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Abstract

Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and
are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-
coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are
also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through
various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449
RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites
pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity
with ‘‘higher’’ metazoans. Moreover, our study indicates that mobile element insertions play an important role in the
evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA
pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as
much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the
Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the
orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on
these shorter evolutionary time scales.
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Introduction

The ribosome is a protein-RNA complex, fundamentally the

same in all three domains of life, and is the crucial cell component

for protein synthesis. X-ray crystal structures of ribosomal subunits

were used to determine ribosome structure and function in detail

[1–3]. Ribosome assembly is a complex process that includes

coordinated activation of more than 200 non-ribosomal factors

and many small nucleolar RNAs (snoRNAs), modification of

ribosomal RNA (rRNA) and its correct assembly with ribosomal

proteins (RPs) [4,5]. RPs are evolutionarily conserved [6,7]. 50 to

54 RPs have been found in eubacteria, 57 to 68 in archaea and 79

to 81 in eukaryotes [8], while the analysis of 66 complete genomes

revealed that 34 RPs are common to all living organisms [7].

Many RPs possess additional, extraribosomal functions in cells [9].

They are involved in many processes within the ribosome system,

surveillance of ribosome synthesis but also in replication and

regulation of cell growth, apoptosis and cancer [8]. Due to the

presence of practically the same RPs in all eukaryotes and their

ancient origin, ribosomal protein genes (RPGs) are a suitable

model for studying intron dynamics [10]. A recent study on RPGs

showed that trends of intron gain and loss differ across species in a

given kingdom, but appear to be more consistent within subphyla

[11]. Analysis of a partial set of highly conserved intron sites in the

genome of the sponge Amphimedon queenslandica revealed that intron

position and phase are conserved relative to other metazoans [12].

The role of introns in eukaryotic genomes is still not well

understood. Some non-protein-coding RNAs (ncRNAs) are

transcribed from introns in protein-coding or non-protein-coding

genes. The accumulating genomic data strongly confirm tendency

of snoRNAs to colonize RPGs and ribosome related genes in

eukaryotes [13] and suggest that these genes have conserved

snoRNAs across mammals [14]. These snoRNAs are involved in

the modification of rRNAs, small nuclear RNAs (snRNAs) and

transfer RNAs (tRNAs) in archaea [15–17]. Recent findings have

demonstrated that snoRNAs can also target mRNAs and may

possess microRNA-like functions [18–20]. The major classes of

snoRNAs include C/D box snoRNAs, which primarily guide the

29-O-methylation of target rRNAs; H/ACA box snoRNAs, which

typically guide pseudouridylation of target rRNAs and small Cajal-

body-specific RNAs (scaRNAs) which typically target snoRNAs.

snoRNAs in basal metazoans are still poorly characterized.

Because snoRNAs were identified in Archaea and Eukarya, it

was surprising that the only systematic ncRNA genome annotation

among basal metazoans found merely eight snoRNAs, showing

that host genes of snoRNAs in Trichoplax adhaerens are not
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conserved in human [21]. This number is exceedingly lower than

in ‘‘higher’’ animals. This is in accordance with merely eight

microRNAs (miRNAs) identified in the sponge A. queenslandica,

which may indicate that metazoan complexity correlates with an

increasing number of miRNAs [22]. The observation that recent

introns, which are present in the human Nme6 gene, but not in the

sponge ortholog, contain miRNAs also supports that thesis [23].

snoRNAs are believed to be the most ancient ncRNAs [24]. Many

examples of ncRNAs displaying both snoRNA and miRNA

characteristics suggest a possible evolution from one type to the

other [25]. snoRNAs are mobile genetic elements, often

transferred through retrotransposition, and can therefore partic-

ipate in diversification and enrichment of transcriptomes through

various mechanisms such as intron/exon gain/loss [26]. Sponges

(Porifera) are basal metazoans which branched off first from the

common ancestor of all animals. Recent analysis showed that

sponges are similar to other animals in terms of genome content,

structure and organization and that sponges have a wide

repertoire of genes, many of which are involved in diseases in

more complex metazoans [12,27]. Good examples are biochem-

ical properties and biological functions of a vertebrates’ non-

metastatic multifunctional enzyme present in sponges, which

suggest evolutionary origin of these traits even before the

appearance of true tissues and the origin of tumors and metastasis

[28]. RPs do not appear to be an exception. The overall sequence

conservation between sponge and rat RPs is 80% or higher [29].

