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Abstract

In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions
during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The
proposed technique employs multi-spectrum networks to characterize the complex yet subtle blood oxygenation level
dependent (BOLD) signal changes caused by pathological attacks. The utilization of multi-spectrum networks in identifying
MCI individuals is motivated by the inherent frequency-specific properties of BOLD spectrum. It is believed that frequency
specific information extracted from different spectra may delineate the complex yet subtle variations of BOLD signals more
effectively. In the proposed technique, regional mean time series of each region-of-interest (ROI) is band-pass filtered
(0:025ƒf ƒ0:100 Hz) before it is decomposed into five frequency sub-bands. Five connectivity networks are constructed,
one from each frequency sub-band. Clustering coefficient of each ROI in relation to the other ROIs are extracted as features
for classification. Classification accuracy was evaluated via leave-one-out cross-validation to ensure generalization of
performance. The classification accuracy obtained by this approach is 86.5%, which is an increase of at least 18.9% from the
conventional full-spectrum methods. A cross-validation estimation of the generalization performance shows an area of
0.863 under the receiver operating characteristic (ROC) curve, indicating good diagnostic power. It was also found that,
based on the selected features, portions of the prefrontal cortex, orbitofrontal cortex, temporal lobe, and parietal lobe
regions provided the most discriminant information for classification, in line with results reported in previous studies.
Analysis on individual frequency sub-bands demonstrated that different sub-bands contribute differently to classification,
providing extra evidence regarding frequency-specific distribution of BOLD signals. Our MCI classification framework, which
allows accurate early detection of functional brain abnormalities, makes an important positive contribution to the treatment
management of potential AD patients.
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Introduction

Alzheimer’s disease (AD) is one of the most prevalent dementia

in older adults characterized by cognitive and intellectual deficits,

which is serious enough to interfere daily life, without an effective

treatment. It gets worse over time by gradually destroying brain

cells, causing loss in memory and ability to reason, make

judgements and communicate, and eventually causing death.

AD is the most common type of dementia which accounts for 50 to

80 percent of dementia cases and definitive diagnosis can only be

made with histopathological confirmation of amyloid plaques and

neurofibrillary tangles. It has been reported that the incidence of

AD doubles every five years after age of 65 [1] and 1 in every 85

persons will be affected by the disease by year 2050 [2]. The

condition becomes even worse as life expectancy increases. With

the aging of the world-wide population, this disease has become a

serious problem and a huge burden to the healthcare system,

especially in developed countries. Recognizing the urgent need to

slow down or completely prevent the occurrence of a healthcare

crisis worldwide, effort has been under way to administer and to

develop effective pharmacological and behavioral interventions for

delaying the onset and progression of the disease.

A significant body of literature [3–5] suggests that the

pathological manifestation of AD begins many years before it

can be diagnosed using cognitive tests. At the stage where

symptoms can be observed, significant neurodegeneration of the
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human brain has already occurred. This provides an alternative

approach to identify patients from normal aging based on

neuroimaging data. Studies suggest that individuals with mild

cognitive impairment (MCI), a prodrome of AD, tend to progress

to probable AD at a rate of approximately 10% to 15% per year

[6–8], compared with normal controls who develop dementia at a

rate of 1% to 2% per year [9]. Thus, earlier diagnosis or

prediction of MCI is important to possibly delay the onset of

disease progression. However, compared to AD, MCI is more

difficult to diagnose due to the subtlety of the involved cognitive

impairment, especially in high functioning individuals who are

able to maintain a positive public or professional profile without

showing obvious cognitive impairment. It is hence crucial to

develop algorithms that can identify subtle diagnostic biomarkers

for early detection of MCI, so that early treatment can be

administered to possibly delay the transition from MCI to AD or

other dementias.

Functional connectivity is defined as the temporal correlation of

a neurophysiological index measured in different brain areas

[10,11]. The neurophysiological index used in resting-state

functional magnetic resonance imaging (fMRI) is the blood

oxygenation level dependent (BOLD) signal. This signal exhibits

low-frequency spontaneous fluctuations in the resting brain and

shows a high degree of temporal correlation across widely

separated brain regions. Resting-state fMRI yields new insights

on how structurally segregated and functionally specialized brain

regions are interconnected. Since the initial work by Biswal et al.

[12], resting-state fMRI has been widely applied either in healthy

subjects to study brain functional activities [13] or the pathological

changes related to diseases such as multiple sclerosis [14], epilepsy

[15], Schizophrenia [16,17], depression [18–20], attention-deficit/

hyperactivity disorder [21], MCI [22–24] and AD [25,26]. It also

been employed for graph-theory based parcellation of subunits in

the brain [27]. One apparent clinical advantage of using resting-

state fMRI rather than task-activation fMRI to investigate the

influence of disease and/or medication on the brain is that no

complicated experimental design is required. Experiments can be

performed easily by patients who may have difficulties performing

specific task inside the scanner, especially those with disorders

exhibiting prominent cognitive degeneration, such as AD [11,13].

Models of whole-brain connectivity, which comprise networks

of brain regions connected either by anatomical tracts or

functional associations, have drawn a great deal of interest

recently due to the increasing reliability of network characteriza-

tion through neurobiological meaningful and computationally

efficient measures [28–30]. Network-based analyses on the

constructed brain networks allow us to not only visualize the

overall connectivity patterns among all the elements of the brain

but also to quantitatively characterize responses of brain to

external stimuli or pathological attacks [31]. For example, it has

been demonstrated that both the structural and functional brain

networks are organized in highly modular small-world architec-

tures which allow transferring of information at a low wiring cost

and high efficiency [29,32–34].

