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Abstract

The molecular mechanisms by which polyglutamine (polyQ)-expanded huntingtin (Htt) causes neurodegeneration in
Huntington’s disease (HD) remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD
pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a
previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the
proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the
presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired
heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that
in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1) are reduced, and, as a
consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the
striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-
expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the
accumulation of cellular damage during the course of HD pathogenesis.
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Introduction

Abnormally expanded polyglutamine (polyQ) regions within

nine different proteins cause nine different neurodegenerative

diseases, including the Spinocerebellar Ataxias and Huntington’s

disease (HD) [1,2]. In HD, a polyQ expansion in the protein

huntingtin (Htt) leads to progressive neurodegeneration resulting

in detrimental symptoms, such as impaired movement, cognition,

and behavioral function [3,4]. On a pathological level, polyQ-

expanded Htt accumulates in ubiquitinated inclusions in the

cytosol and nucleus, predominantly in neurons of the striatum and

cortex of HD patients [5]. The striatum and cortex are also most

affected by neurodegeneration in HD. Even though the genetic

basis of HD is clear, the cellular mechanisms by which polyQ-

expanded Htt causes the dysfunction and the demise of neurons

remains perplexing. The toxicity associated with polyQ-expanded

Htt has been attributed to the disturbance of numerous cellular

pathways, including impaired vesicular transport, ER stress,

impaired transcription, and impaired proteostasis

[6,7,8,9,10,11,12].

Cellular mechanisms of proteostasis, i.e. all cellular processes

that regulate the accurate production, maintenance, and degra-

dation of proteins, antagonize many toxic effects associated with

polyQ-expanded Htt [13]. Molecular chaperones and heat shock

proteins are major components of cellular proteostasis. The heat

shock response, an evolutionary conserved cellular response to

diverse kinds of cellular stresses, is central to the induction of

molecular chaperones and other heat shock proteins. HSF1 (heat

shock transcription factor 1) is a major transcriptional regulator of

the heat shock response in eukaryotes [14].

Compounds that elicit the heat shock response have been

suggested to have therapeutic benefits in neurodegenerative

diseases, including HD [15,16,17]. For example, the small

molecules geldanamycin and celastrol can confer protection from

polyQ toxicity by activating the heat shock response [18,19]. Both

celastrol and geldanamycin increase the activity of the transcrip-

tion factor HSF1 [19,20]. Further, Neef et al. identified a small

molecule that effectively activated HSF1, induced a solid heat

shock response, and reduced polyQ toxicity [16]. In a high-

through-put screen, Calamini at al. identified small molecules that

elicit a heat shock response. Many of these small molecules also

reduced polyQ toxicity [21]. Likewise, using HD mouse models,

Labbadia et al. showed that treatment with an Hsp90 inhibitor can

protect from polyQ toxicity by the partial activation of a heat

shock response. They also provide evidence that the brains of mice

expressing polyQ-expanded Htt have a reduced capacity to mount

a heat shock response upon treatment with the Hsp90 inhibitor

compared to wild-type mice [22]. These results imply that

activating HSF1 is a promising therapeutic strategy for the

treatment of HD.

We investigated the role of heat shock response and the role of

HSF1 in cellular and mouse models of HD. For our studies, we

chose murine striatal neuron-derived cells that express full length

polyQ-expanded Htt at physiological levels (STHdh(Q111)) and

the corresponding wild-type cells (STHdh(Q7)) [23]. In these cells,

polyQ-expanded Htt does not produce any detectable insoluble
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protein aggregates and, under normal growth conditions, these

cells do not show any detectable levels of polyQ toxicity

[23,24,25]. These features are in stark contrast to HD models

that overexpress amino-terminal fragments of the polyQ-expanded

Htt proteins (e.g. exonI fragments) that are associated with

prominent polyQ aggregation and, in many cases, with strong

polyQ toxicity. The intricate role of polyQ aggregation in HD

pathogenesis has been the center of a substantial number of studies

und remains puzzling [26,27,28]. Because of the absence of these

drastic features of polyQ misfolding, the STHdh(Q111) cells may

serve as cellular models for specific and early events in HD

pathogenesis, which may precede polyQ fragmentation, polyQ

aggregation, and polyQ toxicity [29].

We used STHdh(Q111) cells to ask how full-length polyQ-

expanded Htt modulates the heat shock response. We found that

the presence of full-length polyQ-expanded Htt sensitizes cells to

heat shock and other stressors. Further, our results demonstrate

that cells expressing full-length polyQ-expanded Htt inhibited the

induction of central heat shock proteins and accumulated

increased amounts of damaged proteins when exposed to stress.

Also, full–length polyQ-expanded Htt expressing cells had reduced

levels of HSF1. The inability to mount a functional heat shock

response thus uncovers polyQ toxicity under conditions of cellular

stress.

Our study provides novel insights into how full-length polyQ-

expanded Htt impairs the heat shock response and cellular

proteostasis, and thus sensitizes cells to stress. It is plausible that

this sensitization may be a critical contributor to early HD

pathogenesis possibly even before the occurrence of polyQ

aggregation.