Furthermore, cis-regulatory architecture in promoters of RPGs

appears not to be drastically changed from sponge to human [30].

Available data suggest that sponges changed little during metazoan

evolution and are probably the most plausible model for studying

gene/protein structure in ancestral metazoan. Our goal was to

characterize intron dynamics in sponge RPGs by checking the

intron sequences for the presence of snoRNAs and other over-

represented elements. Because many snoRNAs and miRNAs have

been found to exist in one or a small number of organisms,

suggesting that they are dynamic and have a fast evolving nature,

they are ideal for providing insight into dynamics of sponges’ RPG

introns, and show how they changed during metazoan evolution.

Our results show that sponge A. queenslandica RPG introns are

similar in many structural characteristic to ‘‘higher’’ metazoans.

Furthermore, the sponges A. queenslandica and S. domunucula show as

much conservancy of RPG intron positions between each other as

between themselves and human. However, when we compared

RPG introns with three species from the genus Suberites of sponges,

there was a discrepancy in snoRNA pools between the genus

Suberites and A. queenslandica. Even though the intron positions in

the Suberites genus are conserved, there are significant differences in

certain RPG introns which indicate that they are dynamic even on

these shorter evolutionary time scales.

Materials and Methods

To identify A. queenslandica expressed sequence tags (ESTs)

encoding homologs of human RPs TBLASTN (NCBI, NIH,

Bethesda, MD, USA: http://www.ncbi.nlm.nih.gov) was used.

The set of sponge RPGs was obtained using the NCBI WGS

(whole genome shotgun) Trace Archive as well as the assembled

draft genome available at http://spongezome.metazome.net/cgi-

bin/gbrowse/amphimedon/ [12]. The GC content of RPGs was

calculated by CODONW (http://codonw.sourceforge.net/), while

the GC content of the whole genome was calculated using geecee

from the EMBOSS suite [31]. ClustalX [32] was used for multiple

alignments of RPs from sponge and their orthologs as well as for

alignments of concatenated RPs from sponge and nine other

species (Homo sapiens, Strongylocentrotus purpuratus, Drosophila melano-

gaster, Caenorhabditis elegans, Nematostella vectensis, Trichoplax adhaerens,

Monosiga brevicollis, Saccharomyces cerevisiae and Arabidopsis thaliana).

One RPG from T. adhaerens, four from N. vectensis and ten from M.

brevicolis were assembled manually from data available on the

NCBI Trace Archive to give a total set of 55 orthologs from nine

organisms. Due to the lack of a fully annotated set of RPGs from

the nine organisms mentioned, it was not possible to analyze the

entire set. RPGs analyzed are listed in Table S1. Statistical data

were extracted from GeneDoc (http://www.psc.edu/biomed/

genedoc). MEME was used for searching for over-represented

motifs in RPG introns [33]. MEME searches for the most

significant motifs in the input sequences and reports an E-value for

each motif it finds. For this study, the search was limited to finding

the top 30 motifs that are 5–50 bp long. To identify snoRNAs in

introns of RPGs snoSeeker was used [34]. To check whether

snoRNAs match known snoRNAs’ motifs we used Rfam [35], the

snOPY database (http://snoopy.med.miyazaki-u.ac.jp/) and the

snoRNA-LBME database [36]. The secondary structure of

snoRNAs was computed using the program RNAfold from the

Vienna RNA Package [37]. To check for presence of snoRNAs in

sponge Suberites domuncula RPGs, the corresponding and neighbor-

ing introns were sequenced. All primer sequences used in this

study are given in Table S2. The same primers were used to

sequence the corresponding RPG introns of Suberites ficus and

Suberites pagurorum from genomic DNA isolated as previously

described [38]. Both the concatenated sequences from each

organism and individual introns were aligned using ClustalX [32]