One crucial step in resting-state fMRI signal analysis is temporal

band-pass filtering. The purpose of this procedure is to minimize

the effects of low frequency drift and high frequency noise. The

frequency interval of band-pass filtering varies and depends on the

application, but is normally within the interval of

[0:01{0:10 Hz]. The analysis of resting-state fMRI signals is

normally performed on full-spectrum of the filtered signals, which

might not be sensitive enough to delineate complex yet subtle

pathological patterns related to the neurological disease. Such full-

spectrum analysis on BOLD signal might cause subtle temporal

changes to be averaged out, and thus deteriorate classification

performance. A relatively more sensitive analysis, which is more

effective in extracting subtly BOLD signal changes, is hence

required.

The main goal of this study is to propose a novel neuroimaging-

based classification framework for identifying MCI individuals

from subjects undergoing normal aging using resting-state fMRI

data. The proposed multivariate high-dimensional classification

framework is developed based on the latest developments in graph

theoretic analysis. In the proposed framework, a frequency-specific

approach was employed to better characterize the subtle BOLD

signal variations related to MCI and a graph measure was

employed to extract topological information of brain functional

connectivity networks. The utilization of frequency-sensitive

approach is motivated by the inherent frequency specific property

of low-frequency oscillations (LFO) that contributes differently to

functional connectivity [35]. This can be accomplished by

decomposing the BOLD spectrum into several frequency bands,

to account for the subtle spatio-temporal changes of brain activity.

Frequency specific research within the LFO range is originated by

Buzsáki and colleagues who observed that neuronal oscillations are

distributed linearly on the natural logarithmic scale [36,37]. They

suggested that independent frequency bands are generated by

distinct oscillators, and each of them has specific properties and

physiological functions. Recently, this concept has been extended

to the fMRI studies [35,38–40] by decomposing the fMRI signals

with frequencies v0:1 Hz into multiple bands [35,39–41]. Zuo et

al. demonstrated that the observed frequency-specific spatial

structures are stable between repeat scans [40], while Baria et al.

demonstrated similar frequency-specific spatial profiles over 195

subjects [39]. Accordingly, we hypothesize that by considering

frequency bands individually, spatio-temporal profiles can be

better characterized, particularly for complex yet subtle patholog-

ical patterns related to diseases, using the BOLD signal with

multiple frequency bands. In our framework, the resting-state

connectivity is characterized by multiple networks, each dominat-

ed by a BOLD oscillation with a specific frequency range for

greater sensitivity in analyzing diseases such as AD.

Functional connectivity networks are constructed from each

frequency sub-bands and their topological properties can be

employed to describe the pathological patterns. In this study,

clustering coefficients, which measure network topological prop-

erties, were extracted and fed into a feature selection mechanism

to select the most discriminative subset of features before they were

utilized to train a support vector machine (SVM) based classifier.

Classification accuracy in this study was evaluated via leave-one-

out cross-validation to ensure performance generalization. The

classification accuracy obtained by the proposed method is 86.5%,

which is an increase of at least 18.9% from the conventional

methods which used a single frequency band. Specifically, we note

that the area under receiver operating characteristic (ROC) curve

is 0.863, indicating good diagnostic power of the proposed

framework.

Results

Performance of the proposed classification framework, which

utilizes the frequency-specific multi-spectrum characterization,

was compared with the full-spectrum characterization of the

BOLD signal. Regions that were selected to effectively distinguish

between MCI individuals and normal controls using the proposed

framework are graphically displayed. The discriminative power of

individual frequency sub-bands was also analyzed in detailed.

MCI Classification Using Resting-State FMRI
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Comparison Between Full- and Multi-Spectrum Schemes
Classification performance for the proposed framework was

compared with the full-spectrum network characterization. The

leave-one-out cross-validation training and testing procedures

described in the Section Method and Materials were applied to

both methods during comparison. The classification performance

is summarized in Table 1.

In agreement with our hypothesis, the proposed multi-spectrum

scheme provides pathologically more sensitive features by yielding

significant improvement over the conventional full-spectrum

scheme both in terms of classification accuracy and area under

ROC curve (AUC), particularly after factoring out the effects of

WM and CSF signals in the GM-masked fMRI time series. The

classification accuracy increased by more than 18.9% while the

AUC value increased by more than 0.24, indicating significant

improvement in diagnostic power. The ROC curves of all

compared conditions are shown in Figure 1.

Discriminant Regions
The SVM recursive feature elimination (SVM-RFE) algorithm

is utilized in the proposed framework to minimize the classification

error in a backward sequential fashion by removing one feature at

a time. The end result is a subset of most discriminant features

which yields the best classification performance based on the

training set. Since the proposed approach is evaluated in a nested

leave-one-out fashion, the selected subset of features might be

different for each leave-one-out fold. We hence define the most

significant ROIs as the regions that are most frequently selected

during the construction of optimal SVM models in the training

stage. Specifically, for each training subset (which contains n{2
subjects) we first counted the frequency of ROIs selected in

different n{1 inner leave-one-out folds and then summed them

up across all n outer leave-one-out folds to obtain the final

selection frequency. We finally ranked the ROIs according to their

final selected frequency and ROIs with the highest frequency were

considered as the most significant regions.

The most discriminant regions that were selected for classifica-

tion were mainly located in prefrontal cortex areas and temporal

lobes. The selected regions involved parts of frontal lobe such as

rectus gyrus, orbitofrontal cortex and frontal gyrus, parts of

temporal lobe such as temporal poles, amygdala and parahippo-

campal gyrus, superior occipital gyrus of occipital lobe and

precuneus of parietal lobe.

The features selected by SVM-RFE in all leave-one-out cases

and used for SVM model construction are listed in the Table 2.

The most discriminant ROIs obtained using the proposed

classification framework are graphically displayed in Figure 2.

Discriminative Power of Individual Frequency Sub-Bands
In order to investigate which frequency ranges were most

predictive, we performed MCI classification using features derived

from each individual frequency sub-band. The same leave-one-out

cross-validation classification procedure was applied for each

individual frequency sub-band and their performance is summa-

rized in Table 3.