Results

Full length polyQ-expanded Htt sensitizes cells to a heat
shock

We first tested whether the expression of full-length polyQ-

expanded Htt in the striatal cell line (STHdh(Q111)) sensitized

cells to a heat shock. To this end, we monitored caspase activity in

STHdh(Q7) (wild-type) and STHdh(Q111) cells under normal

growth conditions (i.e. growth at 33uC) and upon heat shock (i.e.

growth at 42uC for six hours, Figure 1). Caspase activity, which

indicates the induction of apoptosis [30], served as a proxy for

reduced cellular viability.

We monitored the impact of a heat shock on viability of

STHdh(Q7) and STHdh(Q111) cells in two different media

(Figure 1 A). We used media that contained a high level of glucose

and serum (HH, 4.5 g/l and 10% respectively) and we used media

that contained a lower level of glucose and serum (LL, 1 g/l and

1% respectively). In LL media the cells did not divide anymore

unlike cells in the HH medium (data not shown). The LL medium

thus allows us to avoid complications that may arise due to the

presence of a temperature sensitive T-antigen that was used to

create the STHdh(Q7) and STHdh(Q111) cell lines. These

different growth media did not cause any differences in cellular

viability when the cells were incubated for 24 hours at 33uC
(Figure 1 A and B).

We measured increased caspase activity in STHdh(Q111) cells

upon heat shock compared to STHdh(Q7) cells in the HH

medium (Figure 1 A). Notably, this sensitivity to a heat shock is not

altered by the LL medium, indicating that these growth conditions

do not significantly modulate sensitivity to heat shock conditions.

We therefore used the LL medium for all ensuing experiments

throughout this study.

We measured an approximately twofold increase in caspase

activity upon heat shock in the STHdh(Q7) cells compared non-

heat shocked STHdh(Q7) cells. The increase was substantially

higher (approximately eightfold) in heat shocked STHdh(Q111)

cells compared to non-heat shocked STHdh(Q111) cells (Figure 1

A and B). To confirm our results with the caspase assay, we

measured the viability of cells by a luciferase/ATP assay which

uses cellular ATP levels as a proxy for cellular viability (Figure 1 C)

[23]. In this assay, relative ATP levels dropped by approximately

40% in STHdh(Q111) cells upon heat shock, whereas in

STHdh(Q7) cells ATP levels remained unaltered by a heat shock.

Another well-established method to determine cellular viability is

the measurement of respiratory activity by an MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay [31].

We also detected an approximate 40% decrease in respiratory

activity in heat shocked STHdh(Q111) cells (Figure 1 D).

STHdh(Q7) cells were not significantly affected. Based on these

three independent assays for cellular viability we conclude that

expression of full-length polyQ-expanded Htt sensitized cells to a

heat shock.

Full length polyQ-expanded Htt impairs the heat shock
response

We next asked whether cells expressing polyQ-expanded Htt

have a reduced ability to elicit an efficient heat shock response. To

test this hypothesis, we monitored the levels of major heat shock

proteins (Hsps) in cells expressing polyQ-expanded Htt and

compared those to wild-type cells at regular growth temperature

(33uC) and upon a short heat shock (42uC for three hours).

Notably, the three hour heat shock heat shock does not produce

the strong reduction of cellular viability as observed for the six

hour heat shock (data not shown). Consequently, the milder heat

shock conditions allowed us to monitor the heat shock response in

cells that do not yet display overt signs of cellular stress and

reduced viability.

We monitored the levels of major Hsps (Hsp70s, Hsp90, and

Hsp27) in STHdh(Q7) cells and in STHdh(Q111) cells by Western

blotting and immunofluorescence microscopy. The anti-Hsp70

antibody (3A3) that we used for these experiments detects both the

inducible and the constitutive variants of Hsp70 (Figure 2 A)

[32,33]. We observed that the levels of these Hsps and several

other Hsps in both STHdh(Q7) and in STHdh(Q111) were very

low in comparison to many other cell lines. In particular, cell lines

derived from tumors typically have much higher Hsp levels (N2a,

PC12, SH-SY5Y, not shown).

Under regular growth conditions (33uC) the Hsp levels in

STHdh(Q7) and STHdh(Q111) were equally low. When subjected

to heat shock (HS, 42uC for three hours), STHdh(Q7) cells showed

the expected increase in Hsp levels. By contrast, heat shock had a

much smaller effect on Hsp levels in STHdh(Q111) cells (Figure 2

A). The quantification of these results revealed that while in

STHdh(Q7) cells there was an approximately three-fold increase

in Hsp70 levels (both Hsp70 versions combined), six-fold increase

in Hsp90 levels, and 18-fold increase in Hsp27 levels, there was

little to no increase in the levels of any of these Hsps in

STHdh(Q111) cells (Figure 2 B). This impaired induction of the

expression of Hsp70s, Hsp27, and Hsp90 was confirmed by

immunofluorescent microscopy (Figure 2 C). Collectively, these

results demonstrated a severe defect in the induction of major

Hsps in cells expressing full-length polyQ-expanded Htt.

