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Abstract

Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a
minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is
based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited
set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-
dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique
dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two
vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We
characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics
simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein
dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For
the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function
carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein
dynamics.
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Introduction

The Anfinsen experiment [1] showed that protein structure, in

principle, is determined by its sequence. Later this conclusion was

nuanced when chaperones, the amyloidal state, natively unfolded

proteins, etc., were discovered, but the concept that sequence

determines structure – and ultimately function –, is still generally

valid. Indeed, sequence alignments have revolutionized taxonomy

and have become invaluable tools to derive phylogenetic trees, to

predict domains in proteins for which no structural information is

available, and to identify functionally important residues.

New sequencing methods discover vast amounts of so far

uncharacterized proteins and much effort is spent in the field of

bioinformatics to improve existing and develop novel methods for

sequence based function annotation [2]. Most of these methods

are based on homology concepts. Simply speaking, if two proteins

are homologs, they are likely to have highly similar structures and

the same or similar functions. Unfortunately, sequences of

homologous proteins with similar structure and function can

diverge so far that their homology cannot be detected from their

sequences alone. Chothia and Lesk showed in 1986 that the

structure of a protein remains more conserved during evolution

than its sequence [3], and subsequently Sander and Schneider

quantified this relation [4].

Accordingly, prediction of protein function from sequence data

alone is limited by this rather indirect and complex relationship

between sequence and function, and reliable annotations require

close homologues withover 40%sequence identity over large enough

portions of the sequence [5–7], thus posing a fundamental limit to

function prediction from sequence alone. BLAST [8] is by far the

most widely used software for sequence similarity detection, and

when BLAST fails fails to detect homology scientists tend to resort to

PSI-BLAST [9], threading techniques [10,11], hidden Markov

models [12], or laboratory experiments.

Structure can be seen as an intermediary between sequence and

function, as exemplified in Fig. 1. Accordingly, in the absence of

detectable sequence similarity, attempts have been made to infer

function from structure similarities [13], and thus the classification

of structures has become similarly important as sequence analyses

for our understanding of protein function. Systems like CATH

[14], SCOP [15], and DALI [16] provide a good overview of the

protein structure universe. Indeed, the move from the sequence

level to the structure level revealed more direct relations to protein
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function, and structure-based protein function predictions have

proven more reliable [17].

These studies have, however, also shown that the relation

between structure and function does, in the absence of sequence

similarity, not permit reliable function predictions. Very different

structures can have the same function (proteases, for example,

occur in many branches of the classification trees of CATH,

SCOP, and DALI) and very similar structures can have very

different functions; the TIM-barrel fold, for example, has been

observed with nearly all enzymatic functions known. As a result,

purely structure-based protein function predictions have so far not

been able to predict protein function beyond 30% reliability.

Most often, it is protein motion that is required for protein

function (Fig. 1). If nothing can move, nothing can function.

Perutz described the movements hemoglobin must undergo to

fulfill its function shortly after the structure was solved [18], and

Frauenfelder pioneered the field by flash photolysis experiments

which revealed a hierarchical organization of protein motions -

from thermal vibration to functional and collective conformational

transitions [19] over 25 years ago. Detailed understanding on how

dynamics leads to function is nevertheless still limited to few well-

studied cases such as hemo/myoglobin or aquaporin, which

selectively controls diffusion of water and small molecules through

membranes [20]. Assuming that protein function is determined by

protein motions more directly than by protein structure, we here

decided to carry the move from sequence space to structure space

one step further.

Such a general classification scheme for protein dynamics,

similar to existing structure classifications, which captures the

dynamics-function relationship, should also allow improved

function prediction. Dynamics-based protein classification requires

i) access to dynamics data of a representative set of proteins and ii)

a similarity metric for dynamics of even structurally quite different

proteins. Recent studies have, e.g., compared a particular protein

in different environments [21–23], or similar proteins in a

particular environment [21,24], or the unfolding of a number of

different proteins [25–30].

In this study, we carried out molecular dynamics simulations on

a set of 112 proteins that represent a sufficiently large fraction of

the ‘universe’ of known structures, and developed a systematic and

unbiased methodology to quantitatively compare molecular

dynamics simulations for very different proteins. To this aim, for

each of the 112 trajectories, 34 dynamics observables were

calculated, e.g. fluctuation amplitudes and frequencies, the

eigenvalue spectrum of principal components etc. These have

been chosen such as to characterize the many different aspects of

protein dynamics to sufficient extent as to allow characterization of

the dynasome and, taken together, yield a 34-dimensional vector

for each protein. Each of these 112 vectors served to characterizes

the dynamics of the respective protein, which is thereby

represented as a point in the 34-dimensional ‘dynamics space’.

Subsequent analysis of the distribution and mutual distances of

these 112 vectors revealed that 1) the universe of protein dynamics

is covered by our subset of 112 proteins rather homogeneously,

and in particular does not show pronounced clusters of proteins

with highly similar dynamic behaviors, 2) that the two main

characteristics that best describe the differences between the

molecular dynamics simulations relate to protein thermodynamics

and protein kinetics, respectively, and 3) that protein dynamics

correlates remarkably well with protein function, allowing

straightforward function prediction.

Methods

Approach and Concepts
The core problem of any classification approach is the choice of

a proper metric, which discerns similar from different samples.

Here, the main question was how to assess whether the dynamics

of two different proteins are similar or not. For proteins with

similar structure one might use amplitudes, relaxation times etc. of

the motion of corresponding structural elements such as helices or

loops. For proteins of similar size, principal component analyses of

the motions of the backbone may provide quantitative information

[31]. For any given pair of possibly quite unrelated proteins,

however, there is not even much heuristics available which would

allow to quantify the similarity of their dynamics, with the notable

exception of two recently proposed methods from Micheletti [32]

and Biggin labs [33]. Similarly, it is unclear how putative

correlations to protein function can be detected and quantified.

In this study, we used 34 dynamics observables that have been

selected such as to characterize the many different aspects of

protein dynamics in a minimally biased fashion. Some of these

quantities, such as fluctuation amplitude and frequencies, the

eigenvalue spectrum of principal components, or the fluctuation of

the radii of gyration, are widely known and routinely used. Others,

such as the ‘entropy’ of the distribution of fluctuations within the

protein or the roughness of the energy landscape that governs the

principal modes, were developed here for the particular purpose of

characterizing aspects of protein dynamics that we felt were not

sufficiently covered by the established observables. Very much as

for the study of sequence/structure relationships, the used

structural observables (e.g., radius of gyration, helical content,

packing etc) should not directly depend on the underlying

sequence length, also all 34 dynamics observables were be

normalized to avoid, as much as possible, any correlation to

sequence or structural quantities.

Protein Selection
Proteins were selected from the pdbfinder database [34] such as

to cover a large fraction of known folds and structure classes

(Table 1). We only considered wild-type proteins that were

categorized monomeric by the protein quaternary structure file

server (PQS) [35] and required a resolution better than 1:8A, no

ligands larger than 6 atoms, and no presence of metals other than

Mg2+, Ca2+, K+, Na+, Zn+. Further requirements included a

structure deposition date after 1987, an acceptable quality

according to what check [36], absence of gaps larger than one

amino acid, and structural stability during simulations. All

structures passing these filters underwent visual inspection and

were, if necessary, manually removed. Although, strictly speaking,

Figure 1. Schematic hierarchy of protein sequence, structure,
dynamics, and function. Correlations between the various levels
enable predictions. Here we explore the level of protein dynamics, and
how it relates to structure and, respectively, protein function.
doi:10.1371/journal.pone.0033931.g001
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112 structures (Table S1) will not provide full coverage, we think

that this number is large enough characterize the main features of

the dynasome.

Simulation Setup and Ensemble Production
Protein structures were examined and corrected by WHAT IF

[37], where the WHAG [38] protocol was applied to correct for

geometric errors in the backbone and side chains. Symmetry

relaxed crystal waters that contact the monomer in the asymmetric

unit cell were added. In case alternate atoms were present, the

most abundant one was selected, and in case of equal occupancies

the one with the alternate atom labeled A was used. Gaps in the

structure of length one were filled as well as missing side chain

atoms, which were placed by the rotamer library within WHAT IF

[37]. The hydrogen bonding network was optimized as described

in [39] and used to determine optimal rotamer angles and

protonation states for Asn, His, and Gln residues. Aromatic groups

with unphysical deviation from planarity were changed into planar

conformation.

