Algebraic Reconstruction Technique)), other opera-

tions involved in the ET image processing workflow (e.g. noise

reduction) or other scientific problems that also require a signifi-

cant processing time.

Supporting Information

Figure S1 Description of the optimization procedure on
multicore computers. (left) Flowchart of the optimization

procedure. There are two blocks of optimizations. In the first one,

the basic optimizations intend to speed up the code on a single

CPU core. Then, code modifications to exploit vector processing

are made. Going back and forth between the basic optimizations

and vectorization is often needed for fine code tuning (e.g. to

optimize access to cache memory to read/write data vectors). The

second block of optimizations intends to take advantage of the

power of the multiple CPU cores available in the computer. The

first set of modifications here relies on multithreading, which splits

the general problem into tasks that are then mapped and executed

in parallel on the different cores. The second set then focuses on

disk access optimization, though this step is closely related to the

previous one. (right) sketch of a computer architecture based on

multicore processors. (bottom-right) Modern computers ship with

several multicore chips (typically 2–4) configured to share

a centralized memory. Each multicore chip contains several

computing CPU cores (2–8) sharing a cache memory (typically the

third level, L3). (top-right) Internally, each single CPU core

consists of several functional units (FUs) that execute the scheduled

micro-instructions. The basic optimizations intend to maximize

the use of FUs, minimize the latencies and waiting gaps of micro-

instructions, and guarantee an optimum exploitation of cache

memory (typically, two levels within the CPU core). One of the

FUs is the vector unit, which follows the SIMD execution model

shown in Figure 5 of the main text. Vectorization aims to make the

most of the vector unit by performing the same operation on data

vectors.

(TIF)

Table S1 I/O analysis.

(PDF)
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