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Abstract

Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem.
Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further
research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate
sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes
from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new
architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The
SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived
from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and
relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several
modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro,
BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method
obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at
0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6,
which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the
propensity profiles generated by BEST and several other methods.
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Introduction

Identification of immunogenic regions/segments in a given

antigen protein chain finds important applications in immuno-

therapies [1,2]. Experimental search for these regions is work and

resource intensive and would benefit from guidance offered by

computational methods that accurately identify these segments.

Although such accurate methods are already in place for the

prediction of T-cell epitopes [3,4], further research is needed to

develop accurate predictors of the B-cell epitopes [3,5]. The B-cell

epitopes are categorized into continuous (linear) and discontinuous

(conformational). The majority of B-cell epitopes are conforma-

tional [6], however, the computational approaches concentrate

mostly on the prediction of ‘‘easier’’ linear epitopes [3,7].

The first attempts to predict the antigenic determinants

concerning linear B-cell epitopes from protein chains date back

to the 1980s [8–12]. These methods were relatively simple,

monoparametric (based on a single propensity such as hydrophi-

licity), and were limited to small protein datasets. In the 1990s,

researchers investigated the usefulness of multiple propensities

including hydrophilicity, solvent accessibility, flexibility, and

secondary structure propensities, for the B-cell epitope prediction

[6,13–15]. Results generated in these works were used to develop

the BEPITOPE method [16], which combines multiple propen-

sities. The predictive quality of single propensity-based methods

was critically evaluated by Blythe and Flower [5], which motivated

further development in this area. The last decade observed an

influx of new methods that use more advanced models for the

prediction of the linear epitopes. The BepiPred method [17]

applies a hidden Markov model which takes two propensity scores

as its inputs. A number of machine learning-based model were

recently developed, from decision trees and k-nearest neighbor

that utilized a combination of multiple propensities and sequence

complexity as inputs [18], to neural network-based ABCPred [19]

that performs predictions directly from protein chain. The later

method is designed to recognize epitopic peptides with 20 or fewer

(i.e., 10,12,14,16 and 20) amino acids (AAs). The newest sequence-

based predictors of continuous B-cell epitopes exclusively use

support vector machine (SVM) models. They include: (1) a

method by Chen et al. [20] that predicts 20-mer peptides using a
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new AA pair-based antigenicity scale [20]; (2) BCPred [21] that

predict the 12, 14, 16, 18, 20, and 22-mer long epitopes directly

from sequence using a new type of string kernel-based SVM; (3)

COBEpro [22] which utilizes a two-stage design with an SVM

that takes novel sequence similarity scores as inputs to predict

variable-size peptides in the first stage and a second stage that

combines these fragments to predict epitopes in full chains; and (4)

BayesB method [23] that predicts epitopes of diverse lengths (from

12 to 20-mers) using position specific scoring matrix (PSSM)

generated with PSI-BLAST [24]. We note that COBEpro was

extended to predict conformational epitopes via its second stage.

Moreover, one sequence-based method, CBTOPE [25], was

proposed for the prediction of conformational epitopes. This is

also an SVM-based predictor that utilizes multiple propensities

and sequence-derived inputs including composition and colloca-

tion of AAs.

There are also a few predictors that use protein structure as

their input and which predict the conformational epitopes. Early

structure-based methods use relatively simple scoring-based

approaches. They include CEP [26] that is based on scoring

surface AAs using their solvent accessibility, DiscoTope [27],

which uses surface/solvent accessibility, contact numbers, and AA

propensity scores, and SEPPA [28] that combines a new

propensity score with information about solvent accessibility and

the packing density of AAs. More recent methods use machine

learning models to perform predictions. These include PEPITO

[29] that applies linear regression to AA propensity scores and

solvent accessibility quantified using half sphere exposure; EPSVR

[30] that uses Support Vector Regression and several inputs

including epitope propensity scores, contact numbers, secondary

structure composition, conservation, side chain energy surface and

planarity scores; a method by Zhang et al. [31], which utilizes

random forest model; and a predictor by Liu and Hu [32] that

uses logistic regression model and information concerning B-

factors and relative accessible surface area. Moreover, in recent

years two new types of approaches were developed. The first,

called Bepar [33] is based on association patterns between

antibody and antigen residues and the other, EPMeta [30], is a

consensus-based method, which combines multiple discontinuous

epitope predictors. Finally, Epitopia [34,35] is a machine learning-

based approach which utilizes Naı̈ve Bayes to process information

extracted based on physico-chemical and structural-geometrical

properties from a surface patch defined using solvent accessibility.

Since this method allows performing predictions from sequence

alone, we include it in our comparative analysis.

Our aim is to develop an accurate computational model for the

prediction of both linear and conformational epitopes based on an

approach similar to COBEpro [22]. We design a novel two-stage

scheme that predicts conformational and linear epitopes from

antigen chains based on accurate predictions of linear epitopes

from the first stage. The motivation for our design comes from the

fact that current methods use a wide variety of diverse inputs. We

hypothesize that improvements can be attained by combining

these inputs. The novelty of our BEST (Bcell Epitope prediction

using Support vector machine Tool) method is two-fold. First, we

effectively use multiple inputs including sequence conservation

calculated using outputs from PSI-BLAST, predicted solvent

accessibility and secondary structure (SS), and certain propensity

and sequence similarity scores. Some of these inputs are motivated

by existing works [20,22,23,34,35]. However, we are the first to

propose a sequence-based method that uses the residue conser-

vation scores (conservation was previously used to build the

structure-based EPSVR predictor [30]) and to generate novel

descriptors/features that combine multiple inputs, such as SS and

conservation, SS and an antigenicity scale, solvent accessibility and

conservation, etc. Second, we use a novel design of the second

stage that utilizes a sliding window based on predictions of linear

epitopes to compute propensities for formation of epitopes (both

linear and conformational) for all residues in the input antigen

sequence. This allows for more practical applications, in contrast

to some other solutions, such as ABCPred [19], method by Chen

et al. [20], BCPred [21], and BayesB [23], which predict only

short peptide fragments. Moreover, we empirically demonstrate

that BEST outperforms recent sequence-based solutions including

the method by Chen et al. [20], BCPred [21], ABCPred [19],

CBTOPE [25], and COBEpro [22].