and statistics on the alignments extracted through the infoalign

program of the EMBOSS suite [31]. For isolation of small RNAs,

fresh specimens of S. domuncula were cut into pieces, frozen in

liquid nitrogen and ground to a fine powder. Approximately 3 mg

of small RNAs were obtained from 260 mg of tissue powder by the

mirPremier microRNA Isolation Kit (Sigma), according to the

manufacturer’s protocol for plant tissue. Polyadenilation of 1 mg of

small RNAs was achieved by incubation with 5 U of the E. coli

Poly(A) Polymerase (BioLabs) for 15 minutes at 37uC. All 12 ml of

the poly(A) tailing reaction mixture was then reverse transcribed

using the SuperScript II Reverse Transcriptase (Invitrogen) and a

modified poly-d(T) primer (modpolydT). The resulting cDNA was

diluted to 100 ml and each PCR was performed on 3 ml of cDNA

using the HotStarTaq DNA Polymerase (Qiagen), a universal

reverse primer (uni) and forward primers specific for predicted

snoRNAs. The products were cloned into the pGEM-T vector

(Promega). Positive clones were sequenced using the ABI PRISM

BigDye Terminator v3.1 Ready Reaction Cycle Sequencing Kit

and T7/pUC primers.

Results and Discussion

Structural characterization of sponge A. queenslandica
RPG introns

Full-length cDNA sequences coding for 79 RPs were identified

in the marine sponge A. queenslandica (AQ) genome, and the gene

structure for 78 of them was completely ascertained. The RPS14

gene was not completely determined due to the absence of WGS

sequences indispensable for assembling one long intron. This gene

was not considered in calculating the average values shown in

Table S3. 76 RPGs from cnidarian N. vectensis and 73 from

placozoan T. adhaerens were used as control. Sponge AQ RPGs

contained an average of 4.01 introns. The RPP0 gene had the

largest number of introns - 10, while the only gene without introns

was RPL35 (Table S3). In 78 complete RPGs a total of 312 introns

with an average length of 164 bp were found. However, three

Ribosomal Protein Gene Introns in Sponges
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quarters of the introns were shorter than the average value (Fig. 1),

which indicates that only a few long ones contribute considerably

in accretion of average intron length. The median value of RPG

intron length was 68 bp, which is slightly lower than the median

intron length for the published draft genome (81 bp) [12]. The

longest was the second intron of the RPS27 gene (2263 bp), and

the shortest one was the first intron of the RPS21 gene (37 bp).

Human RPGs have significantly longer introns of 760 bp on

average [39]. Transposable element insertions play an important

role in the evolution of intron size [40]. Therefore we checked for

over-represented elements in sponge AQ RPG introns. We found

24 copies of a tripartite element in ten introns of ten RPGs present

in one to four copies (Fig. 2). The average intron length of these

ten introns was 780 bp, and each one of them is longer than

500 bp. Only 23 of 312 sponge RPG introns are longer than

500 bp, which indicates that these element insertions contribute to

sponge AQ RPG intron length. The average coding sequence

(CDS) length did not differ as drastically as intron length. AQ had

an average of 504 bp long CDSs, while human had 521 bp [39].

Most AQ introns, 285 of them, were found between translational

start and stop codons, 26 introns were found in the 59 untranslated

region (59 - UTR) and only one in the 39 UTR of the RPS9 gene.