All simulations were carried out with the gromacs simulation

suite [40], using the OPLS all-atom force field [41] and periodic

boundary conditions. Proteins were solvated with a solvent shell of

1.1 nm TIP4P water and sodium and chloride ions were added

(c~0:15 mol=liter). All systems were subsequently energy-mini-

mized for 100 steps by steepest descent. The solvent was then

equilibrated for 500 ps with positional restraints on the protein

heavy atoms (force constant 1000 kJ mol{1 nm{2). MD runs

were carried out for at least 100 ns for each system generating an

isothermic-isobaric (NPT) ensemble, with the protein and solvent

coupled separately to a 300 K heat bath (tT~0:1 ps) [42]. The

systems were isotropically pressure-coupled at 1 bar (tp~1:0 ps)

[42]. Application of the LINCS [43] and SETTLE [44] algorithms

allowed for an integration time step of 2 fs. Short-range

electrostatic and Lennard–Jones interactions were calculated

within a cut-off of 1.0 nm, and the neighbor list was updated

every 10 steps. The particle mesh Ewald (PME) method was used

for the long-range electrostatic interactions [45], with a grid

spacing of 0.12 nm. Coordinates were saved to trajectories every

200 fs.

Trajectory Analysis and Dynamic Observables
All proteins were simulated for at least 100 ns, the first 20 ns

were discarded as equilibration period, and the remaining 80 ns

were analyzed. The 34 dynamics observables that were calculated

from each of these trajectories, summarized in Table 2, fall into

four groups i-iv:

i) Characterization of the eigenvalue spectrum of the

proteins. Eigenvalues li and eigenvectors vi were obtained

from diagonalization of the covariance matrix of Ca fluctuations,

following the principal component analysis (PCA) protocol of

Amadei et al. [31]. Eigenvalues were normalized to unit sum and

the five largest eigenvalues were recorded as the first five

(Y 1 . . . Y 5) of the 34 dynamics observables listed in Table 2.

Prompted by the observation that the central part of the

eigenvalue spectrum resembles a power law [46], the region

between 33% and 66% of the eigenvalue indices i was fitted to the

function f (i)~aib: The fit parameter b, and the quality of the fit,

quantified by the coefficient of determination (R2), were used as

observables Y 6 and Y 7:
ii) Analysis of the Principal Components of the

trajectory. Each of the T = 809000 frames recorded in the 20

to 100 ns window were projected onto the first five eigenvectors

vi~1::5 to obtain the essential coordinates pi(t): From these, as a

measure for the extent of sampling, the cosine contents [46] of the

first five principal modes were calculated as

cosi ~
2

T

XT

t~1

cos
i

T{1
pt

� �
pi(t)

 !2 XT

t~1

p2
i (t)

 !{1

and recorded in observables Y 8 to Y 12: The distribution functions

(PDF) of the first three essential coordinates were obtained by

binning. From fits of Gaussian functions f (x)~Ae(x{m)2=2s2
to

these PDFs, R2 values were determined and recorded as Y 13 to

Y 15:
To gain insight into the time dependence of the dynamics of the

112 proteins, the fluctuations of the essential coordinates pi(t) were

described by a Ornstein Uhlenbeck process [47], i.e. by diffusion

within a harmonic potential well. Accordingly, the autocorrelation

function of this process,

F (Dt)~e{bDt=2 cos (vDt)zb=2v sin (vDt)ð Þ, where Dt denotes

the time interval between two frames, was fitted to the one

obtained from the essential coordinates,

ACFi(Dt)~Spi(t):pi(tzDt)Tl{1
i : The fit parameters b and v

relate to friction and force constants of a harmonic oscillator. They

were strongly correlated and we considered only the friction

constants f
acf

i of the first five principal components i~1 . . . 5 and

used them as observables Y 16 to Y 20:
iii) Ruggedness of the free energy landscape. As a further

probe of protein dynamics we considered what we termed the

(one-dimensional) ruggedness c of the underlying free energy

landscape. To that aim, we described the protein dynamics,

projected onto the individual PCA eigenvectors in terms of

diffusive motion within a potential that is formed by a hierarchy of

energy barriers (Fig. 2 [48]). As sketched in the figure, this

hierarchy is characterized at each tier by barrier heights DF{ and

an average distance Dx between the barriers of that height. As can

also be seen, we assume the barrier heights to increase

logarithmically with their mutual distances, i.e.,

DF{~c=b ln (Dx=L) with a barrier height increment c=b and a

unit length L, below which we assume free diffusion with a

diffusion coefficient D0: Hence, as indicated in Fig. 2a, b and c,

the ruggedness as defined for the present purpose does not

measure the barrier heights as such (a and b), but rather, how fast

the barriers grow with increasing mutual separation (c).

As a result, the effective diffusion constant Deff (T) for protein

motion within such hierarchical landscape decreases with the time

scale T at which diffusion is monitored, and is governed by the rate

limiting – i.e., largest – barrier DF (T) that is overcome by the

system at this time scale, Deff (T)~D0 exp ({bDF{(T)), where

D0 is the diffusion constant in the absence of barriers.

Table 1. Structure classes in the representative set of 112
proteins used in this study.

SCOP class Number of proteins

all2a 12

all2b 33

a/b 27

a+b 30

small 10

doi:10.1371/journal.pone.0033931.t001
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Vice versa, observation of the mean square distance

s2~TDeff (T) travelled by the protein as a function of trajectory

length T, hence, provides information on the ruggedness of the

underlying hierarchical energy landscape. Combining the above

equations, and assuming s&Dx yields the power law

s2~(TD0Lc)2=(2zc),

i.e. the eigenvalues l obtained from diagonalizing the covariance

matrix of a trajectory of length T increase with trajectory length

according to the power law T2=(2zc). Hence, c is obtained from

the respective exponent 2=(2zc). As should be expected, for free

diffusion, this exponent is one, whereas for increasing ruggedness,

diffusion ceases, and the exponent tends towards zero.

Using the above power law, the respective ruggedness of each of

the 3N{6 eigen-modes of each protein was determined from the

(average) slope 2=(2zc) of the mean squared distance s (obtained

from the respective eigenvalue of a PCA) as a function of used

trajectory length T, both in logarithmic representation. Accord-

ingly, covariance matrices and their eigenvalues li were calculated

for 20 logarithmically spaced time windows ranging from 1 to

10 ns. For each window size, eigenvalues were averaged over 20

uniformly distributed trajectory parts to reduce statistical fluctu-

ations. Fig. 1d shows as a typical ruggedness profile the values

obtained for all 3N{6 eigen-modes. Three observables were

defined to characterize the overall shape of these ruggedness

profiles, namely its average value (Y 21), as well as the skewness

(Y 22) and kurtosis (Y 23). Because the dynamics of the largest eigen-

modes is characterized already explicitly by other descriptors such

as autocorrelation functions, the respective first 10 ruggedness

values were excluded (left purple rectangle). Similarly, the fastest

ca. 30% of the eigen-modes were also excluded (in the figure

separated by the gap at eigenvalue 555, right purple rectangle), as

these arise from essentially harmonic bond vibrations which are

very similar for all proteins considered and, therefore, are not

expected to provide additional information on their dynamics.

iv) Atomic fluctuations. Thetime-averagedrootmeansquare

deviation (RMSD) from the crystal structure mRMSD (Y 24) and its

standard deviation relative to the mean cRMSD
v ~sRMSD=mRMSD

(Y 25) were calculated to quantify the average deviation from starting

conditions. The overall flexibility of the protein was described by the

RMS fluctuation with respect to the average structure (Y 26), and

breathing motions were quantified via the standard deviation of the

radius of gyration c
rg
v from its mean value (Y 27). Secondary structure

contents were determined over time using the Kabsch and Sanders

algorithm [49] implemented in the ptraj program [50]. Relative

fluctuations about the mean content were calculated for the total

secondary structure csstruct
v (Y 28) and the secondary structure

elements a-helix ca
v (Y 29), b-sheet cb

v (Y 30) and turn cturn
v (Y 31).

Solvent accessible surface area was calculated along the trajectory

using naccess [51] with 1.4 Å probe radius, the mean polar solvent

accessible surface (SAS) mSAS and cSAS
v were used as observables Y 32

and Y 33:
To describe the degree of localization of flexible regions in the

protein we calculated the root mean square fluctuations (RMSF)

SriT for each residue i of the protein using the ptraj program [50].

The resulting flexibility profile was characterized by its

average mRMSF value and the entropy

SRMSF~{
X

SriT
� �{1Xnres

i~1
SriT: ln SriTð Þ½ �z ln

X
SriT

� �
of

the distribution, values were recorded in Y 26 and Y 34:

Table 2. These 34 dynamics observables Y 1 to Y 34 have been used to characterize the dynasome.

Index Symbol Description

1, …, 5 l1, …, l5 Eigenvalues 1, … 5

6 ml Slope of the middle third of the eigenvalue spectrum

7 x2
l R2 value of the fit to the eigenvalue spectrum

8,…,12 cos1,…,cos5 Cosine content of the principal components 1–5

13, 14, 15 x2
N ,1,x2

N ,2,x2
N ,3

Goodness of fit of a Gaussian fit to principal components 1–3

16, …, 20 f acf
1 , . . . ,facf

5
Friction constant derived from a fit to the autocorrelation function
of principal components 1–5

21 mc Measure of the average ruggedness of the energy landscape:
Average slope of a linear fit to the time dependent eigenvalue
spectrum c.