Methods

Overview of the proposed B-cell epitope predictor
BEST utilizes a two-stage design, see Figure 1. In the first stage,

we use a sliding window to represent the input antigen chain as a

set of 20-mers. These 20-mers are encoded by a numerical feature

vector that quantifies information in the window, which includes

features extracted from

Figure 1. Overall design of the proposed BEST method.
doi:10.1371/journal.pone.0040104.g001
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N The chain including AA propensity scale that was introduced

in [20] and sequence similarity scores proposed in [22] against

a database of known (training) epitopic and non-epitopic

peptides.

N The evolutionary profile generated by PSI-BLAST including

conservation scores calculated from the Weighted Observation

Percentage (WOP) matrix.

N The secondary structure and solvent accessibility that are

predicted from the input chain with SPINE [36,37].

Motivated by the designs of recent predictors [20–23,25], we

apply an SVM-based model to predict epitopes using these

features. In the second stage, we combine predictions from the

SVM using a novel, custom-designed scheme that outputs the

propensity of each AA to form of a B-cell epitope.

Datasets and test protocols
We use two datasets composed of 20-mers. The ChenFrag

dataset, which was introduced in [20], consists of 872 20-mers that

are B-cell epitopes and 872 non-B-cell epitope 20-mers. The

epitope 20-mers were generated by a truncation-and-extension

from BciPep database [38] and the non-epitope fragments were

taken from SWISS-PROT. The BCPREDFrag dataset was

introduced in [21] and includes 701 epitopes 20-mers and 701

non-epitopes 20-mers. Originally, this dataset included 947 unique

epitopes extracted from the BciPep database. After truncation-

and-extension to 20-mers this set was no longer non-redundant.

Therefore, they were processed using CD-HIT [39] to obtain a

reduced set of 701 epitopes, which share at most 80% similarity.

The non-epitopes were selected from SWISS-PROT. We use this

dataset to design (select relevant features and parameterize the

SVM) our predictive model using 10-fold cross validation. The

final design (using the same parameters and features) is tested on

the ChenFrag dataset using 10-fold cross validation. The use of the

10-fold cross validation is motivated by the fact that the same test

protocol was used in prior works [21,22].

We use an independent test set that was utilized as a test dataset

in [34]. This dataset, which we call SEQ194, includes 194 protein

sequences. Since the SEQ194 dataset was also derived from the

BciPep database, we reduce the identity between SEQ194 and the

BCPREDFrag dataset (which is used as our training/design

dataset) to 40%. To do that, we remove any 20-mer from our

training dataset that shares above 40% identity with any chain in

SEQ194, and we call the resulting dataset Filtered40_BCPRED-

Frag. This dataset includes 633 20-mer fragments with 86 epitopic

fragments and 547 non-epitopic fragments. When testing our

Table 1. Summary of the considered features and features selected and used in the proposed sequence-based predictor of B-cell
epitopes.

Feature group Abbreviated name
Number of
features

Number of selected
features

Predicted secondary structure (SS) SS 8 2

Predicted RSA RA 33 5

RAAP score RP 30 24

Conservation score CS 29 2

Predicted SS and RSA SS+RA 12 6

Predicted SS and conservation score SS+CS 6 1

Predicted SS and RAAP score SS+RP 6 1

RAAP score and predicted RSA RP+RA 30 17

RAAP and conservation scores RP+CS 28 18

Predicted SS and RSA, and RAAP score SS+RA+RP 6 1

Similarity score SIM 10 7

Total number of features 198 84

doi:10.1371/journal.pone.0040104.t001

Table 2. Comparison of predictive quality on the BCPREDFrag dataset calculated using 10-fold cross validation. The methods are
sorted by their AUC values in the ascending order.

Method AUC Accuracy Sensitivity Specificity Precision F-measure MCC

Chen et al. [20]a 0.700 0.641 0.529 0.752 0.681 0.596 0.29

BCPreda 0.758 0.679 0.726 0.632 0.664 0.694 0.36

COBEprob 0.768 0.714 0.554 0.874 0.815 0.660 0.45

SVM model 198c 0.811 0.745 0.561 0.929 0.887 0.687 0.53

SVM model 84d 0.813 0.740 0.495 0.984 0.969 0.655 0.55

aresults from Table 1 in [21].
bresults from Table II in [22].
cresults for the SVM model (C = 8.0 and gamma = 0.000977) that uses all 198 features.
dresults for the SVM model (C = 1.0 and gamma = 0.001953) that uses the selected 84 features.
doi:10.1371/journal.pone.0040104.t002
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method on the SEQ194, we build our predictor using the

Filtered40_BCPREDFrag. This includes the use of the filtered

version of the training dataset as a database of known epitopic and

non-epitopic peptides for which we calculate the sequence

similarity scores according to the method from [22].

We also use a second sequence-based test dataset called SEQ19,

which includes 19 proteins and which was introduced in [30]. The

dataset was extracted using Conformational Epitope Database

[40] by considering entries with unbound antigen structures, no

complex structures, and where multiple entries with the same

antigen structure were combined (antigenic residues from multiple

entries were mapped onto one structure). The pairwise sequence

identity in this dataset was reduced to up to 35%.

The datasets are available at http://biomine.ece.ualberta.ca/

BEST/.