Most of the introns found between translational start and stop

codons, were phase 0 (52%), 27% were phase 1 and 21% were

phase 2. These results support the so-called ‘‘50/30/20 rule’’ of

intron phase distributions. It has been found that across many

studied organisms, approximately 50% of introns are phase 0,

30% are phase 1 and 20% are phase 2 [41]. Almost all introns

found in sponge AQ RPGs start with GT and end with AG (so

called GT-AG introns). Only 2% were GC-AG introns, and AT-

AC introns were not found. The average guanine and cytosine

(GC) content of introns was 31.2%, which is considerably smaller

than the GC content of coding sequences (44.2%). Moreover, a

higher GC content in exons was observed in every RPG, without

exception (Table S3). A similar effect has been found in human,

where exons generally also have higher GC content than introns

and intergenic regions [42]. It has also been shown that the sponge

S. domunucula (SD) RPGs have a preference for C- and G- ending

codons [43] and that the genome has a GC content of 39%. Based

on our estimate of a similar amount of GC content (36%) in the

genome of AQ we predict that this effect is probably also

pronounced in this Demospongiae.

To further explore introns’ characteristics, 55 RPGs from

sponge AQ were compared with orthologs from each of the

following nine organisms whose whole genomes have been

sequenced: H. sapiens (HS), S. purpuratus (SP), D. melanogaster

(DM), C. elegans (CE), N. vectensis (NV), T. adhaerens (TA), M.

brevicollis (MB), S. cerevisiae (SC) and A. thaliana (AT). The total

number of analyzed introns within the coding regions of the RPGs

in ten organisms was 1491 (Table S4). There are significant

differences in intron number and length among these organisms

causing variation in gene size. Characteristics of each RPG from

model organisms used in this research (that are not included in

Table S3) are given in Table S1. The position and phase of RPG

introns were also compared in these ten organisms. The highest

ratio of ‘‘unique’’ introns, those that are specific for a particular

species, was found in yeast, 79.4%, and the lowest in placozoan,

3.1%. In all analyzed metazoans, except fruit fly and nematode

worm, the ratio of ‘‘unique’’ introns was less than 10% (Table S4).

Most positions, phases, and numbers of RPG introns, as well as

RPs themselves (Table S5), were not drastically changed in

metazoans from sponge to human. Fruit fly and nematode worm

are the exceptions. 84.8% of sponge RPG introns are found in

humans and 76.2% of human RPG introns are also present in

sponge (Table S6). Our results support previously observed

extensive intron loss in fruit fly and nematode worm [44].

Intron-sharing among all ten organisms is shown in Fig. 3. The

highest number of RPG introns is shared between human, sea

urchin, sea anemone, placozoan and sponge. The same organisms

occur in other highly represented combinations of shared introns.

Sponge AQ RPG introns show similarity with other metazoans

in exon/intron GC content, they follow the so-called ‘‘50/30/20

rule’’, mobile element insertions play an important role in the

evolution of their size and show position conservancy with other

metazoans, which may indicate their functional importance.

Identification of snoRNAs in RPG introns of sponges
Many snoRNAs were found within introns of vertebrate RPGs.

In human, 57 snoRNAs were identified within introns of 28 RPGs

[36]. The initial search in 316 introns of 79 sponge AQ RPGs, for

which we used snoSeeker, with non-stringent search parameters,

produced a candidate set of 16 C/D box snoRNAs and 2 H/ACA

snoRNAs (Table S7). The corresponding 17 introns, as well as the

neighboring ones, were sequenced in sponge SD to determinate

dynamics of snoRNAs in sponges. The total set of 53 introns

produced a candidate set of 9 C/D box snoRNAs and 2 H/ACA

snoRNAs (Table S7). Furthermore, the corresponding 40 introns

were sequenced in S. ficus (SF) and S. pagurorum (SP) which

produced a candidate set of 9 C/D box snoRNAs and 2 H/ACA

snoRNAs in each of the sponge (Table S7). With a more detailed

analysis we were able to identified only three snoRNAs in all four

sponges that match a sequence motif of known snoRNAs available

on Rfam, the snOPY database and/or the snoRNA-LBME

database. The first snoRNA is the sponge ortholog of the human

C/D box snoRNA SNORD100 (HBII-429) found in the RPS12

gene. We analyzed introns of RPS12 genes in vertebrates (Rattus

norvegicus, Gallus gallus, Danio rerio, Takifugu rubripes) and inverte-

brates (D. melanogaster, C. elegans, N. vectensis, T. adhaerens) and

checked for the presence and the position of the SNORD100

ortholog. There is an obvious tendency of this snoRNA to colonize

the RPS12 gene from basal metazoans to ‘‘higher’’ vertebrates

(Fig. 4A). Only in animals with intensive intron loss, SNORD100

was not identified in the RPS12 gene. Its expression was verified

experimentally. SNORD100 is predicted to guide the 29-O-ribose

methylation of guanine at position 436 in human 18S rRNA [45].