It is clearly observed that each individual frequency sub-band

performed differently in classifying MCI, indicating their different

discriminative power. Frequency Band3 ([0.054–0.068 Hz]) per-

formed the best among all frequency sub-bands, though still

slightly inferior than the proposed multi-spectrum method, both in

terms of classification accuracy and AUC values. The other

frequency sub-bands performed significantly worse than the

Band3, in the order of Band4 ([0.068–0.082 Hz]), Band2

([0.039–0.054 Hz]), Band5 ([0.082–0.100 Hz]) and Band1

([0.025–0.039 Hz]). Band5 and Band1 performed the worst and

no obvious differences between them. Band4 and Band2

performed slightly better than Band5 and Band1. This result

explains why only features from Band2, Band4, and predomi-

nantly Band3 were selected during feature selection step.

Discussion

This paper investigated the diagnostic power of functional

connectivity networks, derived from resting-state fMRI, for the

identification of individuals with MCI from normal aging subjects.

The proposed high-dimensional pattern classification framework

employed an efficient frequency-specific multi-spectrum charac-

terization of resting-state fMRI time series for accurate identifi-

cation of MCI individuals. Classification accuracy was evaluated

via leave-one-out cross-validation to ensure performance general-

ization. The classification accuracy obtained by the proposed

method, involving frequency-specific multi-spectrum characteriza-

tion and graph theoretic analysis, was 86.5%, which was

significantly higher than the conventional full-spectrum approach.

The AUC value of the proposed method was 0.863, indicating

good diagnostic power, especially in view of the relatively limited

number of samples available in this study. Conventional approach,

which is either less sensitive to BOLD signal changes or vulnerable

to noise effects, can only provide low to moderate performance as

indicated by their relatively smaller AUC values. It was also found

that the classification performance of individual frequency sub-

bands is different indicating frequency-specific spatio-temporal

information distribution in BOLD signals.

A strength of our assessed cohort is that it allows us to study

MCI at a relatively mild stage of cognitive impairment as indicated

by very minor differences in MMSE scores between MCI patients

and normal aging subjects. This provides an important distinction

between our study and other studies that involve patients reporting

to the clinic with significant memory and cognitive complaints.

Multi-spectrum characterization provides a frequency-specific

description regarding the variability of the BOLD signal by

decomposing the band-pass filtered time series into several smaller

frequency intervals. This description reveals subtle variations of

the BOLD signal and thus provides more sensitive characteriza-

tion of neuronal activities during resting condition, particularly for

comparison between baseline and affected BOLD signals. This is

justified by the improvement of classification accuracy yielded by

the multi-spectrum characterization when compared with the

conventional full-spectrum approach. Further decomposing of the

band-pass filtered time series, however, is restricted by the

acquisition sampling frequency. It was found that each individual

frequency sub-band contributed differently to classification, with

Table 1. Classification accuracies and AUC values for full- and
multi-spectrum network characterization methods using GM-
masked and unmasked fMRI time series.

Approach Accuracy AUC

(%)

Unmasked+Full-Spectrum 56.76 0.5317

GM-Masked+Full-Spectrum 59.46 0.5433

Unmasked+Multi-Spectrum 67.57 0.6200

GM-Masked+Multi-Spectrum 86.49 0.8633

doi:10.1371/journal.pone.0037828.t001

MCI Classification Using Resting-State FMRI
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Band3 ([0.054–0.068 Hz]) demonstrating the highest discrimina-

tive power. Our results based on multi-spectrum characterization

are supported by findings in studies that examine the frequency-

specific distribution of BLOD signal fluctuations. Many studies

that examined the resting-state fMRI data by decomposing the the

BOLD frequency bandwidth into separate length bands

[35,39,40,42] indicate that resting-state BOLD oscillations exhibit

frequency-specific anatomical constrained spatial structure in the

human brain [39]. These frequency-specific structure was proven

to be stable between repeat scans [40] and similar finding was

repeated using large dataset [39]. Baria et al. [39] also

demonstrated that power for different frequency bands varies by

anatomical and functional properties of the brain. Our proposed

classification framework combines different yet complementary

spatio-temporal information conveyed by each individual frequen-

cy sub-band and thus enhances the classification performance of

MCI. However, further analysis is required to determine the

frequency band that is most effective for classification.

The brain regions that are selected for accurate detection of

individuals with MCI includes portions of the prefrontal cortex,

orbitofrontal cortex, temporal lobe, and parietal lobe, which have

already been extensively reported in previous studies. These

included: parts of prefrontal regions [43], the inferior frontal gyrus

and cingulate areas [44], parts of parietal and posterior cingulate

regions [45], the medial temporal lobe areas and posterior

cingulate that are core regions of default mode network

[3,46,47], the medial temporal lobe and parahippocampal regions

[48], posterior cingulate cortex and middle frontal cortex [49], the

Figure 1. ROC curves for classification of MCI individuals using the resting-state fMRI.
doi:10.1371/journal.pone.0037828.g001

Table 2. The selected most discriminant features.

Band Most Discriminant Feature
Selected
Frequency

Band2 Superior occipital gyrus right 1

Band2 Precuneus left 1

Band3 Orbitofrontal cortex (superior) left 4

Band3 Inferior frontal gyrus (opercular) right 19

Band3 Orbitofrontal cortex (medial) left 1230

Band3 Rectus gyrus left 55

Band3 Anterior cingulate gyrus left 8

Band3 Posterior cingulate gyrus left 2

Band3 Amygdala right 20

Band3 Temporal pole (superior) left 1

Band3 Temporal pole (superior) right 37

Band3 Temporal pole (medial) left 53

Band3 Right lobule VIIB of Cerebellar hemisphere 2

Band4 Rectus gyrus left 15

Band4 ParaHippocampal gyrus left 64

(Band1 = [0.025–0.039 Hz], Band2 = [0.039–0.054 Hz], Band3 = [0.054–0.068 Hz],
Band4 = [0.068–0.082 Hz], Band5 = [0.082–0.10 Hz]).
doi:10.1371/journal.pone.0037828.t002

MCI Classification Using Resting-State FMRI
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medial temporal lobe [50–52]. It is worth noting that our proposed

method is blind to the prior knowledge of brain regions associated

with MCI or AD. Yet, the selected regions coincide well with those

reported in the literature.