Evaluation of predictive quality
The predicted propensity of a given AA in the input protein

chain is a real number which is (often) binarized to denote two

outcomes: whether or not the residue is a part of an epitope. The

evaluation of the binary predictions uses several quality measures

including accuracy (ACC), sensitivity, specificity, precision, F-

measure, and Matthews correlation coefficient (MCC):

Accuracy = (TP+TN)/(TP+FP+TN+FN)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

Precision = TP/(TP+FP)

F-measure = 2*TP/(2*TP+FN+FP)

MCC = (TP*TN+FP*FN)/sqrt{(TP+FP)*(TP+FN)*(TN+FP)*

(TN+FN)}

where TP and TN are the number of correctly predicted epitope

and non-epitope residues, respectively, FP is the number of non-

epitope residues that were predicted to be in an epitope, and FN is

the number of epitope residues that were predicted not to be in an

epitope. Higher values of these measures indicate better quality of

predictions.

We calculate the area under the ROC curve (AUC) to evaluate

the real-valued predictions. We also use the success rate that was

proposed earlier [34,35]. The success rate is defined by the

number of correctly predicted proteins divided by the total

number of predicted proteins. A given chain is assumed to be

correctly predicted if the average of the real-valued predicted

Table 3. Comparison of predictive quality on the ChenFrag dataset calculated using either 10-fold cross validation or 5-fold cross
validation to match the test type from the corresponding manuscripts. The methods are sorted by their AUC values in the
ascending order.

Method AUC Accuracy Sensitivity Specificity Precision F-measure MCC

Chen et al. [20]a unavailable 0.725 0.636 0.765 0.701 0.667 0.40

SVM model 198b 0.835 0.783 0.587 0.979 0.966 0.730 0.62

COBEproc 0.829 0.780 0.609 0.951 0.925 0.734 0.59

SVM model 198d 0.840 0.792 0.597 0.987 0.979 0.742 0.63

SVM model 84e 0.848 0.788 0.579 0.998 0.996 0.732 0.63

The methods are sorted by their AUC values in the ascending order.
aresults based on 5-fold cross validation from Table 3 in [20].
bresults based on 5-fold cross validation for the SVM model (C = 8.0 and gamma = 0.000977) that uses all 198 features.
cresults based on 10-fold cross validation from Table I in [22].
dresults based on 10-fold cross validation for the SVM model (C = 8.0 and gamma = 0.000977) that uses all 198 features.
eresults based on 10-fold cross validation for the SVM model (C = 1.0 and gamma = 0.001953) that uses the selected 84 features.
doi:10.1371/journal.pone.0040104.t003

Figure 2. Receiver operating characteristic (ROC) curves for the SVM model with 84 features, RAAP and MaxSimilarity models. The
curves were computed based on the 10-fold cross validation on the BCPREDFrag dataset (panel A) and ChenFrag dataset (panel B).
doi:10.1371/journal.pone.0040104.g002
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propensities for the native epitope residues is larger than the

average real-valued predicted propensities of all residues in that

chain.

Feature-based representation of the input sequence
We considered five types of input information to calculate our

features: predicted secondary structure, predicted solvent accessi-

bility, dipeptides-based antigenicity scale, and the conservation

and similarity scores.

Secondary structure and solvent accessibility were predicted

with the standalone version 3.0 of Real-SPINE [36]. We use

relative solvent accessibility (RSA), which is defined as the ratio of

solvent accessible surface area (ASA) of a residue observed in its

three dimensional structure to that observed in an extended

tripeptide conformation. We normalize the ASA values generated

by Real-SPINE using Ala-X-Ala tripeptide as suggested in [41,42].

The RSA values were used to categorize residues as buried (if

predicted RSA,25%) or solvent exposed (otherwise).

The amino acid pair propensity scale (AAP) was first introduced

by Chen et al. [20]. This scale quantifies propensity of a given

dipeptide (AA pair) to form B-cell epitope and was shown to

provide useful information to predict B-cell epitopes [20]. The

original AAP values were renormalized to the (21, 1) interval [21]

and we denote them as the RAAP scale.

We run PSI-BLAST [24] against the nr dataset using default

parameters (-j 3, -d nr) to compute the conservation which is

defined as [43]:

Conservation = SUMi = 1..20 { Pi*log2(Pi/Pib}

where Pi is the value from the Weighted Observation Percentage

(WOP) matrix generated by PSI-BLAST, which is divided by 100,

and Pib is the background probability of each of the 20 AAs. If for a

given residues all WOP values equal zero, i.e., Pi is a vector of 20

zeroes, then we use the average WOP values that are computed as

the average over all residues of the same type in the training

dataset for which the WOP values are non-zero. The selection of

this conservation measure is motivated by results in [43].

Following [22], we compute similarity scores that quantify

similarity of a given input 20-mer and the epitope and non-epitope

fragments in the corresponding training dataset; we adjust the

training datasets for each fold in the cross-validation tests and we

use Filtered40_BCPREDFrag dataset when testing on the

SEQ194 dataset. The scores are based on the total number of

identical substrings (multi-mers) between the two 20-mers, i.e.,

they count the number of the same AAs, the same 2-mers, 3-mers,

etc. present in both fragments. Such scores were found to be the

most effective among several possible similarity measures in [22].

We use the five highest scores when calculating similarity to

epitope fragments and non-epitope fragments, respectively.

Table 4. AUC values on the BCPREDFrag and ChenFrag datasets calculated using 10-fold cross validation obtained by using
selected features from individual feature groups; abbreviates names of feature groups are given in Table 1.

Dataset SS RA RP CS SS+RA SS+CS SS+RP RP+RA RP+CS SS+RA+RP SIM

BCPREDFrag 0.557 0.542 0.716 0.501 0.602 0.568 0.532 0.695 0.710 0.556 0.760

ChenFrag 0.565 0.547 0.743 0.496 0.584 0.545 0.555 0.738 0.743 0.560 0.824

doi:10.1371/journal.pone.0040104.t004

Figure 3. The values of the similarity-based scores between the 20-mers from the BCPREDFrag dataset and the library of the
epitope fragments, i.e., the max_similarity_epitope1 feature. The black line shows the similarity scores for the native epitope and the gray line
for the non-epitope fragments. The x-axis corresponds to the sorted list (in the ascending order based on the similarity scores) of the 701 epitopic
and 701 non-epitopic 20-mers from the BCPREDFrag dataset, and the y-axis shows their corresponding similarity scores.
doi:10.1371/journal.pone.0040104.g003
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Using these above information, we considered the following 11

groups of features:

1..Secondary structure-based (8 features).