We hypothesized that the inability to mount a heat shock

response in STHdh(Q111) would elicit the accumulation of heat

damaged proteins. Such damaged proteins often accumulate as

ubiquitinated protein species. We monitored ubiquitinated pro-
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teins in STHdh(Q7) and STHdh(Q111) cells that were either

grown at 33uC or exposed to heat shock for extended periods of

time at 42uC. Western blot analysis (Figure 2 D) shows that both

STHdh(Q7) and STHdh(Q111) cells accumulate a ‘‘smear’’ of

higher molecular weight, ubiquitin-positive proteins upon heat

shock. STHdh(Q111) accumulated a higher amount of poly-

ubiquitinated proteins than STHdh(Q7) cells indicating impaired

processing of damaged proteins in these cells upon heat shock. We

also observed a stronger accumulation of ubiquitin positive

proteins after treatment with the proteasome inhibitor MG132

in STHdh(Q111) cells than in STHdh(Q7) cells (Figure 2 E).

In addition to heat shock, we used the proteasome inhibitor

MG132 and the Hsp90 inhibitor radicicol to induce a heat shock

response (Figure 2 E and Figure 3 A and B). Previous studies have

established that MG132 and radicicol elicit a robust heat shock

response in mammalian cells [23,34,35]. Our immunofluorescence

microscopy revealed that treatment with MG132 or radicicol

increased Hsp70s and Hsp27 levels in STHdh(Q7) cells (Figure 3

A). By contrast, in STHdh(Q111) cells treated with MG132 or

radicicol, Hsp70s and Hsp27 show only slightly elevated levels of

Hsp70s and Hsp27 (Figure 3 A). Western blot analysis showed the

same lack of Hsp induction in STHdh(Q111) cells treated with

MG132 and radicicol. Particularly, the induction of Hsp27

appeared to be impaired in STHdh(Q111) cells (Figure 3 B).

We also examined the viability of STHdh(Q7) and

STHdh(Q111) cells after treatment with MG132 or radicicol

(Figure 3 C). We noticed that STHdh(Q7) cells were highly

sensitive to both drugs even at low concentrations. Nevertheless,

STHdh(Q111) cells were significantly more sensitive than

STHdh(Q7) cells, decreasing ATP levels in STHdh(Q111) by

approximately 20% compared to STHdh(Q7) cells. These results

demonstrated that the polyQ-expanded Htt cells are highly

sensitized to MG132 and radicicol treatment. Note that the

increased sensitivity of STHdh(Q111) cells to MG132 correspond-

ed to a stronger accumulation of ubiquitinated proteins in these

cells compared to STHdh(Q7) cells. The specific sensitivity of

STHdh(Q111) to inhibition of Hsp90 by radicicol appeared to

disagree with previous results in different HD models [19,22].

Importantly, in contrast to this previous studies, we were using an

HD cell model expressing full length polyQ-expanded Htt not a

model overexpressing polyQ-expanded Htt fragments.

We next monitored the localization of Hsp70s in STHdh(Q7)

and STHdh(Q111) cells that were exposed to heat shock for a

short period of time (one hour) or longer periods of time (three and

six hours, Figure 4 A). After one hour and particularly after three

Figure 1. Decreased resistance to a heat shock in cells expressing polyQ-expanded Htt. A) Caspase assay of cells that were grown at 33uC
and of heat shocked cells (six hours at 42uC). In either medium containing high concentrations of glucose and serum (HH) or lower concentration of
glucose and serum (LL). The error bars represent SDs. Results from four independent experiments were analyzed. * p,0.1 (two tailed t-test). B)
Relative caspase activities (from Figure 1 A). The values for non heat shocked cells were set as 1 and the other signals were calculated accordingly. C)
Viability assay (luciferase activity, Promega) of STHdh(Q7) and STHdh(Q111) cells that were grown at 33uC and of heat shocked cells (six hours at
42uC). The signals from STHdh(Q7) cells grown at 33uC was set as 100% and the other signals were calculated accordingly. The error bars represent
SDs. Results from four independent experiments were analyzed. * p,0.05 (two tailed t-test). D MTT assay of STHdh(Q7) and STHdh(Q111) cells that
were grown at 33uC and of heat shocked cells (six hours at 42uC). The signals from STHdh(Q7) cells grown at 33uC was set as 100% and the other
signals were calculated accordingly. The error bars represent SDs. Results from four independent experiments were analyzed. * p,0.05 (two tailed t-
test). Experiments shown under B), C), and D) were carried out using LL medium.
doi:10.1371/journal.pone.0037929.g001
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and six hours at 42uC, STHdh(Q7) cells showed Hsp70 localized

in nuclear granules whereas a higher proportion of STHdh(Q111)