This target sequence of 18S rRNA is highly conserved between

human and sponges investigated (Fig. 4B). The sponge

SNORD100 methylation guide sequence as well as the C/D

box were also well conserved (Fig. 4C). The other conserved

snoRNA was found in the third intron of the RPL5 gene in sponge

AQ and in the same intron of SD, SF and SP RPL5. This snoRNA

is an ortholog of the human C/D box snoRNA SNORD24 (U24),

found in the second intron of the RPL7A gene. It is predicted to

guide the 29-O-ribose methylation of 28S rRNA cytosines at

position 2338 and 2352 in human [46]. Sponge orthologs show

different levels of conservation with human SNORD24 elements

(Fig. 4D). Only one methylation guide site is conserved in all four

sponges while target sequences of 28S rRNAs are well conserved

in all of them. Interestingly, we confirm expression of this snoRNA

in SD, which indicates a possible appearance of a novel snoRNA

target or just loss of an old one. The third conserved snoRNA was

found in the fourth intron of the sponge AQ RPP0 gene and is

most similar to human SNORD83A/SNORD83B (U83A/U83B)

found in the fifth and seventh intron of the human RPL3 gene,

respectively (Fig. 4F). In SD, SF and SP this snoRNA was found in

the second and last introns of the RPP0 gene, but not in the intron

that contains this snoRNA in AQ. More interestingly, another

snoRNA is located in the last intron of the RPP0 gene of AQ.

Ribosomal Protein Gene Introns in Sponges
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Target RNA(s) of this snoRNA are still unknown [36]. All sponges

have H/ACA box snoRNAs conserved in the RPL13A gene. While

AQ possesses only one copy, in SD, SF and SP this snoRNA was

found duplicated in the neighboring intron. The SD copies are

94% identical to each other, while one shares only 48% and the

other 49% identical nucleotides with those from AQ. Although

overall not well conserved, all essential snoRNA elements and

target sites are maintained (Fig. 5). Some of the other snoRNAs,

whose expression was verified experimentally show stable snoRNA

secondary structures with conserved snoRNA parts. In the last

intron of the RPS19 gene the single snoRNA with a potential

target rRNA was found (Fig. 6). This target has not yet been

described as a methylation site in human so we can only speculate

about the possible function of this snoRNA.

Both trans-duplication, duplication of snoRNA from introns to

distant genomic locations, and previously mentioned cis-duplication,

duplication of snoRNA to a neighboring intron of the same gene,

were already observed in, most notably, nematodes [47] and platypus

[48]. This is in accordance with a model for the evolutionary origin of

guide snoRNAs which states that the major source of novel snoRNAs

are duplications of the ancestral snoRNA gene [49]. It is interesting to

note that all of the 18 identified snoRNAs in the sponge AQ were

present in single copies in RPGs while in SD, SF and SP three were

present in a single copy and four were found duplicated in

neighboring introns. The diverse patterns of snoRNA loci in different

sponges’ RPGs are possibly a consequence of the mobility of

snoRNAs [50]. One of the mechanisms has been shown to be

retroposition [47,48]. It is known that snoRNAs can change their

genomic location even within relatively short (vertebrate) evolution-

ary time scales [51]. Mobile genetic sequences play an important role

in the diversification of mammalian genomes, for example, through

mechanisms such as exonization and intronization [40]. These

mechanisms are probably also present in sponges. Differences in

snoRNA pools in the orthologous RPGs of the SD and AQ sponges is

also accompanied with differences in conservation of intron position.