N contentss is the content (fraction) of the residues in the input

20-mer that have a given predicted secondary structure ss =

{helix (H), strand (E), coil (C)} (3 features).

N entropy_SS = SUMss = {helix,strand,coil}{contentssln(contentss)}, which

is the overall entropy of the predicted secondary structure in

the input 20-mer (1 feature).

N NumSegss is the number of segments of a given predicted

secondary structure type ss in the input 20-mer. A segment is

defined as a stretch of consecutive AAs with the same

secondary structure. For example, for the predicted

secondary structure ‘‘HHHCEEEEEEEECCCHHHCC-

CECC’’, NumSegH = 2, NumSegC = 4, NumSegE = 2. (3 features).

N NumSeg_SS is the total number of predicted secondary

structure segments in the input 20-mer (1 feature).

We note that similar, segment-based features were successfully

used in [44].

2. RSA-based (33 features).

N contentBd/Ed is the content (fraction) of the residues in the

input 20-mer that that are predicted to be buried (Bd) or

solvent exposed (Ed) (2 features).

N entropy_RSA = SUMi = {buried,exposed}{contentiln(contenti)}, which

is the overall entropy of the predicted solvent exposure

(content of buried vs. solvent exposed residues) in the input

20-mer (1 feature).

N RSABd/Ed is the average predicted RSA value for buried (Bd)

or solvent exposed (Ed) residues in the input 20-mer (2

features).

N max/min_RSA_sliden is the maximum/minimum value of

predicted RSA averaged over a sliding window of size

n = 5,6, …,17,18 within the input 20-mer. We consider 14

sizes of sliding window and calculate both min and max

values (1462 = 28 features). This allows us to find smaller

fragments of input 20-mer that are either solvent exposed or

buried.

3. RAAP-based (30 features).

N avg_RAAP is the average RAAP value of the input 20-mer (1

feature).

N sd_RAAP is the standard deviation of RAAP values of the

input 20-mer (1 feature).

N max/min_RAAP_sliden is the maximum/minimum value of

RAAP averaged over a sliding window of size n = 5,6,

…,17,18 within the input 20-mer (1462 = 28 features).

4. Conservation score-based (29 features.).

N avg_CON is the average conservation score of the input 20-

mer (1 feature).

N max/min_CON_sliden is the maximum/minimum value of

conservation score averaged over a sliding window of size

n = 5,6, …,17,18 within the input 20-mer (1462 = 28

features).

5. Secondary structure and RSA-based (12 features).

N Numss_Bd/Ed is the number of residues in the input 20-mer

that have a given predicted secondary structure ss and which

are predicted to be buried (Bd) or solvent exposed (Ed)

(362 = 6 features).

Figure 4. The AUC and success rate values in the function of the number of selected scores k (x-axis) when using SVM model with 84
features and the distance scheme to predict B-cell epitopes on the SEQ194 dataset. We use the Filtered40_BCPREDFrag to generate the
SVM model.
doi:10.1371/journal.pone.0040104.g004

Table 5. The AUC and success rate for the prediction of the
B-cell epitopes on the SEQ194 dataset when using predictions
from the SVM model with 84 features and the five schemes:
maximum, average, median, and distance scheme with k = 10
and k = 16. We use the Filtered40_BCPREDFrag to generate
the SVM model.

Method Success rate AUC

Max scheme 47.4% 0.52

Average scheme 56.2% 0.56

Median scheme 60.8% 0.55

Distance scheme k = 10 58.8% 0.57

Distance scheme k = 16 60.3% 0.57

doi:10.1371/journal.pone.0040104.t005

BEST: Sequence-Based Prediction of B-Cell Epitopes
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N RSAss is the average predicted RSA value for the residues in

the input 20-mer that are predicted to have secondary

structure ss (3 features).

N RSA_max_segmentss is the average predicted RSA value for the

longest segment of a given predicted secondary structure

type ss in the input 20-mer (3 features).

6. Secondary structure and conservation score-based (6 features).

N CONss is the average conservation value for residues in the

input 20-mer that have a given predicted secondary structure

ss (3 features).

N CON_max_segmentss is the average conservation value for the

longest segment of a given predicted secondary structure

type ss in the input 20-mer (3 features).

7. Secondary structure and RAAP-based (6 features).

Figure 5. The average AUC values estimated using SEQ194 dataset. The values were calculated over the 10 repetitions using 100 randomly
selected chains from the SEQ194 dataset (shown using gray bars) and the corresponding standard deviations (shown using black error bars) for the
considered B-cell epitope predictors.
doi:10.1371/journal.pone.0040104.g005

Table 6. Comparison of the proposed BEST method with existing B-cell epitope predictors on the SEQ149 dataset.

Category Method Success rate AUC Significance of improvement in AUC

compared to BEST16
g compared to BEST10

g

Structure-
based

Epitopiaa 80.4% 0.59 unavailable unavailable

Epitopiab 73.7% 0.57 2 2

Sequence-
based

ABCPreda 67.0% 0.55 unavailable unavailable

ABCPredc 61.9% 0.53 + +

BayesBd 80.9% unavailable unavailable unavailable

CBTOPEe 45.9% 0.52 + +

COBEproa 66.9% 0.55 unavailable unavailable

COBEprof 66.3% 0.54 + +

BEST 10
g 58.8% 0.57

BEST 16
g 60.3% 0.57

The methods are sorted alphabetically within each category. We evaluate significance of differences between BEST16 (BEST10) and the other methods. We compare the
corresponding AUC values in 10 paired results based on 100 random selected chains from the SEQ194 dataset using paired t-test; +/– mean that BEST16 (BEST10) are
significantly better/worse that another method at p-value ,0.05.
aresults from [34].
bresults from the Epitopia web server at http://epitopia.tau.ac.il/.
cresults from the ABCPred web server http://www.imtech.res.in/raghava/abcpred/.
dresults from the BayesB web server at http://www.immunopred.org/bayesb/index.html.
eresults from the CBTOPE web server at http://www.imtech.res.in/raghava/cbtope/.
fresults from the COBEpro web server at http://scratch.proteomics.ics.uci.edu/.
gresults generated using BEST method, which is based on the SVM model (C = 1.0 and gamma = 0.001953) with 84 features generated with the Filtered40_BCPREDFrag
dataset and the distance scheme with k = 16 (BEST16) and with k = 10 (BEST10).
doi:10.1371/journal.pone.0040104.t006
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Figure 6. Receiver operating characteristic (ROC) curves of the considered B-cell epitope predictors on the SEQ194 dataset.
doi:10.1371/journal.pone.0040104.g006