cells showed more diffuse Hsp70 staining in the nucleus and the

cytosol. This nuclear granular Hsp70 staining (Figure 4 B) may be

Figure 2. Impaired heat shock response in cells expressing polyQ-expanded Htt. A) Western blots were prepared with protein lysates from
STHdh(Q7) (St7Q) and STHdh(Q111) (St111Q) cells that were grown at 33uC or heat shocked (HS), i.e. grown at 33uC and then incubated at 42uC for
three hours. The blots were probed with the indicated anti-Hsp antibodies and anti-tubulin antibodies as a loading control. The anti-Hsp70 antibody
(3A3) detects both constitutive (const.) and inducible (ind.) Hsp70s. B) Quantification of Western blots as shown in Figure 1 A. All signals were
normalized to the corresponding tubulin signal in each experiment. For Hsp70, both the constitutive and the inducible Hsp70s were quantified
together. The error bars present SDs. * p,0.01 (two-tailed t-test). C) Immunofluorescence microscopy of fixed cells that were grown at 33uC and heat
shocked cells (HS, three hours at 42uC) using the indicated anti-Hsp antibodies. The scale bars represent 75 mm D) Western blot probed with an anti-
ubiquitin antibody of protein lysates derived from STHdh(Q7) and STHdh(Q111) cells that were grown at 33uC or exposed to a heat shock (42uC) for
either three or six hours. A western blot using an anti-tubulin antibody (bottom) served as a loading control. E) Western blot probed with an anti-
ubiquitin antibody of protein lysates derived from STHdh(Q7) and STHdh(Q111) cells that were grown at 33uC in the absence or presence of 10 mM
MG132. A western blot using an anti-tubulin antibody (bottom) served as a loading control.
doi:10.1371/journal.pone.0037929.g002
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reminiscent of nuclear stress granules [36] and may indicate a

particular nuclear stress response that is functional in STHdh(Q7)

cells yet is defective in STHdh(Q111) cells. To allow the

visualization of the lower levels of Hsp70, the pictures of non-

heat shocked cells (33uC, left panels of Figure 4 A) were taken with

higher exposure times (double) than the ones shown in Figure 2 B

and Figure 3 A.

The experiments in Figure 2, 3 and 4 imply that striatum-

derived cells have generally low levels of certain Hsps. These cells

may thus replicate the previously described low levels of molecular

chaperones and Hsps in certain neurons in HD mouse models and

their sensitivity to protein folding stress [37,38]. These low levels of

Hsps are adequate to maintain proper proteostasis in non-stressed

cells. Yet, under stress, cells that express full-length polyQ-

expanded Htt (STHdh(Q111)) have an impaired heat-shock

response, accumulate a higher amount of damaged proteins, and

are therefore highly sensitized to proteostatic stress, such as heat

shock, proteasome or Hsp90 inhibition. Thus, cellular stress

uncovers a deleterious effect on proteostasis of full-length polyQ-

expanded Htt.

Reduced HSF1 levels in cells expressing polyQ-expanded
Htt

We speculated that the impaired heat shock response in

STHdh(Q111) cells may be caused by impaired activation of

HSF1. HSF1 is the major heat shock transcription factor and

controls the expression of many Hsps, mainly in response to stress

[14,39]. In mammalian cells, HSF1 is activated through multiple

interdependent steps, including phosphorylation, trimerization,

and dissociation from molecular chaperones (Hsp70 and Hsp90),

sumoylation, and translocation to the nucleus [14]. We aimed to

determine whether any of these HSF1 activation steps were

impaired in cells expressing full-length polyQ-expanded Htt.

Our Western-blot analysis showed the typical increase in higher

molecular weight species upon heat shock in STHdh(Q7) cells and

STHdh(Q111) cells (Figure 5 A). These higher molecular weight

HSF1 signals conceivably represent different post-translationally

modified (mostly phosphorylated) versions of heat-activated HSF1

[14]. Perplexingly, we did not observe any overt differences in

these higher molecular weight HSF1 species between STHdh(Q7)

and STHdh(Q111) cells. Yet careful quantification of these

experiments showed that STHdh(Q111) cells have lower total

(all different modified and unmodified versions combined) levels of

HSF1, particularly under HS conditions (Figure 5 B, upper panel).

Also, the higher molecular weight, heat shock-induced HSF1

species were significantly reduced (by approximately 40%) in heat

shocked STHdh(Q111) cells compared to STHdh(Q7) cells

(Figure 5 B, lower panel).