Our findings of relative asymmetric pattern, i.e., more regions

in the left hemisphere were selected in training stage, is in line with

some previous studies using SPECT and PET data [53,54].

Functional studies in [55] reported a left-sided hypometabolism in

patients with AD while [56] reported a better discrimination

between MCI individuals and healthy controls in the left-

hemisphere. The findings may suggest that alteration of brain

functions in left-hemisphere is occurred earlier in the disease

process than the right-hemisphere. However, there is no strong

evidence regarding this observation since non-pathological factors

such as patient selection and post-processing procedure may cause

for finding differences. This asymmetric pattern is interesting and

merits further research.

It is noteworthy that the framework proposed herein is based on

the data-driven concept, i.e., the set of brain measurements which

optimally differentiates between MCI individuals and cognitively

normal individuals cannot be known a priori, but can only be

determined from the data. Furthermore, the leave-one-out cross-

validation is used in this study to guard against data overfitting, a

persistent problem in high dimensionality analyses of datasets with

relatively small sample sizes.

One of the methodological issues regarding post-processing of

resting-state fMRI analysis is the choice of temporal filtering

algorithms. Wavelet [57] and Fourier-based approaches [34,58]

have been proposed for the characterization of BOLD signal

fluctuations and a good agreement, with correlations larger than

0.9, between these two approaches has been found across subjects

and parcellation scales [57].

Another methodological issue that may affect the classification

performance is the global correction of BOLD signal based on

Figure 2. The most discriminant ROIs selected for classification. ((a) Orbitofrontal cortex (superior) left, (b) Inferior frontal gyrus (opercular)
right, (c) Orbitofrontal cortex (medial) left, (d) Rectus gyrus left, (e) Anterior cingulate gyrus left, (f) Posterior cingulate gyrus left, (g) Parahippocampal
gyrus left, (h) Amygdala right, (i) Superior occipital gyrus right, (j) Precuneus left, (k) Temporal pole (superior) left, (l) Temporal pole (superior) right,
(m) Temporal pole (middle) left, and (n) Right lobule VIIB of cerebellar hemisphere).
doi:10.1371/journal.pone.0037828.g002

Table 3. Comparison of classification performance for multi-
spectrum and individual frequency sub-bands.

Approach Accuracy AUC

(%)

Band1 64.87 0.6367

Band2 67.57 0.6781

Band3 83.78 0.8267

Band4 70.27 0.7067

Band5 64.87 0.6513

Multi-Spectrum 86.49 86.33

(Band1 = [0.025–0.039 Hz], Band2 = [0.039–0.054 Hz], Band3 = [0.054–0.068 Hz],
Band4 = [0.068–0.082 Hz], Band5 = [0.082–0.10 Hz]).
doi:10.1371/journal.pone.0037828.t003

MCI Classification Using Resting-State FMRI
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whole-brain signal. The whole-brain signal is defined as the

average time series over all voxels in the brain and is typically

removed by regression from time series at each voxel, after which

the residual time series is used for further analysis [59]. Whole-

brain signal regression is associated with the artificial emergence of

negative correlations. It is currently not known to what extent the

whole-brain signal correlates with signals of true neurophysiolog-

ical origin, or how activation of multiple coherent networks during

rest may contribute to the whole-brain signal [60].

Our current study is limited by the small size of available

samples. Given a small sample size, statistical power is of potential

concern. Although the leave-one-out cross-validation accuracy

obtained may be optimistic, the limited sample size does not allow

us to explore other cross-validation techniques, since the nonlinear

SVM classifier will then be under-trained. Our dataset is quite

diverse, and it includes both sexes and all ages between 55 to 84

for MCI patients and 55 to 88 for normal controls. However, the

results obtained have to be verified in the future with larger

datasets to reduce individual effects and to ensure the effectiveness

of the proposed technique.

In summary, resting-state fMRI has the potential for greatly

increasing the clinical utility of the fMRI for diagnosis of disorders

such as AD. A novel high-dimensional pattern classification

method, which is based on BOLD signal contrast, has been

proposed to identify individuals with MCI from normal controls.

The proposed technique employs a frequency-specific multi-

spectrum network characterization of the fMRI regional mean

time series to effectively delineate the functional connectivity

patterns at a whole brain level. Significant improvements and

promising results indicate that the proposed classification frame-

work can potentially serve as a complementary approach to

clinical diagnosis of alteration in brain functions associated with

cognitive impairment, especially at the early stages.

Materials and Methods

Participants and Data Acquisition
All the subjects used in this study were recruited by the Duke-

UNC Brain Imaging and Analysis Center (BIAC), Durham, North

Carolina, USA. Written consent was obtained from all partici-

pants, and the experimental protocols were approved by the

institutional ethics board at Duke University Medical Center in

compliance with the Health Insurance Portability and Account-

ability Act. This cohort involved of 37 participants, 12 MCI

patients and 25 socio-demographically matched healthy controls.