22 skewc Skewness of the distribution of these ruggedness values (6) of each
collective degree of freedom.

23 kurtc Kurtosis of the distribution of these ruggedness values.

24 mRMSD Average root-mean square deviation from the X-ray structure

25 cRMSD
v

Standard deviation (% of mean) of the root-mean square deviation
from the X-ray structure

26 mRMSF Average residual fluctuations with respect to the average
ensemble structure

27 c
rg
v Standard deviation (% of mean) of the radius of gyration

28, …, 31 cstruct
v ,ca

v ,cb
v ,cturn

v
Standard deviation (% of mean) of secondary structure content:
total, a-helix, b-sheet, turn

32 mSAS Average solvent accessible surface

33 cSAS
v

Standard deviation (% of mean) of the solvent accessible surface

34 SRMSF RMSF entropy

doi:10.1371/journal.pone.0033931.t002

Exploring Protein Dynamics Space

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e33931



Structure Analysis and Structure Observables
Similar to the 34 dynamics observables we defined a set of 24

non-redundant observables, listed in Table 2, that characterize

protein structure. Structures of the 112 proteins were retrieved

from the protein data bank (PDB) and missing atoms were added

from the amber residue libraries using the program tleap [50].

Structures were then energy minimized in 100 steepest-descent

steps with 25 kcal mol{1A{2 restraints on heavy atoms using the

sander program from the amber10 package [50]. Observables

were then calculated for each structure. Radii of gyration and

moments of inertia along the three principal axis (g_gyrate [52])

X 1 to X 4 were calculated to characterize the overall shape of the

protein. Further, the overall charge distribution was characterized

by the proteins principal dipole moments, calculated using the

g_dipoles program of gromacs and recorded in X 4 toX 6, because

imbalances in charge distribution are often associated to function

[53]. Secondary structure content was determined as described

above and the numbers of residues in helix, sheet, coil, and g-turn

conformation, respectively, were recorded as structural observ-

ables X 7 to X 10:
Intramolecular contacts were counted for non-neighboring (7

residues distance in sequence) residues where the dCa���Ca
v7:0A

(X 11); contacts were considered hydrophobic if both residues are of

A, I, L, M, F, P, W, or V (X 12). Hydrogen bonds were annotated

using standard criteria dH���A
v3:5A and DH���A

w120 and counted

(X 13). Total and hydrophobic solvent accessible surface areas were

calculated using naccess [51] and recorded in X 14 and X 15:
To describe protein topology, i.e. the non-local contacts, we

generated for each protein its residue adjacency matrix with

entries for all residues with at least two atoms closer than 3:5A:
The matrix defines a network where residues are nodes and

connections are drawn between adjacent residues [54], which we

characterized by its average path length X 16, cluster coefficient

X 17, and network radius X 18: The number of hydrophobic,

hydrophilic basic, acidic, proline, and lysine residues in the

sequences were counted to characterize the chemical composition

of the proteins, and were recorded as structure observables X 19 to

X 24:

De-correlation of Observables
Some of the dynamics (Y 1...34) and structure (X 1...24) observables

listed in Tables 1 and 2 were found to correlate markedly with

sequence length. Because such correlation would, indirectly,

introduce unwanted sequence information into the dynamics

and structure observables, these were removed. To that aim, all

observables for which correlations were detected were fitted to an

appropriate model of the observed length dependence. After

subtraction of the fit function, the now sequence-length de-

correlated observables were normalized to zero mean and unity

standard deviation. All fit functions are described in Table S2 and

the pairwise correlations of the processed observables are

displayed in Fig. S1.

k-means Partitioning of the Dynasome
Clusters in the population of the 34-dimensional dynamics

space were identified using a k-means algorithm, which iteratively

minimizes the sum of distances of dynasome vectors to cluster

centroids [55]. As initial guess, the location of the cluster centroids

was chosen randomly. From 5000 runs with random initial

conditions, the one with the smallest squared distance sum was

used for subsequent analysis.

De-correlation of Structure-dynamics Similarities
To assess to which extent structural similarity of proteins

correlates with their dynamics similarity (Section ), the Euclidean

distance dstruct
i,j in structure space of all protein pairs (i,j) was

plotted vs. their respective distance d
dyn
i,j in dynamics space. The

resulting plot was compared with a randomized reference data set,

for which all correlations of ddyn and dstruct were eliminated by

randomly permuting the 6216 pairs (i,j) for dstruct
i,j with respect to

d
dyn
i,j , as sketched schematically in Fig. S2. As can be seen, this

procedure eliminates all correlations between ddyn and dstruct

while preserving their individual distributions.

Graphs of Mutual Adjacencies in Dynamics Space,
Structure Space and Combined Space

The fine structure of the dynasome was represented as a graph

of mutual adjacencies in dynamics space (see main text). First,

adjacency matrices were obtained by identifying the k nearest

neighbors of each protein in a d dimensional subspace of the 34-

dimensional dynamics space, using the mathematica 7 Nearest

Figure 2. Illustration of the ruggedness parameter c used as a
descriptor in this study. a) – c): Schematic rugged energy
landscapes. The ruggedness of a) and b) is identical; although absolute
barrier heights differ, the factor by which the barrier heights increase
with their distance along the conformational coordinate is the same. In
contrast, the energy landscape shown in c) is characterized by a larger
ruggedness. d) A typical ruggedness profile of a protein is
characterized by a steep increase at small eigenvector indices and a
subsequent smooth descent to a characteristic minimum. The
ruggedness of each eigenvector is described by ci , and the
characteristics of the respective ruggedness profile (average rugged-
ness, skewness, and kurtosis) are used as descriptors 21, 22, and 23,
respectively (Table 2). For the computation of these ruggedness
descriptors, the first 10 eigenvectors and all eigenvectors beyond the
characteristic minimum (purple shaded areas) were omitted.
doi:10.1371/journal.pone.0033931.g002
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function. For the visualization of the graph of the resulting

adjacency matrix, we used the GraphPlot function with the spring

electrical embedding option and the repulsive force power option

set to 21.

Parameters k and d, required to calculate the adjacency matrix,

were chosen as follows. For each pair fk,dg of k~2,:::,6 and

d~3, . . . ,15, the adjacency matrix was computed as described

above, the graph of this adjacency matrix was partitioned using

the CommunityStructureAssignment module of mathematica, and the

partitioning was quantified using the community modularity C

(Fig. S3). For further analysis, the pair fk,dg yielding the best

partitioned graph was selected for further analysis (black points in

Fig. S3).

Assignment of Functional Classes
Proteins were assigned functional classes according to UNIPROT

[56]. Table S1 lists the function class assigned to each protein.

Poorly covered functional classes were collected as ‘‘Other’’ and

‘‘Other Enzymes’’ and not used for function prediction.

Results and Discussion

Generation of Dynasome Observables
We picked (cf. Methods) a set of 112 soluble, single-domain

proteins from the protein database (PDB) [57], such that all

structure classes were about equally represented. For each protein,

explicit solvent all-atom molecular dynamics simulations of 100 ns

length were carried out (cf. Methods) to sample the proteins native

state dynamics at picosecond to 100 ns timescales. From each of

the obtained trajectories, we calculated 34 observables, some of

which specifically devised for this study (see Table 2). The

combination of these provides a comprehensive characterization of

the dynamics of each of these 112 proteins at time scales between

picoseconds and 100 ns.

In this 34-dimensional ‘‘dynamics space’’, spanned by the 34

observables, each protein is thus represented as a vector, and

proteins of similar dynamics appear as nearby points in this space.

We will refer to the whole ‘‘point cloud’’ of all proteins as the

dynasome. Subsequently, we will investigate the properties and

structure the dynasome.

Few Collective Dynasome Descriptors Describe Most of
the Dynasome

What are the most important dynamics features of that

distinguish the 112 proteins from each other? To address this

question, we carried out a principal component analysis (PCA) of

the dynasome. Each of the resulting 34 eigenvectors constitutes a

collective descriptor consisting of a linear combination of the 34

observables introduced above, very much as normal modes are

linear combinations of individual atomic displacements [58,59].

We refer to these linear combinations as dynasome descriptors.

The eigenvalue profile (Fig. 3) shows that relatively few of these

dynasome descriptors suffice to describe a large fraction of the

dynamics seen in our protein set, e.g. the first 15 collective

descriptors explain 80% (Fig. 3 inset) of the diversity of the

dynamics of the examined proteins.

Notably, already the first two dynasome descriptors explain

more than 30% of the dynamics variation seen in our protein set

(Fig. 3). Table 4 (columns 1 and 2) lists those dynamics observables

that contribute most to these two first descriptors. As can be seen,

descriptor 1 contains the average deviations from the X-ray

structure mRMSD (entry 1) and from the ensemble average mRMSF

(entry 2), respectively, as (entry 3). All these observables

characterize the magnitude of atomic fluctuations. The next two

important observables in dynasome descriptor 1 are the average

ruggedness m(c) and skewness of the ruggedness spectrum (cf.