Cross-linking experiments also showed nearly identical higher

HSF1 molecular weight species (possibly cross-linked HSF1

trimers and Hsps cross-linked to HSF1 [14]) in STHdh(Q7) and

STHdh(Q111) cells (Figure 5 C). The amount of higher HSF1

Figure 3. Decreased resistance to inhibition of the proteasome or Hsp90 in cells expressing polyQ-expanded Htt. A)
Immunofluorescence microscopy of STHdh(Q7) and STHdh(Q111) cells that were treated for six hours with the Hsp90 inhibitor radicicol (5 mM) or
the proteasome inhibitor MG132 (10 mM) using anti-Hsp70 and anti-Hsp27 antibodies. The scale bars represent 75 mm B) Western blots prepared
from protein lysates treated as in A. C) Viability assay (luciferase activity, Promega) of STHdh(Q7) and STHdh(Q111) cells that were treated with DMSO
(control), radicicol (5 mM), or MG132 (10 mM) for six hours. The error bars represent SD. Results from four independent experiments were analyzed.
* p,0.001 and **p,0.005 (two tailed t-test).
doi:10.1371/journal.pone.0037929.g003
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molecular weight species was significantly reduced (by approxi-

mately 40%) in heat-shocked STHdh(Q111) cells in comparison to

STHdh(Q7) cells (Figure 5 D). Also, fractionation experiments and

their quantification did not detect any gross defect in nuclear

translocation of HSF1 upon heat shock in STHdh(Q111) cells.

(Figure 5 E). Importantly, in the experiments demonstrating both

nuclear translocation and trimerization (or complex formation) of

HSF1 (Figure 5 C–E), HSF1 levels were significantly lower in

STHdh(Q111) cells than in STHdh(Q7) cells, particularly

following a heat shock.

Our results do not conclusively rule out the possibility that

certain HSF1 modifications are specifically altered or subtly

modulated in STHdh(Q111) cells compared to STHdh(Q7) cells

upon heat shock. Yet our results imply that none of the multiple

steps involved in HSF1 activation is severely impaired in

STHdh(Q111) cells, a conclusion which recapitulates the findings

of Labbadia et al. [22]. The most notable difference between

STHdh(Q7) and STHdh(Q111) cells in our experiments, was the

lower overall level of HSF1 in STHdh(Q111) cells, particularly

under heat shock conditions (Figure 5 A–E).

We also monitored the effect of triptolide on STHdh(Q7) and

STHdh(Q111) cells under normal growth conditions and after

heat shock (Figure 5 F). Triptolide has been reported to inhibit the

heat shock response in mammalian cells at a transcriptional level

[40]. We treated STHdh(Q7) and STHdh(Q111) cells with

triptolide and measured cellular viability using ATP luciferase

assays (Figure 5 F). At 33uC, triptolide reduced the luciferase signal

in STHdh(Q111) by about 20% when compared to STHdh(Q7)

cells. Upon heat shock, triptolide-treated STHdh(Q7) cells showed

only slightly reduced luciferase activity. The combination of heat

shock and triptolide-treatment showed a severe reduction of

luciferase activity, indicating a strongly increased sensitivity of

triptolide-treated STHdh(Q111) cells to heat shock. Please note

that the heat shock in these experiments was shorter (only three

hours at 42uC) than the heat shock in Figure 1 (six hours at 42uC)

in order to detect the synthetic toxic effects of heat shock

combined with triptolide treatment.

Reduced HSF1 and Hsp70 levels in HD knock-in mice
We next explored whether HSF1 levels are reduced in HD

knock-in mouse models, which represent a faithful model of HD

[41]. This HD mouse model shows a slower progression of disease-

related phenotypes than observed in mice engineered to overex-

press polyQ-expanded Htt exonI fragments, and may thus provide

insights into the pre-manifest disease state prior to massive polyQ

aggregation. Of note, in this HD mouse model, the first obvious

HD-related phenotypes occur after approximately twelve months

of age [41].

We compared HSF1 levels in protein lysates derived from

striata and cerebella of either wild-type mice or HD knock-in mice

at twelve months of age. In HD and in mouse models of HD, the

striatum is one of the most severely affected regions of the brain

whereas the cerebellum remains mostly unaffected [42]. We

therefore expected most obvious changes in HSF1 levels in the

striatum, whereas the cerebellum should be less affected or not

affected at all.