Figure 7. Receiver operating characteristic (ROC) curves of the considered B-cell epitope predictors on the SEQ19 dataset.
doi:10.1371/journal.pone.0040104.g007
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N RAAPss is the average RAAP value for residues in the input

20-mer that have a given predicted secondary structure ss (3

features).

N RAAP_max_segmentss is the average RAAP value for the

longest segment of a given predicted secondary structure

type ss in the input 20-mer (3 features).

8. RAAP and RSA-based (30 features).

N RAAPBd/Ed is the average RAAP value of the predicted

buried (Bd) or solvent exposed (Ed) in the input 20-mer (2

features).

N avg_RAAP_max/min_RSA_sliden, is the average RAAP value

in a sliding window of size n = 5,6, …,17,18 within the input

20-mer that has the maximum/minimum average predicted

RSA value (1462 = 28 features).

9. RAAP and conservation score-based (28 features).

N avg_RAAP_max/min_CON_sliden is the average RAAP value

in a sliding window of size n = 5,6, …,17,18 within the input

20-mer that has the maximum/minimum average conser-

vation score value (1462 = 28 features).

Figure 8. Residue epitopic propensities predicted by ABCPred, COBEpro, Epitopia and BEST for a capsid protein (UniProt ID:
P16489; panel A) and an anti-repression transactivator protein (UniProt ID: P20869; panel B). The plots also include the location of the
native epitopes. The x-axis shows the protein chain and the location of the native epitopes (denoted with black horizontal line) and y-axis shows the
values of the predicted propensities. The left y-axis gives the propensities for ABCpred, COBEpro and Epitopis and the right y-axis for BEST.
doi:10.1371/journal.pone.0040104.g008
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10. Secondary structure, RAAP and RSA-based (6 features).

N RAAPss_Bd/Ed is the average RAAP value for residues in the

input 20-mer that have a given predicted secondary structure

ss and which are predicted to be buried (Bd) or solvent

exposed (Ed) (6 features).

11. Similarity score-based (10 features).

N max_similarity_epitopek is the kth highest similarity score

between the input 20-mer and the epitope fragments from

the training dataset; k = 1,2,3,4,5 (5 features).

N max_similarity_non-epitopek is the kth highest similarity score

between the input 20-mer and the non-epitope fragments

from the training dataset; k = 1,2,3,4,5 (5 features).

Table 1 summarizes the considered 198 features, which are

divided into the above mentioned 11 groups. While some of these

features use the information that was previously considered to

predict B-cell epitopes, including predicted secondary structure

and RSA, RAAP and similarity scores, we also use conservation

scores that were not used by the prior sequence-based predictors.

Moreover, we propose a novel set of features that combine

multiple types of information (such as predicted secondary

structure and RSA; predicted secondary structure and conserva-

tion, etc.) and we use of sliding window to find fragments of the

input 20-mer (such as fragments with low/high RAAP score, RSA

value, etc.) that are relevant to the prediction of the B-cell epitopes.

Feature selection and parameterization of the SVM
model

The considered features may include features that are not

relevant to the prediction of B-cell epitopes and which could be

correlated/redundant with each other. We perform a wrapper-

based (using the SVM model) feature selection, to accommodate

for the above. We use the SVM model with the RBF kernel and

we parameterized it using a grid search considering the complexity

constant C and the gamma (spread of the RBF function) using all

198 features. Parameterization was done based on the 10-fold

cross validation on the training BCPREDFrag dataset and we

considered C = 222,221 …, 23,24 and gam-

ma = 2211,2210…,221,20. The selected parameters are C = 23

and gamma = 2210, and we use these parameters through the

entire feature selection process.

We first sort all features based on their average (over the ten

training folds generated based on the 10 fold cross-validation on

the training dataset) absolute biserial correlation coefficients

(BCC). The BCC is defined as:

BCC = (Me-Mne)*sqrt(ne*nne/n)/(stdev)

where Me and Mne are the mean values of the feature values for

native epitopic and non-epitopic residues, respectively, stdev is the

standard deviation of the feature, ne and nne are the numbers of

native epitopic and non-epitopic residues, respectively, and n is the

total number of residues.

Next, we iteratively try to remove one feature at the time

starting with the entire set of 198 sorted features and considering

the least correlated features first. We calculate MCC for the 10-

fold cross validation-based prediction of B-cell epitopes on the

training (BCPREDFrag) dataset using the SVM classifier with a

given set of features. We remove a given feature if this removal

does not lower the MCC value. We repeat this until none of the

features can be removed, i.e., removal of any feature leads to a

decrease in the MCC. This type of feature selection was motivated

by similar approaches used in related studies [45–47].

Consequently, 84 features were retained, see Table 1. A detailed

list of the selected features is given in Table S1. Importantly, the

selected features cover each of the considered 11 feature groups,

which suggests that all considered groups contribute to the

prediction of B-cell epitopes. The largest subset of the selected

features concerns the RAAP scale, 60 out of the selected 84

features use the RAAP values. The arguably best feature, which

has the highest absolute BCC of 0.47 (compared to the second-best

feature with the absolute BCC = 0.4), is the max_similarity_epitope1.