Fig. 2). Their contribution (7%) to descriptor 1 is marked with (2)

in Table 4, indicating anti-correlation of these two observables to

the dynasome descriptor and reveal an interesting correlation:

normally, fluctuations tend to be small for proteins for which the

dynamics of the essential modes is governed by a rugged free

energy landscapes (high skewness skew(c) combined with high

average ruggedness m(c)). In contrast, large deviations from the X-

ray structure are seen for relatively smooth energy landscapes (low

m(c)) or if large-scale modes proceed along relatively smooth

pathways compared to the small-scale high-frequency modes (low

skew(c)). Strikingly, all the observables that dominate the most

essential dynasome descriptor quantify ensemble properties.

The second dynasome descriptor is composed mainly of the

friction coefficients of the diffusion along the first four (protein)

eigenvectors f acf
1 , . . . ,f acf

4 (f acf
3 contributes 6% and is thus not

listed in Table 4) and the Gaussianity of the proteins’ first principal

component. In contrast to the first descriptor, these observables

describe the time evolution of the global, collective motions of the

systems, i.e. relate to kinetics. The correlation between friction

coefficients at slow motions and deviations from Gaussianity

reflects the frequent observation that slow degrees of freedom tend

to be anharmonic.

It is a remarkable result that purely from an analysis of which

observables contribute most to the dynamics diversity of the 112

selected proteins, and without any further input or bias, the above

two dynasome descriptors were able to identify and distinguish

ensemble properties (thermodynamics) from dynamics properties

(kinetics).

A few typical examples shall illustrate how these two main

collective dynamics descriptors serve to characterize the dynamics

of particular proteins. Fig. 4a shows the distribution of the 112

proteins in the plane spanned by the dynamics descriptors 1 and 2.

The axes labels indicate the type of dynamics, as summarized

above, described by the respective descriptor. As a first example,

calmodulin (Fig. 5a) is one of the most flexible structural proteins

known to date and thus shows up as an outlier on the right of

Fig. 4a. Calmodulin exhibits very large overall deviations from the

crystal structure (reflecting its flexibility) and samples a very

smooth energy landscape of extraordinarily low average rugged-

ness m(c): These two aspects are described by the dynasome

descriptor 1 (x axis). The second dynasome descriptor (y axis)

Figure 3. Eigenvalue spectrum of the collective dynamics
descriptors. Eigenvalues li are given as fractions of the sum of all
eigenvalues. The inset shows the cumulative distribution.
doi:10.1371/journal.pone.0033931.g003
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shows that the timescales on which Calmodulin dynamics take

place, described by the friction constants f acf
1 , . . . , f acf

5 of diffusion

along the first five eigen modes, are not unusual.

As a second example, the neurotoxins Erabutoxin A and

Erabutoxin B (Fig. 5b) are both characterized by extremely flexible

and fast moving loops held, tethered to a rigid core and stabilized

by sulfide bridges. Both are outliers in the upper left part of Fig. 4a.

The fact that fast and low amplitude motions dominate these

proteins is revealed by very high average ruggedness m(c) and large

friction constants f acf
1 , . . . ,f acf

5 , as described by dynasome

descriptor 2.

Proteins Do not Fall into Well-separated Dynamics
Classes

An interesting observation from Fig. 4a is that the projections

on the first two dynasome descriptors show a rather continuous

distribution without significant substructure. In light of the

seemingly obvious clustering of protein structures that the reader

may have in mind, this result is unexpected and will need careful

discussion.

Before addressing this question in more detail, however, we

investigated the extent of the structural classification reflected in

the dynamics space. Fig. 4b shows the same projections as in a)

with color codes indicating the SCOP structure class. Different

structure classes tend to accumulate in different regions of

dynamics space. All{a proteins are, for example, predominantly

found on the right, whereas most all{b proteins are found to the

left. a=b-proteins overlap significantly with all{b, but are shifted

slightly towards the bottom. Small proteins cover a large range

from the upper left to the right. The standard deviation of the

distributions of proteins of each SCOP class (large ellipses in

Fig. 4b) show that the distributions overlap significantly. In

contrast, the centroids of the different classes (centre of the ellipses)

assume significantly different positions in dynamics space, as

documented by the standard deviations of the mean (small circles).

We conclude that, on average, the dynamics of proteins

described by the first two dynasome descriptors show a certain

correlation to protein structure. The fact that the dynamics

distributions of different structure classes overlap suggests,

however, that there is no simple on-to-one mapping between

protein structure and dynamics. Therefore, analysis of the

dynasome should reveal additional information beyond that

already contained in the protein structure.

Note that the above result of overlapping SCOP classes in

dynamics space (Fig. 4) might also be a consequence of projecting

34-dimensional data onto two dimensions that account for slightly

more than 30% but miss 70% of the overall dynamics features. If

that was the case, then a non-hierarchical k-means clustering

(methods) with a squared Euclidean metric in the full 34-

dimensional space would reveal any internal structure – in

particular, clusters – that might have been lost in the projection.

k-Means analyses with 1 to 10 cluster centers have been

performed, but the analysis of the resulting clusters in terms of

connectivity and variance [60] did not reveal any marked

minimum (Fig. S4), which confirms that the absence of apparent

clusters in Fig. 4 is not a projection artifact. Hence, also full space

analysis did not reveal any natural partitioning, which agrees well

with the visual inspection of Fig. 4.

Next, k-means clustering served to quantify possible correlations

between SCOP and dynamics space. To that aim, we determined

the overlap between the SCOP classes and the classification

Figure 5. Selection of six of the 112 proteins included in this
study: a) Calmodulin (PDB code 1OSA [71]), b) Erabutoxin B (PDB code
3EBX [72]), c) Achromobacter protease I (PDB code 1ARB [73]), d)
Thioredoxin-2 (PDB code 1THX [74]), e) superantigen (PDB code 3SEB
[75]), f) angiogenin (PDB code 1AGI [76]). Pictures were generated using
MolScript [77].
doi:10.1371/journal.pone.0033931.g005

Figure 4. Projection of the dynasome onto descriptors 1 and 2. Each point represents one protein. a) Protein dynamics as described by
dynasome descriptors 1 and 2. The axes labels indicate which dynamics properties are mainly described by the respective descriptor. The inset
focuses on the lower left region. b) same projection as in a), colored according to SCOP structure classes (see legend). Ellipses indicate the
distributions of structure classes; Large thin ellipses denote standard deviations of the distributions, small thick ellipses the standard deviations of
their mean.
doi:10.1371/journal.pone.0033931.g004
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obtained by k-means clustering. First, to obtain better statistics, we

considered only proteins belonging to the SCOP classes all{a,
all{b and a=b: Figure 5a shows the distribution of these three

SCOP classes into the three partitions of dynamics space identified

by k-means clustering. As can be seen, more than 80% of the

all{a proteins are found in the first cluster, which contains less

than 20% of all{b and less than 30% of the a=b proteins,

respectively. The second dynamics cluster, in contrast, contains

almost 90% of all all{b proteins and almost 70% of the a=b
proteins, but less than 15% of the all{a proteins. Obviously, a
and b proteins are separated well in the full dynamics space,

whereas all{b and a=b proteins overlap markedly, and to a

similar extent as in the two-dimensional projection (ellipses in

Fig. 4b).

Next, we considered all five SCOP structure classes and

determined their distribution into a partitioning obtained from a

k-means clustering for five classes. As can be seen from Fig. 6b, a

similarly pronounced separation between all{a and all{b/a=b
is obtained (Fig. 6a), whereas almost all a + b and small proteins

can, purely on the basis of their dynamics fingerprint, not be well

distinguished from all{a proteins.

Overall, our 112 sample proteins seem to populate dynamics

space rather uniformly, without marked clusters or sub-families.

Nevertheless, as was already visible in the two-dimensional

projection (Fig. 4), the known structural classes tend to accumulate

in different regions in dynamics space. This observation shows that

structural classes, e.g., all{a and all{b, can be distinguished

purely from their dynamics fingerprints. Also from this analysis, the

remarkably large but not strict correlation between structure and

dynamics points to additional information (or noise) that may be

contained within protein dynamics but not within structure alone.

The finding that proteins are continuously distributed in

dynamics space was actually quite unexpected. Several mechanisms

might, alone or combined, explain our findings: First, the SCOP

structure classes used here as a reference might suggest a much

clearer partitioning of the structure space than would be obtained

from an approach not based on discrete descriptors such as

secondary structure class, which unavoidably implies a certain

partitioning. A number of recent studies [61–63] indeed yield less

pronounced partitioning suggesting that this effect might actually

play a role. Our own structure-based analysis discussed further

below provides further support for this possibility. Alternatively, the

protein distribution in dynamics space might become ‘blurred’ with

respect to that in structure space by the fact that already slight

structural changes might imply quite different dynamics. We will

quantify this possibility, referred to as ‘adjoint dynamics’ further

below. Vice versa, similar dynamics patterns might arise from quite

different structures (‘disjoint dynamics’). We intentionally refrained

from the use of the more suggestive terms ‘convergent’ and

‘divergent’ to avoid any direct evolutionary interpretation, which

would not be supported by our approach. As a third option, and

despite our efforts to cover many different aspects of protein

dynamics, we cannot completely rule out the possibility that the 34

dynamics observables we have chosen simply do not suffice to

provide a sufficiently complete picture of the dynasome to be able to

detect an existing partitioning. To test for this possibility, we

repeated the above analysis using different subsets of these dynamics

variables, without significant changes of the obtained partitioning.