Unexpectedly, Western-blot analyses showed that HSF1 levels

are reduced in both the striatum and in the cerebellum of HD

knock-in mice compared to wild-type mice (Figure 6 A). In the

striatum and in the cerebellum, HSF1 levels are reduced by

approximately 80% in HD knock-in mice compared to wild-type

mice. Importantly, however, quantification of these Western-blots

documented that the absolute reduction of HSF1 levels is much

more severe in the striatum than in the cerebellum because in

wild-type mice, HSF1 levels are much higher in the striatum than

the cerebellum. Therefore, our results indicated a specific

Figure 4. Aberrant Hsp70 localization upon heat shock in cells expressing polyQ-expanded Htt. A) Immunofluorescence microscopy of
fixed cells that were grown at 33uC and heat shocked cells (HS, 42uC) for either one, three, or six hours probed with anti-Hsp70 antibodies. The scale
bars represent 75 mm. The 33uC samples were exposed longer to visualize Hsp70 localization. B) Immunofluorescence microscopy of fixed cells as in
Figure 4 A. Pictures were taken at a higher magnification (scale bars represent 15 mm) to demonstrate the difference between diffuse and granular
Hsp70 staining in the nucleus.
doi:10.1371/journal.pone.0037929.g004
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Figure 5. Reduced HSF1 levels in cells expressing polyQ-expanded Htt. A) Western blots prepared with protein lysates from STHdh(Q7) and
STHdh(Q111) cells that were grown at 33uC or heat shocked (HS, 42uC for three hours). The blots were probed with anti-HSF1 antibodies and anti-
tubulin antibodies as a loading control. B) Upper panel: quantification of Western blots as shown in Figure 5 A. Signals of total HSF1 were normalized
to the corresponding tubulin signal in each experiment. Lower panel: quantification of Western blots as shown in Figure 5 A. Signals of the top, i.e.
the heat shock-induced part of HSF1 were normalized to the corresponding tubulin signal in each experiment. The signal of the top part of HSF1 at
33uC was set as 1 for each condition. Error bars represent SDs. Results from three independent experiments were analyzed. *p,0.07 (two-tailed t-
test). C) Cross-linking of HSF1. Protein lysates were prepared as in A) followed by cross-linking with EGS (see Materials and Methods for details). The
ensuing Western blots were probed with and anti-HSF1 antibody. D) Quantification of three independent experiments as shown in C). The error bars
represent SDs. * p,0.01 (two-tailed t-test). E) Protein lysates were prepared as in A) and then separated into cytosolic and nuclear fractions. The blots
were probed with anti-HSF1 antibodies and anti-lamin A/C antibodies and tubulin antibody as a loading control and as a control for the purity of the
fractions (nucleus and cytosol respectively). F) Viability assay (luciferase activity, Promega) of STHdh(Q7) and STHdh(Q111) cells that were grown at
33uC and heat shocked cells (three hours at 42uC) in the absence or presence of triptolide. The signal from STHdh(Q7) cells grown at 33uC without
triptolide was set as 100% and the other signals were calculated accordingly. The error bars represent SDs. Results from four independent
experiments were analyzed. * p,0.001 (two-tailed t-test).
doi:10.1371/journal.pone.0037929.g005
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reduction of HSF1 levels in the striata of HD knock-in mice in

comparison to wild-type mice.

We also explored the levels of Hsp70 in the striatum and in the

cerebellum of twelve-month-old wild-type and HD knock-in mice

(Figure 6 B). When comparing wild-type to knock-in mice, Hsp70

levels in the striatum were reduced by approximately 80% and in

the cerebellum by about 70% in the knock-in mice. Yet, in parallel

to our observations regarding HSF1, the levels of Hsp70s were

more severely affected in striata because Hsp70 levels were much

higher in the striatum than in the cerebellum of wild-type mice but

Hsp70 levels were comparable in HD knock-in mice in striata and

in cerebella. Similar to our findings regarding HSF1 levels, this

result indicated a specific reduction of Hsp70 levels in the striata of

HD knock-in mice. To remain consistent with our experiments

using the striatum-derived cell lines (Figure 2 A and B, Figure 3 A,

and Figure 4), we used the 3A3 antibody for our experiments using

protein lysates derived from mice (Figure 6) B. Therefore, we are

not able to determine which specific Hsp70 showed reduced

expression in HD knock-in mice. Our quantification was based

upon all Hsp70 signals on the Western blots. Considering the

specific Hsp70 expression patterns in the mouse brain [43] it will

be interesting to specify which specific Hsp70s are reduced in HD

knock-in mice.

We also compared HSF1 and Hsp70 levels in the striatum and

the cerebellum of six-month-old HD knock-in and wild-type mice

(data not shown). We did not detect any significant changes at this

age, implying that the reduction in HSF1 and Hsp70 levels occur

concomitant to early phenotypic changes in HD knock-in mice.

The results using striata and cerebella from twelve-months-old

HD knock-in mice confirm our findings from STHdh(Q111) cells

that striatal cells expressing polyQ-expanded Htt showed lower

HSF1 levels than wild-type striatal cells. Importantly, our

experiments using mouse brain tissues were performed without

any additional externally applied stress other than the physiolog-

ical stress occurring in specific brain regions during the course of

aging [10,11,12]. Further, we observed reduced levels of Hsp70s

specifically in the striata of HD knock-in mice indicative of a

muted HSF1 induction of Hsp70 expression. These results suggest

that the presence of full length polyQ-expanded Htt impairs the

heat shock response in the striatum in HD knock-in mice.

Discussion

We examined how full-length polyQ-expanded Htt modulates

the heat shock response and the activity of HSF1, a central

transcriptional regulator of the heat shock response and cellular

proteostasis. Our results demonstrate that cells expressing full-

length polyQ-expanded Htt have a severely impaired heat shock

response and have reduced levels of HSF1 and as a consequence

an increased sensitivity to proteostatic stress. Importantly, these

effects of full-length polyQ-expanded Htt can only be observed

under stress conditions as cells expressing full-length polyQ-

expanded Htt that were grown under normal conditions do not

display any disturbances in proteostasis. Our results thus

demonstrate how cellular stress can uncover the toxicity associated

with polyQ-expanded Htt.