This feature quantifies to the highest similarity score against the

database of training B-cell epitopes. This agrees with the results in

[22], where the authors demonstrate use of these similarity scores

leads to relatively accurate predictions of the epitopes. The

selected features also include 65 that are based on using sliding

windows inside the 20-mers. This shows that the use of the sliding

windows, which is proposed in this work, is beneficial when

compared to the use of the entire 20-mer. Moreover, 44 of the

selected features use information coming from multiple types of

inputs, which points to the importance of the novel aspects

introduced in this work. Finally, 21 features utilize information

coming from the conservation scores, which indicates that this

input, which we also introduced here, provides a valuable

contribution.

We again parameterize the SVM model using the same grid

search with the selected features. The selected parameters are

C = 20 and gamma = 229, and we used these parameters to

implement our BEST method and to perform predictions on all

considered datasets.

Calculation of propensity scores
The real-value outputs generated by the SVM model, which are

calculated for the overlapping 20-mers extracted from the input

protein chain and which approximate the probability of a given

20-mer to be a B-cell epitope, are used to calculate propensity of

each AA to form of a B-cell epitope. We assign the same SVM

score to every AA in a given 20-mer, which means that every AA

in the input chain has between 1 (for the residues at either

terminus) and 20 (for residues 20 or more positions away from a

terminus) SVM scores assigned to it; these scores come from the

overlapping 20-mers. We consider four schemes to calculate the

propensity from these scores:

N max scheme in which we use the maximal score as the

propensity. This scheme assumes that a given AA is likely to

be an epitope if it was predicted as such (has a high SVM

score) in even one 20-mer that includes it.

N average scheme in which we use an average score. In this case, we

implement a consensus-like decision where the propensity is

based on all corresponding scores generated by the SVM.

N median scheme in which we use a median score. This is again a

consensus-like prediction but in this case we use one of the

SVM scores, instead of calculating a new average value.

N distance scheme where we calculate an average score but

considering only a subset of the SVM scores. This is a novel

approach in which we use only higher quality SVM scores. We

note that the predictions associated with either low or high

scores are usually more accurate compared with the

predictions that have scores close to 0.5, which is the cutoff

to separate the two outcomes; the 20-mers with scores ,0.5

and .0.5 are assumed not to be epitopes and to be epitopes,

correspondingly. This was shown for related SVM-based

predictors [48,49]. Therefore, we use only k = 1,2, …,20 scores

that are the farthest from 0.5 to compute the average; for

k = 20 this is equivalent to computing the average-scheme. We
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estimate the best value of k empirically; see Section ‘‘Selection

of the method to calculate propensity scores’’.

Results

Comparison on the fragment-based datasets
We evaluate the results generated by our SVM models, using

both the model with all 198 features and the model with the

selected 84 features, on two benchmark fragment-based datasets:

BCPREDFrag and ChenFrag. These datasets include 20-mers of

epitopes and non-epitopes, which were generated by truncation-

and-extension. We compare our predictions with the results of

recent predictors, including the method by Chen et al. [20],

BCPred [21], and COBEpro [22]. Table 2 summarizes the results

based on the 10-fold cross validation on the BCPREDFrag

dataset, while Table 3 shows results on the ChenFrag dataset; we

use 10-fold or 5-fold cross validation to mimic the tests from the

original papers. Table 2 indicates that our SVM model with 198

features achieves an AUC of 0.81, accuracy of 74.5% and MCC of

0.53 on the BCPREDFrag dataset. The model with the selected 84

features achieves similar predictive quality, with AUC, accuracy,

and MCC of 0.81, 74.0% and 0.55, respectively. The same level of

similarity between these two approaches is observed on the

ChenFrag data set. This demonstrates that the reduction of the

feature set does not worsen the overall quality of the prediction.

We note that the model with more input features gives a better

sensitivity as a trade-off for reduced specificity, which means that it

predicts more native epitope fragments but with a higher number

of false positives.

Compared with the other considered predictors, our SVM

models achieve the best predictions with an AUC of 0.81 and 0.85

and the highest MCC of 0.55 and 0.63 on the BCPREDFrag and

ChenFrag datasets, respectively. The second-best predictor,

COBEpro, obtains an AUC of 0.77 and 0.83 and MCC of 0.45

and 0.59 on the BCPREDFrag and ChenFrag datasets, respec-

tively. Our models are characterized by high specificity (they

rarely confuse non-epitopes for epitopes), and sensitivity which is

similar to the sensitivity offered by existing methods. The

sensitivity in the 0.5 to 0.6 range means that about 50 to 60%

of native epitopes are correctly predicted. The high precision

offered by our SVM model with 84 features means that virtually

all of the predicted epitopes are in fact correct. This means that

our SVM-based approach provides predictions that are conserva-

tive, i.e., it predicts a subset of native epitopes but with high

quality. We observe that the results on the ChenFrag dataset are

better than for the BCPREDFrag dataset. This is since the former

dataset includes chains with higher similarity (with each other)

when compared with the latter dataset.

Improvements due to the inclusion of novel features
We analyze the impact of the novel aspects that were introduced

in this study, including the new features and the fact that we

effectively combine multiple features, including new and previ-

ously proposed features. We compare the results of our SVM-

based model with 84 features with the results obtained when using

the RAAP scale from Chen et al. [20] and the similarity measure

introduced in [22]. To do that, we developed two SVM-based

predictors that use the avg_RAAP feature (denoted as RAAP model)

and the max_similarity_epitope1 feature (MaxSimilarity model), respec-

tively. These are the two best ranked features (see Table S1) that

utilize the concepts introduced in these two works. These two

models were parameterized on the training BCPREDFrag dataset

in the same way as the SVM models proposed in this work.

Consequently, these two models are the same as the proposed

SVM model, except for the input features. The ROC curves of the

three models on BCPREDFrag and ChenFrag datasets are shown

in Figure 2.