Protein Structure Classes Overlap Significantly
We thus asked which of these mechanisms is actually at the root

of the observed continuous distribution in dynamics space. The

first question we addressed was whether or not natural structure

classes are evident if a similarly systematic approach as used above

for protein dynamics is applied to protein structures. In other

words, are the well-known protein structure classes indeed

recovered from our unsupervised approach (also see, e.g.

[16,64,65])?

To address this question, we described the structure of each of

the 112 proteins by a set of 24 different structure observables

(Table 3) such as residual contact matrix, secondary structure

content, moments of inertia, and solvent accessible surface (see

methods for full details). These 24 structure observables span a

structure space with each protein being characterized by one

vector, similar to dynamics space. These vectors were then

subjected to PCA.

Figure 6. Recovery of structural classes from dynamics.
Distribution of three a) and all five b) SCOP classes (colors) onto
partitionings of the dynasome (1…5) obtained from k-means clustering.
Bar heights denote the fraction of proteins of each structure class found
in each partition.
doi:10.1371/journal.pone.0033931.g006

Table 3. These 24 structure observablesX 1to X 24 have been
used to characterize the protein structure space.

Index Symbol Description

1–3 Ix,y,z Principal moments of inertia

4–6 wx,y,z Dipole moments

7–10 na,b,coil,turn Secondary structure content

11,12 nall,hydrophobic Number of intramolecular contacts

13 nHB Number of hydrogen bonds

14,15 sasa,sasahp Solvent accessible surface area

16 apl Average path length

17 cc Cluster coefficient

18 r Cluster radius

19 nphob Number of hydrophobic residues

20 nphil Number of hydrophilic residues

21 nHz Number of acidic residues

22 nOH{
Number of basic residues

23 nPro Number of proline residues

24 nCys Number of cysteine residues

doi:10.1371/journal.pone.0033931.t003
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Figure 7 shows the distribution of protein structures (points) in

the plane spanned by the first two eigenvectors obtained from this

PCA. As can be seen from Fig. 7a, no clusters are evident in the

space of protein structures, quite similar to our observation in the

space of protein dynamics. This result supports our above

conjecture that SCOP and CATH suggest a much clearer

partitioning of protein structure space than is evident from our

unsupervised classification from a set of 24 structural observables,

and in fact also from other unsupervised approaches [63,66].

From this point of view, our finding of a rather unstructured

dynasome is less surprising.

This result also raises the question if (and how) the positions of

proteins in this structure space relate to their respective SCOP

classes (Fig. 7b). As can be seen, despite marked overlap of the

individual classes (large ellipses) the class centroids are statistically

significantly separated (small ellipses). This is a remarkable result

per se, as it shows that our approach of fully unsupervised structure

characterization, which does neither involve sequence informa-

tion, nor any heuristics, hierarchy, or evolutionary criteria, still

recovers the top tier of the hierarchical, manually curated, and

evolution-based SCOP classification system.

Similar Structures May Show Different Dynamics – and
Vice Versa

One of the goals of this work is to see if protein dynamics

information can be used to improved protein function prediction

beyond sequence and structure based schemes [67]. This requires

that the dynamics fingerprint considered here holds information

which – due to the possibly rather indirect relationship between

structure and dynamics – can not be extracted from structures

alone. This additional information would show up as incomplete

correlation between structure and dynamics. We have therefore

quantified this correlation using Euclidean distances in structure

and dynamics space, respectively, as an appropriate metric.

In particular, and relating the second of the three scenarios

discussed above, this metric will allow to address the question:

Given two structurally similar proteins, how similar are their

dynamics? Further, does similar structure necessarily imply similar

dynamics or, conversely, can similar motion patterns be generated

from quite different structures (adjoint dynamics)? Vice versa, can

small structure differences imply large differences of protein

dynamics (disjoint dynamics)? As above, structural similarity of

each protein pair was measured by its Euclidean distance dstruct in

structure space, and these distances were correlated to their

respective counterpart ddyn in dynamics space.

Fig. 7a shows for each of the 6216 protein pairs i distances as

points in the x–y plane. As can be seen, the overall shape does not

indicate a particularly strong correlation between structural and

dynamics similarities, with a Pearson correlation coefficient of

0.38. This number is difficult to interpret, however, as a priori it is

unclear how correlations between the positions of proteins in high-

dimensional dynamics and structure spaces, respectively, relates to

the observed correlation between distances of pairs of proteins in

dynamics space and structure space. In particular, it is unclear

whether the observed low correlation coefficient actually implies

that our dynamics observables are nearly unrelated to the protein

structures. To assess the significance of this correlation, we

randomized the coordinates of the dynamics vectors to obtain a

reference point cloud (Fig. 8b), which, by construction, lacks any

correlation between structure and dynamics (see methods).

Figure 8c shows the difference of point densities (color code)

between the data in Fig. 8a and the randomized reference data in

Fig. 8b. Red regions indicate significantly higher densities than

expected for uncorrelated data, blue lower densities, and green

indicates regions where dynasome and randomized densities are

similar or where no data is available.

The pronounced structure seen in Fig. 8c reveals and quantifies

systematic relationships between structure and dynamics, and

suggests its classification into four regions, as denoted by four

symbols (white insets in the corners). It is, for instance, mainly

along the diagonal where significantly more pairs are found than

would be expected by chance.

The lower left region contains protein pairs that are similar both

in terms of structure and dynamics. There is a significant

correlation between structural similarity and dynamics similarity

beyond what would be expected by chance, as indicated by the

coloring. For a small sample of five proteins with similar fold, such

correlation has been suggested previously from a coarse grained

elastic network analysis [68].

Further along the diagonal, the upper right region contains

pairs of protein pairs which are very different in both structure and

dynamics. This quadrant is also significantly more populated than

expected by chance showing a systematic trend, that structurally

different proteins tend to exhibit different dynamics. Calmodulin,

whose dynamics and high flexibility are remarkable in many ways

(as also reflected by its position in Fig. 4b), also has an unusual

structure (Fig. 5a and Fig. 7) different from most other proteins.

Figure 7. Distribution of proteins in structure space. Each point represents one protein. a) Protein structures as described by eigenvectors 1
and 2. In plot a) the same proteins as in Fig. 3 are labelled. b) same projection as in a), but colored according to SCOP structure classes (see legend).
Distributions of SCOP classes are described by their standard deviations (thin large ellipses) as well as the standard deviation of their respective
means (thick small ellipses).
doi:10.1371/journal.pone.0033931.g007
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Accordingly, many pairs involving Calmodulin are located in the

indicated region in the top-right corner of the red region of Fig. 8c

(inset with PDB code 1OSA).

The two off-diagonal regions (blue), in contrast, indicate

structure-dynamics relationships which are underrepresented.

The region below the diagonal contains pairs involving proteins

with similar dynamics despite dissimilar structure, which we

termed ‘‘adjoint dynamics’’. As an example, consider the two

hydrolases with PDB codes 1SAT and 2APR (Fig. 8c, lower left

inset), which exhibit similar dynamics despite their quite different

structures. The relatively high structural dissimilarity is reflected

by high distance in structure space (13.28), and also by

undetectable similarity using the pairwise-DALI algorithm [69].

Vice versa, ‘disjoint dynamics’ is seen in the region above the

diagonal, where proteins with similar structure display quite

different dynamics. Here, the trypsin (1TGN) and the xylanase

(1XNB) (Fig. 8c, upper left inset) serve as an example. These two

proteins are structurally similar (distance in structure space 6.19),

but separated in dynamics space by the large distance of 11.6

units. Comparison of Fig. 8a with c shows that a considerable

number of proteins show such remarkable behavior.

The latter two regions are particularly interesting, because they

reveal relationships between proteins, which purely structure based

classification would miss. Although not derived in an evolutionary

context, it is tempting to speculate about the implications of these

results. For example, the adjoint dynamics of structurally different

proteins may in some cases result from convergent evolution, in

cases where similar dynamics is required to achieve a particular

function. Conversely, disjoint dynamics may have occurred in

response to the need to evolve divergent functionality from a

common ancestor. In both cases, one would expect that our analysis

of the dynasome should improve protein function predictions.

The dynamics of e.g. Erabutoxin B is quite unusual, in contrast to

its unsuspicious structure (Fig. 7). Accordingly, most pairs involving

Erabutoxin B are located in the ‘‘disjoint dynamics’’ region above

the diagonal. On the one hand, they need rigidity to escape the

proteases of the infected immune system; on the other hand they

need pronounced flexibility to account for the differences of certain

receptors in all the different prey animals they are supposed to attack.