87.5% of SD RPG introns analyzed were present in AQ, while 86.7%

of SD RPG introns were present in human. These two Demospon-

giae belong to different clades, AQ to marine Haplosclerida (G3) and

SD to the G4 clade [38]. Although it is difficult to resolve the exact

time of the split of these clades, it has been estimated to have occurred

Figure 1. Size distribution of the RPG introns in sponge A. queenslandica (black bars), cnidarian N. vectensis (gray bars), and
placozoan T. adhaerens (white bars).
doi:10.1371/journal.pone.0042523.g001

Figure 2. Over-represented elements in sponge A. queenslandica RPG introns composed of three motifs. Full tripartite motifs are circled.
The E-value and combined p-value were extracted from MEME.
doi:10.1371/journal.pone.0042523.g002

Ribosomal Protein Gene Introns in Sponges
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600 million years ago [52]. To examine dynamics of sponges’ RPG

introns on a smaller time scale, we sequenced the introns of two

additional species from the Suberites genus: S. ficus (SF) and S. pagurorum

(SP). The total of 126 RPG introns examined (available as Text S1) in

these three more closely related species are 79.7%, 80.3% and

64.7% (for SD, SF an SP, respectively) conserved in relation to the

Figure 3. Combinatorial grouping of 10 species according to the number of shared introns. Gray squares indicate presence of introns.
doi:10.1371/journal.pone.0042523.g003

Figure 4. C/D box snoRNAs conserved in sponges and human. (A) Intron-mapping of RPS12 genes from representative species. White
triangles indicate positions of the introns and gray triangles indicate presence of SNORD100. The number in the triangle denotes the intron phase
and the number in brackets intron length. The thin line indicates the 59 UTR region. (B) The target site of SNORD100 in 18S rRNA is marked with an
asterisk. (C) Alignment of SNORD100 orthologs from various metazoans. (D) Alignment of SNORD24 orthologs. One methylation guide site in S.
domuncula, S. ficus and S. pagurorum is not conserved. (E) Target sites of SNORD24 are conserved in sponge and marked with dot and asterisk. (F)
Orthologs of SNORD83 with conserved methylation (Me) guide site of unknown target.
doi:10.1371/journal.pone.0042523.g004

Ribosomal Protein Gene Introns in Sponges
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consensus sequence from all three species (see Fig. S1). All examined

RPG intron positions were conserved in Suberites species, which

indicates that on this shorter evolutionary time scale mobility of

snoRNAs is not a significant factor that determines intron dynamics.

However, some introns possess significant variations from the

characterized consensus, for example an insertion so large (see Fig.

S1 and Fig. 7) that the fourth intron of the SF RPL5 gene is only

17% conserved in relation to the consensus sequence of all three

Suberites species. Many mechanisms and factors influence intron

characteristics (e.g. see introduction in [53]). Up to date no genome

of the Suberites genus has been sequenced, nor a ncRNAs library

made, therefore it is very speculative to hypothesize on the origin of

these insertions, i.e. if for example these insertions originating from

mobile genetic elements and/or parts of the genome inserted during

crossover.

Figure 5. H/ACA snoRNAs conserved in the fifth and sixth introns (I5, I6) of the RPL13A gene in S. domuncula (SD), S. ficus (SF) and S.
pagurorum (SP) and in the sixth intron of the same gene in A. queenslandica (AQ). All essential snoRNA elements are conserved and a
putative pseudouridylation (PU) guide site is designated.
doi:10.1371/journal.pone.0042523.g005

Figure 6. A potential 28S rRNA target (A) and secondary structure of a novel snoRNA found in the last intron of the RPS19 gene in S.
domuncula (B), S. ficus (C) and S. pagurorum (D).
doi:10.1371/journal.pone.0042523.g006