We observe that our model provides higher sensitivity (TP-rate)

for the entire range of FP-rates (FP-rate = 1-specificity). The AUC

values of the RAAP and MaxSimilarity models on the BCPRED-

Frag dataset are 0.73 and 0.72, respectively, compared to 0.81

achieved by our model with 84 features. Similarly, the two single

feature-based models obtain AUC equal to 0.74 and 0.79 on the

ChenFrag dataset, while we obtain 0.85 when using all 84 features.

This is a relatively large increase by 100%*(0.81–0.73)/0.5 = 16%

and by 100%*(0.85–0.79)/0.5 = 12% on the BCPREDFrag and

ChenFrag datasets, respectively, given that AUC values range

between 0.5 (for random predictions) and 1 (for perfect

predictions). We attribute this increase to the use of novel features

and the combination of the new and existing features that are

implemented in our approach.

We also investigate contributions of individual feature groups,

which are defined in Table 1. Table 4 shows the AUC values when

only the selected features in each of the considered feature groups

are utilized. Almost all the considered feature groups lead to an

AUC above 0.5, which means that these models are better than

random and that the corresponding features contribute to the final

model that fuses all these features; the only exception are the

conservation score-based features which on its own reach AUC of

0.5. Moreover, we observe that our approach to expand ideas

from the prior works is beneficial. For instance, the use of the 7

selected similarity score-derived features leads to improvements

when compared to using only the one max_similarity_epitope1

feature, which is based on [22]; the corresponding AUC values

are 0.76 vs. 0.72 on the BCPREDFrag dataset and 0.82 vs. 0.79

on the ChenFrag dataset. Also, the use of the combined set of 84

features results in higher AUCs compared to the best performing

individual feature group. Specifically, the best performing

similarity score-based group provides AUC values lower by

0.053 and 0.024 on the BCPREDFrag and ChenFrag dataset,

respectively, when compared to our SVM that used 84 features.

We further analyze the similarity-based scores between the 20-

mers from the BCPREDFrag dataset and the library of the epitope

fragments, i.e., the max_similarity_epitope1 feature. We plot the

values of this feature (see Figure 3) separately for the native epitope

(using black line) and non-epitope (gray line) fragments. The plots

demonstrate, as expected, that native epitopes have overall

substantially higher similarity with each other compared to the

similarity between non-epitopes and epitopes. The mean and

variance of the scores for the native epitopic fragments are 45.8

and 1455.7, respectively, while they are 16.4 and 13.9 for the non-

epitopic fragments. However, about 300 native epitopic fragments

have scores that are low (,20) and comparable to the scores for

the non-epitopic fragments. These fragments cannot be correctly

predicted using the similarity score alone. We note that there are

only a few non-epitopic 20-mers that have high similarity to the

epitopic fragments. This provides a potential explanation for the

high specificity offered by our SVM model.

Selection of the method to calculate propensity scores
We compare the predictive quality for the considered four

methods (see section ‘‘Calculation of propensity scores’’) that

calculate the propensity of residues in a protein sequence to form

of a B-cell epitope based on scores predicted by our SVM model

with 84 features using the sliding window of 20-mers. In other

words, we chunk the input protein using a sliding window of size

20, process each window using our SVM model and combine the
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scores generates by the SVM using each of the four methods

(maximum, average, median and distance scheme) to predict a full protein

chain. First, we parameterize the distance scheme to select the

number of scores, k, that will be used, see Figure 4. We perform

the calculations on the SEQ194 dataset (we use the Filter40_BC-

PREDFrag to generate the SVM model) and we use AUC and

success rate as the evaluation criteria. The results indicate that the

predictive quality is higher when we choose k between 10 and 16.

Using smaller k would remove some of the useful scores and using

higher k would include too many scores which may include some

poor quality predictions. We compare the distance scheme with

k = 10 and k = 16 with the other three approaches in Table 5. The

use of the median scheme results in the highest success rate at 60.8%

and the third-best AUC of 0.55. The application of the distance

scheme with k = 16 leads to the highest AUC equal 0.57 and the

second-best success rate of 60.3%. Consequently, we select this

distance scheme to compute the propensities and to implement our

BEST method. Our predictor can be downloaded from http://

biomine.ece.ualberta.ca/BEST/.

Comparison on the sequence-based datasets
We compare our BEST method, which uses the SVM model

with 84 features generated with the Filtered40_BCPREDFrag

dataset and the distance scheme with k = 16, with recent

representative sequence-based predictors of B-cell epitopes,

including ABCPred [19], COBEpro [22], BayesB [23], and

CBTOPE [25]. We also include the results from the structure-

based predictor Epitopia [34,35] and the alternative version of our

method that uses k = 10. Since some methods only predict epitopic

fragments in a protein chain, we computed the propensities for

each amino acid as follows:

N For Epitopia, we utilized the immunogenicity scores generated

by the web server at http://epitopia.tau.ac.il/, and we

normalize them into [0,1] interval.

N For ABCPred, we used the web server at http://www.imtech.

res.in/raghava/abcpred/ with default parameters. The server

returns predicted epitopic fragments with their scores. For a

given residue, we used the maximal score from all fragments

where this residue is included.

N For COBEpro, we used the web server at http://scratch.

proteomics.ics.uci.edu/ and we followed the procedure from

[22].

N For BayesB, we performed predictions based on the web server

at http://www.immunopred.org/bayesb/index.html. This

method was designed to predict linear B-cell epitopes and it

returns a list of predicted epitopes as 20-mers, with no scores.

We assumed that a given residue is a B-cell epitope if it appears

in at least one of the predicted 20-mers; otherwise, it is

assumed not be an epitope. We could not calculate AUC for

BayesB since this method does not return scores.

N For CBTOPE, we calculated the predictions with the web

server at http://www.imtech.res.in/raghava/cbtope/ using

default parameters. We divided the scores generated by the

server, which are in 0 to 9 range, by 10 to normalize them into

[0, 1] interval.