Further below we will give a more systematic account of the

relationship between dynamics and function, but first we need to

analyze the fine structure of the dynasome.

Fine Structure of the Dynasome
We have shown above that the dynasome lacks well-separated

clusters. Nevertheless, Fig. 4a suggests the existence of some

Figure 8. Structure dissimilarity vs dynamics dissimilarity. a) Each point displays the structure dissimilarity (x axis) vs. the dynamics dissimilarity
(y axis) for one protein pair. Structure and dynamics dissimilarities for each of the 6216 protein pairs were computed as squared Euclidean distance
between any two points in structure and dynamics space, respectively, as described in the text. Distances are unit-less. Regions of larger opacity reflect
higher point densities. The overall Pearson correlation coefficient between structure and dynamics is 0.38; b) Randomized reference data obtained by
removing any correlation between structure and dynamics dissimilarities, as described in methods (cf. Fig. S2); c) difference between point densities a)
and b), after smoothing with a Gaussian kernel of width 1. Regions of larger than random density are colored red, those of lower density are colored blue,
and regions with equal density or no data are shown in green, as quantified by the color bar. Below the diagonal: adjoint dynamics. Above the diagonal:
disjoint dynamics. Inset in the red upper right region: Average position of Calmodulin (PDB code 1OSA), which reflects its dissimilarity both in structure
and dynamics from most other proteins. Inset in the top of the disjoint dynamics region: Average position of Erabutoxin B (PDB code 3EBX), reflecting its
common structure paired with unusual dynamics. Disjoint dynamics region: Position of the pair of trypsin 1TGN and xylanase 1XNB. These two proteins
are structurally quite similar but markedly different in dynamics. Adjoint dynamics region: Position of the pair of the hydrolases 1SAT and 2APR, which
have dissimilar structure, but display very similar dynamics.
doi:10.1371/journal.pone.0033931.g008
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internal substructure, which should reflect the expected relation-

ship between dynamics and function. The k-means partitioning

employed in Figure 6 might not reveal such fine structure, because

it rather focuses at spherically shaped, well-separated regions of

high point density and is, furthermore, relatively sensitive to

outliers. Therefore, as a complementary approach to k-means, we

calculated graphs of mutual adjacencies, which are length-scale

invariant and do not rely on explicit assumptions about the shape

of putative sub-structures. In this approach, two proteins are

considered adjacent if they belong to each other’s k nearest

neighbors in a properly chosen d-dimensional subspace of the 34-

dimensional dynamics space. The resulting adjacency matrix is

represented as a graph, in which each protein is a vertex and two

adjacent proteins are connected by an edge. The parameters d and

k were always chosen such that this graph was compact and

optimally partitioned, as quantified by the community modularity

[70] (see methods).

Figure 9a shows the mutual adjacency graph of the dynasome,

with k~4 and d~4: In this representation, proteins with similar

dynamics appear as close-by vertices with high connectivity, and

clearly separated from other clusters by vertices with relatively low

connectivity. Ten clusters (colors) were identified by maximizing

the community modularity (Fig. 9b). Comparing Fig. 9b with our

previous analyses of the structure of the dynasome shows that this

graph is a faithful representation of the dynasome (Text S1 and

Fig. S5). In particular, our graph based clusters group proteins

with similar positions in the PCA projection (Fig. 4), as indicated

by the arrows representing the position of each protein in the

plane spanned by dynasome descriptors 1 and 2. Vice versa,

additional structure is revealed, as can be seen from the fact that

some groups of proteins have almost identical positions in Fig. 4,

but are clearly separated in Fig. 9b.

Function Coins Dynamics
In the following we will analyze the correlation between

dynamics and function. To this aim we classified the 112 proteins

according to literature annotations into 9 relatively broad function

classes (see methods and Table S1 for details). We first determined

the mean position, or centroid, of each of the 9 function classes in

the dynasome space. In Fig. 10a, this average position of each

function class is represented by a compass diagram. The lengths

(and direction) of the four bars labeled 1,…, 4 correspond to the

average position on the first four dynasome descriptors. If function

classes were randomly distributed, the mean position of each class

would fall onto the origin. Instead, we find that each function class

has its unique dynamics fingerprint. For example, as indicated by

descriptor 1 (black) in the compass plots, esterases (centre, light

orange) appear to sample a smoother free energy landscape,

according to Table 4, than that of glycosidases (purple), where the

respective projection has an opposite sign. Also, esterases tend to

fluctuate at slower time scales (descriptor 2 compass plots, cf.

Table 4). In contrast, these two functional groups show similar

collectivity of the functional modes (descriptor 3, cf. Table 4) and

fluctuations of secondary structure elements (descriptor 4). The

Figure 9. Graph representations of the fine structure of the
dynasome. a) Graph of the adjacency matrix of dynasome proteins in
the space spanned by the first four dynasome descriptors. Vertices
represent proteins, edges represent neighborship. Highlighted are
proteins discussed in Fig. 4. b) same graph as a), but colored according
to the clustering obtained by maximizing the community modularity.
Arrows indicate the position of each protein on the subspace spanned
by the dynasome descriptors 1 and 2 (cf. Fig. 4 and Table 4).
doi:10.1371/journal.pone.0033931.g009

Table 4. Composition of the first four dynasome descriptors:
Shown are the five observables that contribute most to the
first four descriptors; relative contributions to the descriptor
are given in percent, (–) indicates that the respective
observable appears in the linear combination defining the
descriptor with a negative coefficient.

Descriptor 1 Descriptor 2 Descriptor 3 Descriptor 4

1 mRMSF 10% f acf
1 12% l5 19% cSAS

v 13%

2 mRMSD 9% f acf
2 8% l1 15% cturn 12%

3 c
rg
v 9% f acf

4 7% l4 11% kurtc 11% (–)

4 skewc 7% (–) x2
N ,1

7% cRMSD
v 9% (–) l3 9% (–)

5 mc 7% (–) kurtc 7% (–) crg 6% (–) cstruct
v 7% (–)

For a list of the symbols, see Table 2. Descriptor 1: Average root mean square
fluctuations from the ensemble average mRMSF; average root mean square
deviation from the X-ray structure mRMSD; standard deviation (% of mean) of
the radius of gyration crg

v ; skewness of the ruggedness distribution of the
proteins’ degrees of freedom skewc and average ruggedness (averaged over all
collective degrees of freedom in the protein) mc: Descriptor 2: friction constants
of the diffusion along collective degrees of freedom f acf ; goodness-of-fit of the
first principal component to a Gaussian distribution x2

N ,1; kurtosis of the
ruggedness distribution of the proteins’ degrees of freedom kurtc: Descriptor 3:
Eigenvalues of the protein ensembles’ eigenvectors 5, 1 and 4 (2 and 3
appearing further below and are not explicitly shown here); fluctuation of the
RMSD from the X-ray structure cRMSD

v and of the radius of gyration c
rg
v :

Descriptor 4: Fluctuations of solvent accessible surface, turn content and
secondary structure content cSAS

v , cturn
v , and cstruct

v :
doi:10.1371/journal.pone.0033931.t004

Exploring Protein Dynamics Space

PLoS ONE | www.plosone.org 11 May 2012 | Volume 7 | Issue 5 | e33931



most flexible proteins in our set are calcium-binding proteins (deep

orange). These exhibit the most pronounced secondary structure

fluctuations (descriptor 4) and in that respect differ strongly from

typical DNA/transcription related proteins (yellow), which in turn

fluctuate on the fastest time scales of all examined proteins.

These pronounced differences in the average positions, to which

we will refer to as ‘dynamics fingerprint’ of the proteins, should

also show up in the graph representations of the dynamics space.

Fig. 10b (left; see also Fig. S6 left column), reproduces the

dynamics graph introduced in Fig. 9 here with the nodes colored

according to their function classification. As can be seen, the

clustering identified in Fig. 9, although purely based on dynamics

descriptors, reflects the functional classification shown in Fig. 10b

(left) to a remarkable extent. For instance, three out of four DNA/

transcription related proteins (yellow) are on the rightmost branch,

almost all proteins in the top-left branch are glycosidases (purple),

and serine proteinases (magenta) dominate the top branch and the

lower left branch.

This first visual impression was quantified by comparing the

average distance of any two proteins of the same function to the

average distance of all protein pairs. Fig. 10b (right) shows the

mutual average distance in the graph for each function class (bar

heights), i.e. the number of edges connecting two proteins of the

same function, as well as the standard deviation of that average. As

can be seen, proteins of the same function class are, overall,

significantly closer to one another than the average distance of all

vertices in the graph (black horizontal line), which one would

expect in the absence of any correlation between dynamics and

function. Exceptions are the classes DNA/Transcription and

Toxins.