All the recruited subjects were diagnosed by expert consensus

panels at the Joseph and Kathleen Bryan Alzheimer’s Disease

Research Center (Bryan ADRC) and the Department of

Psychiatry at Duke University Medical Center. Diagnosis was

made by consensus with the ultimate decision by a board-certified

neurologist in concert with available data from a battery of general

neurological examination, neuropsychological assessment evalua-

tion, collateral and subject symptom and functional capacity

reports. The neuropsychological battery the Bryan ADRC used

was a revised Consortium to Establish a Registry in Alzheimer’s

Disease (CERAD) which included: 1) Mini-Mental State Exam-

ination (MMSE); 2) immediate and delayed verbal memory

(Logical Memory subtest of the Wechsler Memory Scale-Revised);

3) visual immediate memory (Benton Visual Retention Test); 4)

verbal initiation/lexical fluency (Controlled Oral Word Associa-

tion Test from the Multilingual Aphasia Examination); 5)

attentional/executive functions (Trail Making Test, Symbol Digit

Modality Test, Digit Span sub-test of the Wechsler Adult

Intelligence Scale-Revised, and a separate ascending Digit Span

task modeled after the Digit Ordering Test); 6) premorbid verbal

ability (Shipley Vocabulary Test); 7) Finger Oscillation Grooved

Pegboard; and 8) Self Rating of Memory Function.

Conformation of diagnosis for MCI if subjects met the following

inclusion criteria: 1) age w55 years and any race; 2) recent

worsening of cognition, but still functioning independently; 3)

MMSE score between 24 and 30; 4a.) score ƒ21.5 SD on at least

two Bryan ADRC cognitive battery memory tests for single-

domain amnestic MCI; or 4b.) score ƒ21.5 SD on at least one of

the formal memory tests and score ƒ21.5 SD on at least one

other cognitive domain task (e.g., language, visuospatial-process-

ing, or judgment/executive function) for multi-domain MCI; 5) 4

or lower for baseline Hachinski score; 6) does not meet the

NINCDS-ADRDA or DSM-IV-TR criteria for dementia; 7) no

psychological symptoms or history of depression; and 8) capacity

to give informed consent and follow study procedures.

Similarly, all healthy controls met the following criteria: 1) age

w55 years and any race; 2) adequate visual and auditory acuity to

properly complete neuropsychological testing; 3) no self-report of

neurological or depressive illness; 4) shows no evidence of

depression based on the Diagnostic Interview Schedule port based

on the Diagnostic Interview Schedule portion of the Duke

Depression Evaluation Schedule; 5) normal score on a non-focal

neurological examination; 6) a score w21 SD on any formal

memory tests and a score w21 SD on any formal executive

function or other cognitive test; and 7) demonstrates a capacity to

give informed consent and follow study procedures. In order for

safety purposes and minimizing biases, subjects were excluded

from the study if they have: 1) any of the traditional MRI

contraindications, such as foreign metallic implants or pacemak-

ers; 2) a past head injury or neurological disorder associated with

MRI abnormalities, including dementia, brain tumors, epilepsy,

Parkinson’s disease, demyelinating diseases, etc.; 3) any physical or

intellectual disability affecting completion of assessments; 4)

documentation of other Axis I psychiatric disorders; and 5) any

prescription medication (or nonprescription drugs) with known

neurological effects. Noteworthy that the diagnosis of all cases

were made on clinical grounds without reference to MRI.

An 3.0 T GE scanner (Signa EXCITE, GE Healthcare) was

used in scanning process to acquire resting-state fMRI volumes.

Resting-state functional images of each participant were acquired

axially parallel to the horizontal plane connecting the anterior and

posterior commissures (AC-PC line) with echo time (TE) = 32 ms,

repetition time (TR) = 2000 ms and flip angle = 770. The acqui-

sition matrix was (64|64) with a rectangular FOV of

(256|256 mm2), resulting in a voxel resolution of

4|4|4 mm3. A total of 34 slices were acquired using a SENSE

inverse-spiral pulse sequence in the same plane as the low

resolution T1-weighted images. There were 150 volumes acquired

per scan in all participants. All the subjects were told to keep their

eyes open and stare at a fixation cross in the middle of the screen

during scanning, which lasted for 5 minutes. As we know, neurons

get excited to changing stimuli across time. But when the stimuli

such as the little cross sign in this study was presented steadily

without changing across the five minutes period, the neural

excitation related to the stimuli can vanish quickly. Hence, this can

ensure subjects not falling into sleep and avoid saccade-related

activation which is unavoidable if eyes were closed. The same

scanner was used to acquire the T1-weighted anatomical MRI

images using the following parameters: TE = 2:976 ms,

TR = 7:460 ms and flip angle = 120. The acquisition matrix was

(256|224) with a rectangular FOV of (256|256 mm2), resulting

in slice thickness of 1 mm. A total of 216 slices were acquired using
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PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e37828



the FSPGR ASSET sequence. Demographic information of the

participants involved in this study are shown in Table 4.

Method
Overview of Methodology: The key of our proposed

multivariate high-dimensional classification framework involves

an efficient characterization of resting-state fMRI time series via a

two-fold description:

N Frequency-specific multi-spectrum characterization -

to quantify relatively subtle changes of BOLD signal by

decomposing the mean time series of each ROI into five

distinct frequency sub-bands; and

N Graph theoretic analysis - to characterize topological

properties and strengths of brain functional connectivity

networks through neurobiologically meaningful and computa-

tionally efficient measures.

An overview of the proposed MCI classification framework is

summarized graphically in Figure 3.

Post-processing of the fMRI images of the resting-state fMRI

images was performed using the Statistical Parametric Mapping

software package (SPM8, http://www.fil.ion.ucl.ac.uk.spm). Spe-

cifically, the first 10 acquired fMRI images of each subject were

discarded to ensure magnetization equilibrium. Then, the

remaining 140 images were corrected for the staggered order of

slice acquisition that was used during echo-planar scanning. The

correction makes the data on each slice correspond to the same

point in time. The interpolated time point was chosen as the TR/2

time to minimize relative errors across each TR in the study. After

acquisition time delay correction, we realigned the slice timing

corrected fMRI time-series of each subject using a least squares

approach and a 6 parameters (rigid body) spatial transformation

[61]. The first image of each subject was used as the reference to

which all subsequent scans were realigned. This realignment

removed the head-motion artifacts in fMRI time-series. For all

subjects used in this study, there were no significant group

differences in head-motion. After realignment, the images were

resliced such that they match the first image voxel-for-voxel.