While we were preparing this manuscript, Labbadia et al.

published an intriguing study describing the impaired induction of

the heat shock response by the Hsp90 inhibitor NVP-HSP990 in

R6/2 mice and HdhQ150 knock in mice [22]. Like our study, they

Figure 6. Reduced levels of HSF1 and Hsp70s in striata of HD knock-in mice. A) Western blots were prepared with protein lysates from the
cerebella (Cer) or striata (St) from wild-type (WT) or STHdh(Q111) knock-in mice and probed with anti-HSF1 antibodies and anti-tubulin antibodies as
a loading control (left panel). Quantification of three independent Western blots. Error bars represent SDs. *p,0.07 (two-tailed t-test). B) Western
blots were prepared with protein lysates from the cerebella (Cer) or striata (St) from wild-type (WT) or STHdh(Q111) knock-in mice and probed with
anti-Hsp70 antibodies (3A3) and anti-tubulin antibodies as a loading control. Quantification of three independent Western blots. Error bars represent
SDs. *p,0.07 (two-tailed t-test).
doi:10.1371/journal.pone.0037929.g006
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find a dysregulation of HSF1 to be central for the muted heat

shock response in HD mice. They suggest disturbed chromatin

remodeling as a cause for HSF1 dysregulation. While our results

are in agreement with these results our data may offer additional

insights.

In contrast to the HD model used in our experiments, the

Labbadia study used samples from mice presenting rather severe

symptoms of HD, i.e. mice that already presented high degrees of

polyQ toxicity and neuronal dysfunction and neurodegeneration

[22]. The cellular HD model that we used does that show any

toxicity associated with polyQ-expanded Htt. In fact, this HD

model has been suggested to represent earlier stages of HD, i.e.

before the occurrence of massive polyQ aggregation, substantial

polyQ toxicity, and the ensuing cell death [23,24]. Our results

show that full-length polyQ-expanded Htt does not interfere with

regular housekeeping proteostasis, i.e. the upkeep of proteins in the

absence of stress. It is only under stress conditions that proteostasis

fails in cells expressing full-length polyQ-expanded Htt.

Our results imply that this failure of proteostasis under stress is

caused by a failure to effectively activate the heat shock response.

According to the Labbadia study, aberrant chromatin structures in

cells with polyQ-expanded Htt may cause this impaired activation

of heat shock response. Our results offer an additional, not mutual

exclusive, explanation. Reduced levels of HSF1 may contribute to

the failure to activate the heat shock response.

Our study raises a number of intriguing mechanistic questions.

For instance, it remains unclear why HSF1 levels in cells

expressing full-length polyQ-expanded Htt are reduced. Is this

reduction a consequence of lower HSF1 expression levels or the

consequence of an aberrantly swift turn-over of HSF1? Does

polyQ-expanded Htt directly interfere with HSF1 or is this

interaction the result of more complex physiological changes in

cells expressing polyQ-expanded Htt? Based on the findings by

Labbadia et al., it is tempting to speculate that HSF1 expression is

impaired at a transcriptional level in HD because of aberrant

chromatin structures. This HSF1 dysregulation seems to specifi-

cally reduce HSF1 levels in striatal neurons and thus leave them

particularly vulnerable to proteostatic stress.

It will also be important to decipher the transcriptional basis for

the defect in heat shock activation by HSF1. Is the binding to

HSF1 transcriptional targets impaired in stressed cells expressing

full length polyQ-expanded? How does the stress-induced

transcriptional profile change due to the presence of full-length

polyQ-expanded Htt? Which genes are particularly affected in

their expression by the reduced HSF1 levels and do these

transcriptional changes explain HD-specific phenotypes?

Based upon our data and in consideration of previously

published results, we hypothesize that even very early in HD

pathogenesis, i.e. preceding severe polyQ aggregation or toxicity,

full-length polyQ-expanded Htt impairs the heat shock response.

Upon exposure to stress, such as the oxidative stress that is the toll

of neurophysiologic function of specific neurons in the striatum,

neurons accumulate damaged proteins without a fully functional

proteostasis to cope with them. During the course of aging, this

perpetual accumulation of damaged proteins may lead to cellular

dysfunction and elicit the pathological hallmarks of more

advanced stages of HD, including Htt fragmentation, polyQ

aggregation, and neuronal cells death. Pharmacologically aug-

menting the heat shock response, even at pre-symptomatic stages

of HD, may thus present a powerful therapeutic intervention.

Clearly, a deeper understanding of the role of HSF1, the heat

shock response, and cellular stress and polyQ-expanded Htt in HD

is required to validate these musings.

Materials and Methods

Chemicals
Tunicamycin, radicicol, triptolide, and MG132 were purchased

from Sigma-Aldrich.