The fact that functionally similar proteins occupy similar

regions of the dynamics space suggests a straightforward way to

infer function purely from dynamics similarity by partitioning the

dynamics space into ‘function neighborhoods’, i.e. areas of the

dynamics space which are occupied preferentially by a given

function class. Accordingly, the centroids of these function

neighborhoods serve as the reference points, and proteins of

unknown function are then predicted to share the function of their

closest neighborhood (the function class with the lowest average

graph distance). To quantify the predictive power of this approach,

we determined if this procedure would have predicted the correct

function class. To that aim, the shortest path from each protein to

all other proteins of known function was calculated. We then

checked whether its known function corresponds to the function of

the closest function class, in which case we would have obtained a

correct assignment. Remarkably, correct assignments were found

in 57% of all cases, as compared to 11% expected in the absence

of any correlation between dynamics and function. A detailed

comparison by function class (Table S3) suggests different success

rates for the different function classes. The dynamics fingerprint of

glycosidases (12 correct assignments out of 17) seems to be quite

characteristic for this function class, whereas esterases dynamics

turned out to be more diffuse, allowing only 4 out of 13 proteins to

be assigned correctly.

For rigorous cross-validation, the above algorithm was modified

such that for each protein assumed unknown, the function

centroid was re-calculated from the remaining proteins only. As

above, the predictive power was then assessed via similarity of the

functional class of each protein with that of the closest centroid.

Focussing at the three largest function groups for which sufficient

proteins (.10) are available to obtain reasonable statistical

accuracy, correct assignments were obt’ained in 46% of all cases

(Table S3), which is only slightly below the above correlation, thus

establishing remarkable predictive power of this simple approach.

For the remaining and quite small function classes, a value of only

7% is obtained due to poor statistics, such that predictive power is

not established for these classes.

Having established a clear dynamics function correlation we

next examined whether, with a similar approach, similar

correlations are seen between structure and function. To this

end, we computed the adjacency matrix of proteins in structure

space. The resulting graph is shown in Fig. 10c (left; and Fig. S6,

centre column). Similar to dynamics space, local accumulations of

function classes can be seen, also yielding significantly lower than

average intra-class distances for most function classes (bar plot

Fig. 10c right). This observation corroborates the well-known fact

that structural alignments can in many cases improve protein

function predictions [7].

With an approach similar to that applied to the dynamics

fingerprints above, we found a structure/function correlation of

36%, smaller than the dynamics/function correlation above

(Table S3). The cross-correlation test yields 27% correct annota-

tions for the three larger groups, and 39% for the remainder. The

overall prediction rate of 32% agrees well with published structure

based prediction rates [7]. Similar to the prediction based on

dynamics, cross-validated prediction rates are only 2% smaller

than the observed correlations for the three largest function

classes, but drop by 8% for the small groups for which the statistics

is poor.

Would one expect to improve the prediction rate even further

by using both, structure and dynamics information? At first sight,

this should be the case, particularly for those function classes,

which form relatively compact clusters in dynamics space, but are

structurally quite unrelated (e.g., calcium binding proteins). In

these cases, a better prediction rate is expected for a purely

dynamics based function prediction than for a purely structure

based one. However, other function classes (e.g., peptidases)

appear to form compact clusters in structure but not in dynamics

space. For these classes, structure based predictions should be

superior. Due to this complementarity, it is not clear a priori

whether or not the combined use of structure and dynamics

actually will improve function prediction rates.

To resolve this issue, we combined our structure and dynamics

space into a 34+24 = 58 dimensional space. Similarly to the above

procedure, a PCA on the respective combined descriptors was

carried out, and adjacency relations in the space spanned by the

first five (d~5) collective descriptors were obtained from the PCA.

Note that this 5-dimensional subspace does not necessarily weight

dynamics and structural features equally.

Figure 10d (left) shows the resulting graph of the calculated

adjacency matrix. Analysis of the underlying adjacency matrix

shows that proteins of common function class are, on average,

closer to each other in this combined space than they are in

dynamics and structure space alone (Fig. 10d right; and Fig. S6,

right column), whereas the average distance in this graph is also

markedly smaller. Using both structure and dynamics information,

35% correct annotations are achieved, slightly more than structure

and dynamics based predictions alone. We note that more

elaborate combinations of structure and dynamics space, and

optimized choices of k and d are likely to further improve the

predictive value of our approach.

Conclusions
Inspired by the successful classifications of the sequence and

structure space covered by proteins, we investigated the dynamics

space covered by small, soluble proteins chosen from many

structural families and folds. The dynamics of each protein was

characterized by a set of 34 dynamics descriptors spanning the
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Figure 10. Dynamics fingerprints and relation to function. a) Compass diagrams indicate the average position of each function class in the
dynamics space spanned by dynasome descriptors 1–4 (see Table 3 for composition of descriptors). b–d) Graphs of adjacency matrices (left) in the
dynamics space (b), structure space (c) and combined space (d) and corresponding average distances (right) between proteins of the same function
classes (bar heights) vs average distance (solid horizontal lines) between all proteins. The colors denote the protein function classes defined in panel a.
doi:10.1371/journal.pone.0033931.g010
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dynamics space. We referred to the whole set of protein dynamics

patterns as the dynasome. Remarkably, the grand distinction

between thermodynamics and kinetics properties of a many-

particle system was found to be already encoded, in terms of the

directions of its two largest extensions, within the structure of the

dynasome.

The first question we addressed was whether or not these

proteins naturally fall into dynamics classes, such as seen for the

more established sequence and structure classifications. We found

that proteins populate the dynamics space continuously, and no

canonical partitioning, which would enable an unambiguous

classification, was seen. The observation that functionally unusual

proteins appear as outliers in this dynamics space provided a first

hint towards a close connection between function and dynamics. A

systematic analysis of the dynasome indeed revealed remarkably

large correlations between dynamics and protein function.

Functional classes leave distinct ‘‘fingerprints’’ in the dynasome,

which we were able to characterize using only a few collective

dynasome descriptors. The finding that proteins of similar function

cluster in dynamics space led us to a new and straightforward

protein function prediction approach, purely based on protein

dynamics similarity. Indeed, already for the relatively small set of

proteins considered here, such an approach yielded correct

annotations for 46% of the largest functional classes, which is

comparable to the performance of the most advanced structure

based methods.

A second set of questions addressed was how protein structure

relates to protein dynamics and, in particular, to which extent

structurally similar proteins exhibit similar dynamics. We charac-

terized protein structure using the same unsupervised approach as

for protein dynamics. In this case, protein structure was

represented by a 24 dimensional vector of structure descriptors.

The structural similarity between any two proteins was then

quantified by the distance in structure space, different from the

usual approach based on RMSDs between subsets of atoms (e.g.

Ca atoms) according to some domain hierarchy.

As one might expect, many structurally similar proteins were

found to exhibit similar dynamics and, vice versa, many

structurally different proteins tend to perform different dynamics,

thus establishing significant structure-dynamics correlation. In a

significant number of cases, however, this straightforward struc-

ture-dynamics relation was found to be violated. Quite different

structures shared similar motion patterns (‘adjoint’), and other very

similar structures exhibited quite different dynamics (‘disjoint’). In

these cases, dynamics relations offer a viewpoint that is comple-

mentary to that derived from structural characterizations.

To decide which of the two views is more closely linked to

protein function, we also investigated how well function can be

determined purely from structure within our framework and

obtained a success rate of 32%. Combining structure and

dynamics information yielded an intermediate rate of 35%, a

slightly higher value than either dynamics or structure based

predictions alone. It seems likely, that prediction methods can be

devised which combine the information from structure and

dynamics in a more elaborate manner, and thus enable even

more accurate predictions, e.g. optimizing the parameters d and k

for this specific purpose. The findings presented in this study are

remarkable in the light of the fact that our dynamics descriptors,

being derived from 100 ns simulations, provide a quite limited

‘‘window’’ to the full dynamics. In particular slow dynamics are

entirely missed, as are other dynamics features that are not

captured by our observables. Despite this fact, however, our

limited view seems to suffice, to predict protein function at a

remarkable rate, and therefore captures functionally relevant

parts of the dynamics. By analogy, to identify a murderer, one

does not always require a photograph of his whole body, often a

fingerprint suffices. Here, we presented fingerprints of protein

dynamics.

Supporting Information

Figure S1 Observable correlation. Pairwise absolute Pear-

son’s correlation coefficients (color codes see legend) between the

dynamics observables used in this study. Observables indices

correspond to main Table 2.

(TIFF)

Figure S2 Principle of decorrelation between two arbi-
trary variables x and y. The correlation seen in (a) is removed

by applying a random permutation to the y-component (b).

(TIFF)

Figure S3 Parameter optimization for mutual adjacen-
cy graphs. The k nearest neighbors, which define the

connectivity of each protein in the d dimensional subspace of the

a) dynamics, b) structure, c) combined dynamics and structure

space. The partitioning of each resulting graph for each pair {k,d}

is quantified by the community modularity C (z-axis). For the

subsequent analyses, k and d were chosen such that C was

maximized (black points).