Before constructing the functional connectivity networks, we

minimized the effects or contributions from WM and CSF signals

by generating GM-masked fMRI images. Specifically, we first

performed tissue segmentation on the T1-weighted image of each

subject to obtain segmentation images representing three different

brain tissues, i.e., GM, WM and CSF. The fMRI images of each

subject were then masked with their respective GM masks. After

that, we parcellated the brain space into 116 ROIs by warping the

Automated Anatomical Labeling (AAL) template [62] to these

GM-masked fMRI images using deformation fields estimated from

T1-weighted images. For each subject, the representative time

series of each individual region was obtained by averaging the

GM-masked fMRI time series over all voxels in that particular

region. Temporal band-pass filtering of frequency interval

(0:025ƒf ƒ0:100 Hz) was then performed to minimize the effects

of low-frequency drift and high-frequency noise. This frequency

interval is further decomposed into five equally divided, non-

overlapping frequency sub-bands.

For each frequency sub-band, we constructed a functional

connectivity network by utilizing Pearson correlation to measure

the interregional synchronization in BOLD signal. No global

signal regression was performed in this study to avoid artifacts

resulting from negative correlations. For each sub-band connec-

tivity network, we computed the clustering coefficient of each node

with respect to the other nodes in its subnetwork as feature for

classification. For each subject, features from all connectivity

networks were concatenated to form a large feature pool. Elements

from this large feature pool were first ranked according to their

Pearson correlation with respect to the clinical labels, and were

further sieved to select the most discriminant features subset using

a wrapper-based feature subset selection method, i.e., the SVM-

RFE algorithm [63,64]. Finally, nonlinear SVMs were trained

using the selected subset of features. The training process was

repeated for all subjects in the dataset in a leave-one-out fashion.

Given an unseen testing sample, the final decision was determined

by averaging the outcome from all built SVM classifiers.

Frequency-Specific Multi-Spectrum Characterization:
For each subject, the mean time series of each individual ROI was

obtained by averaging the GM-masked fMRI time series over all

voxels in that particular ROI. Temporal band-pass filtering with

frequency interval (0:025ƒf ƒ0:100 Hz) was then performed on

the mean time series of each individual ROI. This frequency

interval is commonly employed to characterize connectivity

patterns of spontaneous, low-frequency fluctuations (v0:10 Hz)

of the BOLD signal in resting-state fMRI analysis since the fMRI

dynamics of neuronal activities are most salient within this

frequency interval. It provides a reasonable trade-off between

avoiding the physiological noise associated with higher frequency

oscillations [65], the measurement error associated with estimating

very low frequency correlations from limited time series [66], and

the magnetic field drifts of the scanner [67].

In order to extract complex, yet subtle pathologies associated

with MCI, we proposed to employ a frequency-specific multi-

spectrum characterization of the regional mean time series, which

utilizes multiple frequency sub-bands, in contrast to the conven-

tional full-spectrum description, to construct functional connec-

tivity networks. We hypothesis that by decomposing the BOLD

spectrum into smaller frequency bands and performing the

analysis using these sub-bands will provide a more sensitive

characterization on spatio-temporal information of brain activity.

In [40], based on Buzsáki’s framework, Zuo et al. decomposed

LFO into four frequency bands: slow-5 ([0.01–0.027 Hz]), slow-4

([0.027–0.073 Hz]), slow-3 ([0.073–0.198 Hz]) and slow-2

([0.198–0.25 Hz]), and they found that only slow-5 and slow-4

are associated with resting-state functional connectivity while slow-

3 and slow-2 are associated with respiratory and cardiac signals. It

was also shown that, compared with slow-5, slow-4 has higher test-

retest reliability [40]. In another study, BOLD signal was

decomposed into four frequency bands: LF ([0.01–0.05 Hz]),

MF1 ([0.05–0.10 Hz]), MF2 ([0.10–0.15 Hz]) and HF ([0.15–

0.20 Hz]), and it was found that the low frequencies (LF and MF1)

contained larger average power spectral density than the high

frequencies (MF2 and HF) [39]. In another study which

decomposed BOLD signal with frequency (v0:1 Hz) into four

Table 4. Demographic and clinical information of the
participants involved in this study.

Group MCI Normal

No. of subjects 12 25

No. of males 6 9

Age (mean + SD) 75.0+8.0 72.9+7.9

Years of education (mean + SD) 18.0+4.1 15.8+2.4

MMSE (mean + SD) 28.5+1.5* 29.3+1.1

*One of the patients does not have a MMSE score.
doi:10.1371/journal.pone.0037828.t004
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bands, it was found that small-world properties were salient in the

frequency ranges [0.06–0.11 Hz], [0.03–0.06 Hz] and [0.01–

0.03 Hz], with the most salient range [0.03–0.06 Hz] [38].

Accordingly, in the proposed framework, we incorporated the

findings from these studies by restricting the analysis within the

frequency range (0:025ƒf ƒ0:100 Hz). To better characterize

the subtle changes of functional connectivity, we decomposed the

band-pass filtered GM-masked mean time series of each region

into five frequency bands using the Fast Fourier transform (FFT).

The five distinct, equally divided frequency bands were: Band1

([0.025–0.039 Hz]), Band2 ([0.039–0.054 Hz]), Band3 ([0.054–

0.068 Hz]), Band4 ([0.068–0.082 Hz]), and Band5 ([0.082–

0.100 Hz]).

Estimation of Interregional Functional Connectivity:
Functional connectivity that examines interregional correlations in

neuronal variability [10] was measured using a pairwise Pearson

correlation coefficients between a given pair of ROIs. Given a set

of N random variables, the Pearson correlation matrix is a

symmetric matrix in which each off-diagonal element is the

correlation coefficient between a pair of variables.