The comparison is performed on the SEQ194 dataset, see

Table 6. For Epitopia, ABCPred and COBEpro we show the

predictions that were generated with the author-provided web

servers together with the results on the same dataset from [34]. We

also evaluate significance of differences between our predictor and

the other methods using their web server predictions. We select

100 chains at random from the SEQ194 dataset and repeat the

evaluation 10 times using these subsets of sequences. We use

paired-t-test to compare the resulting AUC values and the

differences are assumed significant if p-value ,0.05. The

corresponding average AUCs and their standard deviations are

shown in Figure 5.

When compared with the sequence-based methods using

Table 6, BEST (which uses k = 16) achieves the best AUC

= 0.57. The second-best ABCPred and COBEpro methods

achieve AUC around 0.55. The improvements in AUC offered

by BEST have moderate magnitude but these differences are

significant when compared with all chain-based methods including

ABCPred, CBTOPE, and COBEpro. The structure-based

Epitopia outperforms our sequence-based approach and obtains

AUC of about 0.57 (or 0.59 in the original paper). The

corresponding ROC curves are shown in Figure 6. We note that

BEST offers highest TP-rates (sensitivity) for higher FP-rates, while

our SVM-based design with distance scheme with k = 10 offers

highest sensitivity for low FP-rates. Structure based Epitopia is the

only method that outperforms our SVM-based approaches for FP-

rates above 0.6. However, BEST is outperformed by COBEpro,

BayesB, ABCPred, and Epitopia when considering the success

rates. We note that BayesB obtains high success rate at 80.9%.

However, this is a byproduct the fact that this method substantially

overpredicts epitopes; 97.6% residues are predicted as epitopes by

the BayesB method. We also compare with a ‘‘random’’ predictor,

which uses a randomly generated score between 0 and 1 for each

20-mer fragment and which calculates the propensity scores using

the distance scheme with k = 16. When evaluated with AUC, the

random method is significantly worse than our BEST (p-value

= 5.5*1028).

We also perform a second test on the SEQ19 dataset. This

dataset is arguably too small to assess statistical significance, but it

allows gauging the overall predictive quality. Our BEST method

achieves AUC of 0.601, while ABCPred and COBEpro, which are

the top two sequence-based runner-up methods on the SEQ149

dataset, obtain AUC of 0.541 and 0.525, respectively. The

corresponding ROC curves are given in Figure 7 and they show

that BEST provides higher sensitivity (TP-rate) for the FP-rates

below 0.8 when compared to the other two sequence-based

predictors.

Case studies
We present two case studies to visualize the propensity profiles

generated by various considered B-cell epitope predictors. We

selected two proteins from the SEQ194 dataset, a capsid protein

(UniProt ID: P16489) with one short continuous epitope, and anti-

repression transactivator protein (UniProt ID: P20869) that has a

discontinuous B-cell epitope composed of two segments. Figure 8

shows the propensities predicted by ABCPred, COBEpro,

Epitopia and BEST together with the location of the native

epitopes. The propensity profiles generated by BEST are smooth

dues to the use of averaging of the SVM scores and the peaks

denote predicted epitopes. BEST gives a peak around the location

of the native epitope for the capsid protein and another peak in the

vicinity of the N-terminus in that chain; the latter is a likely false

positive prediction; see Figure 8A. For the anti-repression

transactivator protein (see Figure 8B) our method correctly

predicts the shorter of the two epitope segments and provides

slightly elevated propensities for the longer segment. ABCpred

managed to quite well identify the epitopes in the latter protein,

but it could not find the epitope in the capsid protein. COBEpro

and Epitopia find the longer epitope fragment in the anti-

repression transactivator and several (potentially) false positive

epitopes in both proteins. We note that these results should not be
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assumed to be typical, i.e., to represent ‘‘average’’ predictive

quality across these methods which is summarized in Table 6; they

are presented to contrast the overall characteristics of the

propensity profiles generated by these methods.

Discussion

We propose a new approach for the prediction of B-cell epitopes

from antigen sequences. Our BEST method predicts epitopes from

full protein chains using a novel approach based on averaging

selected scores generated from 20-mers by an SVM-based

predictor. We use a comprehensive and custom designed set of

inputs that are generated by fusing information derived from the

protein chain, similarity to known (training) epitopes, sequence

conservation and predicted secondary structure and relative

solvent accessibility. Empirical evaluation on benchmark datasets

(including an independent test set of 194 antigens) demonstrates

that BEST outperforms several modern sequence-based B-cell

epitope predictors including ABCPred [19], method by Chen et al.

[20], BCPred [21], COBEpro [22], BayesB [23], and CBTOPE

[25], when considering the predictions from full chains and also

from the chain fragments. We show that the improvements came

from the design and use of new inputs, which include conservation

scores. These scores and other inputs were combined together to

calculate fused features. These individual features combine

information from multiple inputs, e.g., one feature fuses informa-

tion from the predicted secondary structure, sequence and

sequence conservation. We also present a couple of case studies

to demonstrate the propensity profiles generated by BEST.

The predictive quality offered by our method can be potentially

further improved. One possibility is to first use the antigen

sequence to predict its fold, which would be than used as an input.

This is motivated by superior predictive performance of the

structure-based predictors when compared to the sequence-based

methods [3,31,34]. The structure could be also approximated with

the use of sequence-predicted structural characteristics, such as

contact numbers or B-factors [50], which are utilized by some of

the structure-based predictors [27,30,32]. Another worthwhile

input is disorder, and in particular molecular recognition features

that are important for protein recognition [51] and which can be

predicted from the sequence [52,53]. However, the main limiting

factor is the fact that only a small fraction (several thousand) of the

epitopes is known and can be used to build predictive models

compared to about a trillion antibodies in our body, when

excluding T cell receptors [3]. We believe that major improve-

ments can be accomplished only when additional data becomes

available.

BEST can be downloaded from http://biomine.ece.ualberta.

ca/BEST/.

Supporting Information

Table S1 List of the 84 selected features. The features are

sorted according to the average (over the ten training folds

generated based on the 10 fold cross-validation on the training

dataset) absolute biserial correlation coefficient (BCC).

(PDF)
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