(TIFF)

Figure S4 Determination of natural partitioning of the
dynasome. Average Connectivity (x-axis) vs Average Variance

(y-axis) for k-means partitioning into 1 . . . 10 clusters (numbers).

For the optimal number of clusters, both measures are minimal.

For the dynasome, no such optimal number could be identified.

(TIFF)

Figure S5 Graph of a adjacency matrix of dynasome
proteins in the dynamics space. Vertex colours indicate (a) k-

means clusters in the whole 34-dimensional dynamics space (same

clusters like main text Fig. 6b), (b) SCOP classes of proteins.

(TIFF)

Figure S6 Co-location of proteins of the same functional
class distinct functional classes in the neighborhood plot
of the dynamics space (left column), structure space
(middle column), and combined dynamics and structure
space (right column). Colors indicate function classes accord-

ing to the colour code in main text Fig. 10.

(TIFF)

Table S1 Systems (PDB codes) selected for analysis.
Functions were obtained as described in methods. Poorly covered

function classes were assigned ‘‘Other’’ and ‘‘Other Enzymes’’ and

not included in the graph analyses.

(TEX)

Table S2 Fit functions for Sequence length decorrela-
tion of dynamic (Y 1{34) and structure (X 1{24) observ-
ables.

(TEX)

Table S3 Prediction rate by function class. Numbers in

brackets indicate the result of a cross validation test, described in

the main text.

(TEX)

TEXT S1 The graphs are a faithful map of the
dynasome.

(PDF)
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automatic structure prediction with HHpred. Proteins 77: 128–132.

13. von Grotthuss M, Plewczynski D, Vriend G, Rychlewski L (2008) 3D-Fun:

predicting enzyme function from structure. Nucleic Acids Res 36: W303–W307.

14. Pearl F, Bennett C, Bray J, Harrison A, Martin N, et al. (2003) The CATH

database: an extended protein family resource for structural and functional

genomics. Nucleic Acids Res 31: 452–455.

15. Andreeva A, Howorth D, Brenner S, Hubbard T, Chothia C, et al. (2004)

SCOP database in 2004: refinements integrate structure and sequence family

data. Nucleic Acids Res 32: D226–D229.

16. Holm L, Sander C (1996) Mapping the protein universe. Science 273: 595–602.

17. Pascual-Garcia A, Abia D, Mendez R, Nido GS, Bastolla U (2010) Quantifying

the evolutionary divergence of protein structures: The role of function change

and function conservation. Proteins 78: 181–196.

18. Perutz M (1970) Stereochemistry of cooperative effects in haemoglobin. Nature

228: 726–734.

19. Ansari A, Berendzen J, Bowne S, Frauenfelder H, Iben I, et al. (1985) Protein

states and proteinquakes. Proceedings of the National Academy of Sciences 82:

5000–5004.

20. de Groot B, Grubmuller H (2001) Water permeation across biological

membranes: Mechanism and dynamics of aquaporin-1 and glpf. Science 294:

2353–2357.

21. Pang A, Arinaminpathy Y, Sansom M, Biggin P (2005) Comparative molecular

dynamics - similar folds and similar motions? Proteins 61: 809–822.

22. Yaneva R, Springer S, Zacharias M (2009) Flexibility of the MHC class II

peptide binding cleft in the bound, partially filled, and empty states: A molecular

dynamics simulation study. Biopolymers 91: 14–27.

23. Cox K, Sansom M (2009) One membrane protein, two structures and six

environments: a comparative molecular dynamics simulation study of the

bacterial outer membrane protein pagp. Mol Membr Biol 26: 205–214.

24. Meyer T, de la Cruz X, Orozco M (2009) An atomistic view to the gas phase

proteome. Structure 17: 88–95.

25. Jonsson AL, Scott KA, Daggett V (2009) Dynameomics: A consensus view of the

protein unfolding/folding transition state ensemble across a diverse set of protein

folds. Biophys J 97: 2958–2966.

26. Toofanny RD, Jonsson AL, Daggett V (2010) A comprehensive multi-

dimensionalembedded, one-dimensional reaction coordinate for protein unfold-

ing/folding. Biophys J 98: 2671–2681.

27. van der Kamp MW, Schaeffer RD, Jonsson AL, Scouras AD, Simms AM, et al.

(2010) Dynameomics: A comprehensive database of protein dynamics. Structure

18: 423–435.

28. Meyer T, D’Abramo M, Hospital A, Rueda M, Ferrer-Costa C, et al. (2010)

MoDEL (Molecular Dynamics Extended Library): A database of atomistic

molecular dynamics trajectories. Structure 18: 1399–1409.

29. Shaw DE (2009) Anton: A specialized machine for millisecond-scale molecular

dynamics simulations of proteins. Abstr Pap Am Chem S 238: 154-COMP.

30. Shaw D, Maragakis P, Lindorff-Larsen K, Piana S, Dror R, et al. (2010) Atomic-

level characterization of the structural dynamics of proteins. Science 330:
341–346.

31. Amadei A, Linssen A, Berendsen H (1993) Essential dynamics of proteins.

Proteins 17: 412–425.

32. Zen A, Carnevale V, Lesk AM, Micheletti C (2008) Correspondences between

lowenergy modes in enzymes: Dynamics-based alignment of enzymatic

functional families. Protein Sci 17: 918–929.

33. Munz M, Lyngso R, Hein J, Biggin P (2010) Dynamics based alignment of
proteins: an alternative approach to quantify dynamic similarity. BMC

Bioinformatics 11: 188.

34. Hooft R, Sander C, Scharf M, Vriend G (1996) The PDBFINDER database: a

summary of PDB, DSSP and HSSP information with added value. Bioinfor-
matics 12: 525–529.

35. Henrick K, Thornton J (1998) PQS: a protein quaternary structure file server.
Trends Biochem Sci 23: 358–361.

36. Hooft R, Vriend G, Sander C, Abola E (1996) Errors in protein structures.

Nature 381: 272–272.

37. Vriend G (1990) WHAT IF: a molecular modeling and drug design program.

J Mol Graph 8: 52–56.

38. Haas J, Lange O, Vriend G, de Groot B, Grubmuller H WHAG – GROMACS

interface to WHATIF. to be submitted).

39. Hooft R, Sander C, Vriend G (1996) Positioning hydrogen atoms by optimizing

hydrogen-bond networks in protein structures. Proteins 26: 363–376.

40. Spoel DVD, Lindahl E, Hess B, Groenhof G, Mark A, et al. (2005) GROMACS:
Fast, flexible, and free. J Comp Chem 26: 1701–1718.

41. Jorgensen W, Tiradorives J (1988) The OPLS potential functions for proteins –
Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem

Soc 110: 1657–1666.

42. Berendsen H, Postma J, van Gunsteren W, DiNola A, Haak J (1984) Molecular

dynamics with coupling to an external bath. J Chem Phys 81: 3684–3691.

43. Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: A linear constraint
solver for molecular simulations. J Comp Chem 18: 1463–1472.

44. Miyamoto S, Kollman P (1992) SETTLE - An analytical version of the SHAKE
and RATTLE algorithm for rigid water models. J Comp Chem 13: 952–962.

45. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald - an N.Log(N)
method for Ewald sums in large systems. J Chem Phys 98: 10089–10092.

46. Hess B (2000) Similarities between principal components of protein dynamics

and random diffusion. Phys Rev E 62: 8438–8448.

47. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys

Rev 36: 823–841.

48. Zwanzig R (1988) Diffusion in a rough potential. P Natl Acad Sci Usa 85:

2029–2030.

49. Kabsch W, Sander C (1983) Dictionary of protein secondary structure –

patternrecognition of hydrogen-bonded and geometrical features. Biopolymers
22: 2577–2637.

50. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, et al. (2008)

AMBER 10, University of California, San Francisco.

51. Hubbard, Thornton J (1993) NACCESS - atomic solvent accessible area

calculations – computer program. URL http://www.bioinf.manchester.ac.uk/
naccess/. Last accessed 2012 Mar 15.

52. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4:
Algorithms for highly efficient, load-balanced, and scalable molecular simula-

tion. J Chem Theory Comput 4: 435–447.

53. Ahmad S, Sarai A (2011) Analysis of electric moments of RNA-binding proteins:

implications for mechanism and prediction. BMC Structural Biology 11: 8.

54. Vendruscolo M, Dokholyan N, Paci E, Karplus M (2002) Small-world view of
the amino acids that play a key role in protein folding. Phys Rev E 65: 061910.

55. Seber GAF (1984) Cluster Analysis, in Multivariate Observations, John Wiley &
Sons, Inc., Hoboken, NJ, USA.

56. Bairoch A, Bougueleret L, Altairac S, Amendolia V, Auchincloss A, et al. (2008)
The universal protein resource (uniprot). Nucleic Acids Research 36:

D190–D195.

57. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, et al. (2000) The protein

data bank. Nucleic Acids Res 28: 235–242.
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