We considered the brain regions as a set of nodes and the

correlation coefficients as signed weights on the set of edges. A

Fisher’s r-to-z transformation was applied on the computed

Pearson correlation matrix to improve the normality of Pearson

correlation coefficients. Formulation of the transform is given as

z~
1

2
½ln(1zr){ln(1{r)� ð1Þ

where r is the Pearson correlation coefficient and z is normal with

standard deviation sz~1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N{3
p

. The functional connectivity

networks are represented in the form of z-maps. Examples of the

functional connectivity maps constructed using the proposed

multi-spectrum characterization for one normal control (NC) and

one MCI individual are shown in Figure 4.

Feature Extraction, Feature Selection and Classification
In this study, we employed the weighted-graph local clustering

coefficients [68,69] - a segregation measure in network analysis

that quantifies the degree to which nodes in a network tend to

cluster together - to extract neuronal dynamics from the

constructed functional connectivity networks. In each connectivity

network, the weighted local clustering coefficient between each

ROI and the remaining ROIs was computed, resulting in N

clustering coefficients for each (N|N) network. For each

network, the weighted local clustering coefficients between each

ROI and the remaining ROIs are computed as

fi~

2
P

j:j=i[f

(zi,j)
1=3

ki(ki{1)
, ð2Þ

where ki is the number of ROIs that are connected to the i-th

ROI, f is the subnetwork comprising nodes directly connected to

the i-th ROI, and zi,j is the parameter value between the i-th ROI

and j-th ROI. It is noteworthy that we only considered the positive

zi,j values during the computation of clustering coefficients. Since

AAL template was used in the anatomical parcellation, 116

Figure 3. Schematic diagram of the proposed MCI classification framework, which employs a multi-spectrum characterization of
the resting-state fMRI time series.
doi:10.1371/journal.pone.0037828.g003
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clustering coefficients were obtained from each network, and there

was a total of 116|5~580 coefficients for each subject.

These clustering coefficients form a feature pool from which we

employed a hybrid feature selection method that combined the

benefits of maximum-relevance and wrapper-based feature

selection methods to determine the most discriminant features

subset [70–73]. Relevancy of a feature to classification was

quantified using the Pearson correlation coefficients. From a subset

of features with the highest Pearson correlation coefficient values,

a set of most discriminant features were then selected using a well-

known wrapper-based feature selection method, i.e., the SVM-

RFE algorithm [63,64]. This algorithm is a backward sequential

selection method that remove one feature at a time. For removal of

a particular feature, SVM-RFE ensures that the smallest

classification error is achieved, compared to removing other

features. Note that SVM-RFE is performed via a leave-one-out

procedure to estimate the generalization error with respect to the

number of features and to minimize this error in order to choose

the optimal combination of features. These selected features are

considered as the most discriminant features that provide the best

classification performance.

Classification performance of the proposed framework was

evaluated using a nested full leave-one-out cross-validation

strategy to ensure a relatively unbiased estimate of the general-

ization power of the classifiers to new subjects. We adopted the

SVM classifier with non-linear radial basic function (RBF) kernel

in the proposed framework. In each leave-one-out case, one

subject was first left out as the testing subject, and the remaining

subjects were used for feature extraction, feature selection and

classifier training. Then, second or inner leave-one-out was

applied within the training set, to build an ensemble classifier

whose parameters were automatically optimized via grid search.

Specifically, for n total number of subjects involved in the study,

one was left out for testing, and the remaining n{1 were used for

training. From these n{1 samples, n{1 different training subsets

were formed by each time leaving one more sample out, giving us

n{2 subjects in each training subset. For each training subset,

feature extraction and feature selection were performed for each

combination of SVM parameters, i.e., the penalty factor C and the

s value of RBF kernel. The SVM parameters were varied across

certain range during grid search. The performance of each

combination of SVM parameters and the selected features was

evaluated using the second left out subject. The best performed

combination was used to construct the optimal SVM model for

future classification. This procedure was repeated n{1 times,

once for each training subset. This procedure allowed us to select

parameters which maximize the area under receiver operating

characteristic (ROC) curve. When the completely unseen (totally

left out during the entire training and parameter optimization

process) test sample was to be classified, all n{1 classifiers were

used, and their outcomes were combined using an averaging

operator to provide the final classification decision. This process

was repeated n times, each time leaving out a different subject,

finally leading to an overall cross-validation classification accuracy.

Evaluation of The Proposed Framework
Performance of the proposed frequency-specific multi-spectrum

scheme is compared with the conventional full-spectrum scheme.

The proposed framework is evaluated under different settings, i.e.,

GM-masked+multi-spectrum (proposed), unmasked+multi-spec-

Figure 4. Multi-spectral functional connectivity maps for a
normal control (NC) and an MCI individual.
doi:10.1371/journal.pone.0037828.g004
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trum, GM-masked+full-spectrum, and unmasked+full-spectrum.

This will provide quantitative evidences to test our hypothesis that

multi-spectrum analysis is more sensitive than commonly used full-

spectrum analysis in capturing subtle variation of BOLD signals

that is induced by pathological attacks, as well as its contribution to

the prediction accuracy.

The features are determined based on their contribution to the

classification performance using cross-validation. The selected

features will give an indication of the brain regions that potentially

experience the greatest functional changes in BOLD signal.

Further analysis on individual frequency sub-bands also been

performed to explore the contribution of each individual sub-band

in MCI classification as well as their relationships with the selected

features.

Author Contributions

Conceived and designed the experiments: CYW PTY DS. Performed the

experiments: CYW PTY DS. Analyzed the data: CYW PTY DS.

Contributed reagents/materials/analysis tools: KD JNB GGP KAWB

LW. Wrote the paper: CYW PTY DS.