Antibodies
The following antibodies were used in this study: anti-Hsp27

(Cell Signaling, Danvers, MA, USA), anti-Hsp90 (Stressgen, MI),

anti-lamin A/C, anti-Hsp70 (3A3), anti-ubiquitin antibody

(Covance, CA, USA), anti-HSF1 (Santa Cruz Biotechnology,

CA), and anti-alpha-tubulin antibody (Cedarlane, CA). FITC-

labeled and Cy5-labeled anti-mouse, anti-rabbit and anti-goat

secondary antibodies for fluorescence microscopy were obtained

from Jackson Immuno Research (West Grove, PA). Alexa 680-

labeled secondary antibodies for Western blotting were obtained

from Invitrogen (Carlsbad, CA).

Cell culture
STSTHdhQ7/HdhQ7/Q7 and STSTHdhQ111/HdhQ111/Q111

striatal cells derived from wild type STHdhQ7/HdhQ7/Q7 and

STHdhQ111/HdhQ111/Q111 knock-in embryonic mice [23] were

used in this study. Cells were grown at 5% CO2 at 33uC in

Dulbecco’s modified Eagle’s medium (DMEM containg 4.5 g/l

glucose, from CellGro, Manassas, VA) with 10% fetal bovine

serum (HyClone, Logan, UT), Pen/Strep/Glutamine and

400 mg/ml G418 (both from CellGro) – this is called HH medium.

24 hrs before starting experiments, we switched the cell to DMEM

medium with 1 g/L glucose (CellGro) and 1% fetal bovine serum

– this is called LL medium. Cells were only used up to passage 15.

We used cells at 33uC (normal growth conditions). Heat shocked

cells were incubated at 42uC for the indicated periods of time.

Protein extraction from striatal cells
To prepare total cell lysates, cells were washed with PBS and

harvested by scraping them off in RIPA lysis buffer (50 mM Tris-

HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 0.1% SDS)

supplemented with complete protease inhibitor cocktail and

phosphatase inhibitor cocktail (Roche). Subsequently the cells

were shaken in a bead beater for three minutes followed by a mild

clarifying spin (5006g for 1 min). The lysates were mixed with 66
SDS sample buffer (187.5 mM Tris-HCl, pH 6.8; 6% (w/v) SDS;

30% (v/v) glycerol; 150 mM DTT; 0.03% (w/v) bromphenol

blue; 2% (v/v) b-mercaptoethanol) and boiled for 5 min. In

parallel, aliquots of the protein lysates were used to perform BCA

protein concentration assays (Pierce) to guarantee equal loading on

SDS-PAGE. For the preparation of nuclear and cytoplasmic

lysates a NE-PER Nuclear protein extraction kit (Pierce) was used

following the manufacturers’ protocol. HSF1 trimerization was

assessed using the amine-specific cross-linker ethylene glycol bis-

succinimidyl succinate (EGS, Pierce) according to manufacturers’

protocol.

Western blotting
For SDS-PAGE, protein concentrations of all samples within

one experiment were equalized according to BCA assays (Pierce).

Proteins were transferred to nitrocellulose membranes by the iBlot

Dry Blotting system (Invitrogen). Blots were blocked in 5% non-fat

dry milk in PBS for one hour at RT and subsequently incubated

with primary antibodies for one hour at RT or overnight at 4uC.

After washing the blots were incubated with fluorescently labeled

(Alexa 480 or Alexa 680) secondary antibodies for one hour at RT.

Blots were scanned using the Odyssey Imaging System (Li-Cor

Biosciences, Lincoln, NE, USA). Quantifications were performed
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using the Odyssey Imaging System software. Data from the

quantifications of the Western blots represent three independent

experiments for each experimental condition. The error bars

represents standard deviations (SD).

ATP/luciferase assay, MTT assay and caspase assays
To assay the viability of cells, luciferase assays (CellTiter-Glo

Luminescent Cell Viability Assay, Promega) and caspase activity

assays (Caspase-Glo 3/7 Assay, Promega) were performed in 96-

well plates using 10,000 cells per well. Data from viability assays

represent at least three independent experiments carried out in

triplicate for each experimental condition. The error bars

represent standard deviations (SD). MTT assays were carried

out as described [9].

Immunocytochemistry
For immunostaining PBS-washed cells were fixed in 4%

paraformaldehyde for 20 min at RT, washed with PBS,

permeabilized in 0.1% Triton X-100 in PBS, washed again, and

subsequently blocked in blocking buffer (0.1% bovine serum

albumin (BSA) and 0.075% Glycine in PBS) for 15 min. Cells were

then incubated with primary antibody (for 60 min) in blocking

buffer, washed with blocking buffer and exposed to secondary

antibody in blocking buffer (for 60 min). Cells were washed again,

and incubated with DAPI. Coverslips with the cells were mounted

on microscope slides using Vectashield (Vector Labs, Burlingame,

CA, USA). Pictures of the cells were taken with a Leica TCS SP2

inverted confocal microscope (Leica Microsystems) using a 406or

636 objective and were processed with Adobe Photoshop.
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