Ribosomal Protein Gene Introns in Sponges
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The apparent lack of the majority of well defined human RPG-

sited snoRNA orthologs in introns of sponge RPGs could be

attributed either to non-conserved snoRNAs and their targets or

snoRNA targets being well maintained and snoRNAs simply

situated elsewhere in the genome. We checked 52 targets of the

remaining 53 snoRNAs found in introns of RPGs in human and

compared them with counterpart AQ rRNA sequences. Most (40)

of these rRNA’s target sequences are well conserved in sponge,

three targets of three snoRNAs are unknown, two targets are not

determined due to incomplete sponge 28S rRNA sequences, and

seven are poorly conserved. Presence of the majority of target

rRNA sequences lead us to seek out whether these snoRNA

orthologs are nested somewhere else in the genome of AQ. We

checked for orthologs of 19 C/D box snoRNAs with conserved

target rRNA. Six conserved orthologs were found (see Fig. S2).

This indicates that the total set of human RPG-sited snoRNA

orthologs in sponge is probably higher than the set present in RPG

introns which is in accordance with their dynamic nature.

From all these results we can conclude that sponge RPG introns

share many structural characteristics with ‘‘higher’’ metazoans.

These similarities are probably important because RPG introns

function as carriers of snoRNAs. Intensive mobility of snoRNAs is

probably the reason why sponges from different genera show

discrepancy in snoRNA pools in orthologous RPG introns. Their

mobile nature is also a plausible reason for almost equal RPG

intron positions’ conservation between sponges from different

genus as between sponges and human, which indicates their more

important role in diversification and enrichment of transcriptomes

through mechanisms such as intron/exon gain/loss. Within the

same genus large insertions in orthologous RPG introns were

detected. Mechanisms of intron dynamics on this shorter

evolutionary time scale is influenced by factors not correlated

with mobility of snoRNAs.

Supporting Information

Figure S1 Percentage change from the consensus se-
quence of RPG introns from three species of the Suberites
genus. Introns (4L28 through 2L14 on the y axis) from S. domuncula

(SD), S. ficus (SF) and S. pagurorum (SP), were aligned and the percent

change from the resulting consensus sequence is shown per species.

The average column shows the average percent change per intron

for all three species. The last set of bars is the percent change from

Figure 7. Multiple alignment of selected introns from three species of the genus Suberites: S. domuncula (SD), S. ficus (SF) and S.
pagurorum (SP). A large insertion is shown in the fourth intron of the SF RPL5 gene (A), changes in first introns of RPS15A gene (B), smaller changes
between fifth introns of the RPS18 gene (C) and relatively high conservation in the sixth intron of RPP0 gene (D).
doi:10.1371/journal.pone.0042523.g007
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the consensus for the concatenated sequences of all introns from a

species (CONCAT on the y axis).

(TIF)

Figure S2 Human (HS) RPG-sited snoRNAs identified in
sponge (AQ) introns of non-RP genes. All essential snoRNA

elements and methylation (Me) guide sites are designated.

(TIF)

Table S1 Characteristics of 55 RPGs from seven model
organisms.
(DOC)

Table S2 Sequences of primers used in this study.
(DOC)

Table S3 Characteristics of RPG introns in three basal
metazoans.
(DOC)

Table S4 Comparison of 55 RPGs in ten organisms.
(DOC)

Table S5 Percentages of amino acid identity (above
diagonal empty boxes) and overall similarity (below
diagonal) extracted from GeneDoc.
(DOC)

Table S6 Percentages of intron positions shared among
organisms.
(DOC)

Table S7 The sequences of the C/D and H/ACA box
snoRNAs identified in RPG introns of sponges A.
queenslandica (Aq), S. domuncula (Sd), S. ficus (Sf)
and S. pagurorum (Sp). Conserved snoRNA elements are

boxed and predicted methylation guide sites are shaded.

Experimentally verified snoRNAs are marked with asterisk (*).

Lowercase letters indicate nucleotides that were not sequenced due

to the snoRNA cloning strategy. Letters in brackets indicate

nucleotides which do not belong to snoRNA, although they were

predicted by snoSeeker.

(DOC)

Text S1 126 introns sequences from three Suberites
species: S. domuncula (SD), S. ficus (SF) and S.
pagurorum (SP).

(TXT)
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