References

1. Bain LJ, Jedrziewski K, Morrison-Bogorad M, Albert M, Cotman C, et al.
(2008) Healthy brain aging: A meeting report from the Sylvan M. Cohen annual

retreat of the University of Pennsylvania Institute on aging. Alzheimers Dement

4: 443–446.

2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting

the global burden of Alzheimer’s disease. Alzheimers Dement 3: 186–191.

3. Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, et al. (2006)

Activation of brain regions vulnerable to Alzheimer’s disease: The effect of mild

cognitive impairment. Neurobiol Aging 27: 1604–1612.

4. Thompson PM, Apostolova LG (2007) Computational anatomical methods as

applied to ageing and dementia. Br J Radiol 80: S78–S91.

5. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, et al. (2007)
3d maps from multiple mri illustrate changing atrophy patterns as subjects

progress from mild cognitive impairment to Alzheimer’s disease. Brain 130:
1777–1786.

6. Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, et al. (2004)

Mild cognitive impairment can be distinguished from Alzheimer’s disease and
normal aging for clinical trials. Arch Neurol 61: 59–66.

7. Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain
atrophy in MCI patients, and their use in prediction of short-term conversion to

AD: Results from ADNI. Neuroimage 44: 1414–1422.

8. Peterson RC, Doody R, Kurz A, Mohs RC, Morris JC, et al. (2001) Current
concepts in mild cognitive impairment. Arch Neurol 58: 1985–1992.

9. Bischkopf J, Busse A, Angermeyer MC (2002) Mild cognitive impairment - a
review of prevalence, incidence and outcome according to current approaches.

Acta Psychiatr Scand 106: 403–414.

10. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity:
The principalcomponent analysis of large (PET) data sets. J Cereb Blood Flow

Metab 13: 5–14.

11. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric
disorders. Curr Opin Neurol 21: 424–430.

12. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in
the motor cortex of resting human brain using echo-planar MRI. Magn Reson

Med 34: 537–541.

13. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, et al. (2006)
Consistent resting-state networks across healthy subjects. Proc Natl Acad

Sci U S A 103: 13848–13853.

14. Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, et al. (2002)

Multiple sclerosis: Low-frequency temporal blood oxygen level-dependent

fluctuations indicate reduced functional connectivity - Initial results. Radiology
224: 184–192.

15. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006)
Functional connectivity networks are disrupted in left temporal lobe epilepsy.

Ann Neurol 59: 335–343.

16. Liang M, Zhou Y, Jiang T, Liu Z, Tian L, et al. (2006) Widespread functional
disconnectivity in Schizophrenia with resting-state functional magnetic reso-

nance imaging. Neuroreport 17: 209–213.

17. Zhou Y, Liang M, Tian L, Wang K, Hao Y, et al. (2007) Functional
disintegration in paranoid Schizophrenia using resting-state fMRI. Schizophr

Res 97: 194–205.

18. Anand A, Li Y, Wang Y, Wu J, Gao S, et al. (2005) Activity and connectivity of

brain mood regulating circuit in depression: A functional magnetic resonance

study. Biol Psychiatry 57: 1079–1088.

19. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, et al. (2007)

Resting-state functional connectivity in major depression: Abnormally increased
contributions from subgenual cingulated cortex and thalamus. Biol Psychiatry

62: 429–437.

20. Craddock RC, III PEH, Hu XP, Mayberg HS (2009) Disease state prediction
from resting state functional connectivity. Magn Reson Med 62: 1619–1628.

21. Zhu CZ, Zang YF, Liang M, Tian LX, He Y, et al. (2005) Discriminative
analysis of brain function at resting-state for attention-deficit/hyperactivity

disorder. In: Duncan JS, Gerig G, eds. MICCAI 2005. Palm Springs: Springer,

volume 2. pp 468–474.

22. Rombouts SARB, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Altered

resting state networks in mild cognitive impairment and mild Alzheimer’s
disease: An fMRI study. Hum Brain Mapp 26: 231–239.

23. Sorg C, Riedl V, Mhlau M, Calhoun VD, Ler TEL, et al. (2007) Selective

changes of resting-state networks in individuals at risk for Alzheimer’s disease.

Proc Natl Acad Sci U S A 104: 18760–18765.

24. Wang K, Liang M, Wang L, Tian L, Zhang X, et al. (2007) Altered functional

connectivity in early Alzheimer’s disease: A resting-state fMRI study. Hum Brain

Mapp 28: 967–978.

25. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network

activity distinguishes Alzheimers disease from healthy aging: Evidence from

functional MRI. Proc Natl Acad Sci U S A 101: 4637–4642.

26. Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, et al. (2002) Alzheimer disease:

Evaluation of a functional MR imaging index as a marker. Radiology 225:

253–259.

27. Shen X, Papademetris X, Constable RT (2010) Graph-theory based parcellation

of functional subunits in the brain from resting-state fmri data. Neuroimage 50:

1027–1035.

28. Bassett DS, Bullmore ET (2006) Small-world brain networks. Neuroscientist 12:

512–523.

29. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008)

Mapping the structural core of human cerebral cortex. PLoS Comput Biol 6:

e159.

30. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinfor-

matics 2: 145–161.

31. Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state

functional MRI. Front Syst Neurosci 4: 1–14.

32. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional

networks. PLoS Comput Biol 3: 174–183.

33. Gong G, He Y, Concha L, Lebel C, Gross DW, et al. (2009) Mapping

anatomical connectivity patterns of human cerebral cortex using in vivo

diffusion tensor imaging tractography. Cereb Cortex 19: 524–536.

34. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al. (2005)

Neurophysiological architecture of functional magnetic resonance images of

human brain. Cereb Cortex 15: 1332–1342.

35. Salvador R, Martı̀nez A, Pomarol-Clotet E, Gomar J, Vila F, et al. (2008) A

simple view of the brain through a frequency-specific functional connctivity

measure. Neuroimage 39: 279–289.
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