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Abstract

As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-
wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a
high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8
are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great
help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer)
software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified
epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and
improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other
tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes.
Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-
associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further
experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for
experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.
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Introduction

Type 1 diabetes (Diabetes mellitus type 1, T1D or T1DM) is a

severe chronic autoimmune disease with a relapsing-remitting

course that is characterized by the insidious loss of self-tolerance

and progressive destruction of insulin-producing pancreatic b-cells

in the islets of Langerhans, with the presence of overt

hyperglycemia at the time of clinical diagnosis [1–7]. The

incidence and prevalence of T1D has dramatically increased

worldwide over the past several decades, and the onset and

development of T1D is believed to be controlled by both genetic

and environmental factors [1–5,8]. The cumulative analysis has

revealed that a variety of immune cell types, including CD4+,

CD8+ T cells, macrophages and dendritic cells (DCs) are involved

in b-cell death, and CD4+ T cells play the predominant role in the

overall T1D pathology [1,2,8]. Thus, the development of

immunoregulatory therapeutic approaches has come to be an

urgent demand for preventing, treating or even curing T1D [1–7].

Besides immunosuppressive drugs and antibody-based immu-

notherapies, antigen-based ‘‘tolerogenic’’ immunotherapy has

attracted considerable attention as a third-generation approach,

particularly for its highly selective targeting of aberrant T cells

[1–6]. It was demonstrated that the MHC class II haplotype, I-Ag7,

is strongly linked to susceptibility to T1D in the non-obese diabetic

(NOD) mouse [9–11]. Similar linkage to the human HLA-DQ8

molecule, I-Ag7 is expressed by DCs to present b-cell epitopes from

certain well-defined autoantigens, including insulin, glutamic acid

decarboxylase (GAD) and insulinoma antigen 2 (IA-2) [1–6,8].

These epitopes are usually composed of 10 to 30 amino acids, with a

9-amino acid core sequence for I-Ag7/HLA-DQ8 and T-cell

receptor (TCR) binding [9–11]. In this regard, identification of I-

Ag7/HLA-DQ8 epitopes is fundamental for an understanding of the

molecular mechanisms of T1D and the improved design of

immunotherapeutic peptides. In 2009, the first-in-human beings

Phase I clinical study reported that proinsulin peptide injection is

both well tolerated and safe [12]. Recently, a C-peptide deduced

from the GAD 65 isoform has generated promising results in Phase

II trials, and three Phase III trials are still ongoing [1,2,5].

As a complement to labor-intensive and time-consuming

experimental assays, the in silico prediction of MHC-binding
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epitopes has emerged as an efficient approach to generate useful

information for the purposes of biomedical design [13,14] (see also

http://mba.biocuckoo.org/ links.php). For example, the predic-

tion results of SYFPEITHI [15] and BIMAS [16] were successfully

used for the experimental identification of novel MHC class I

epitopes derived from type 1 diabetes autoantigens [17–19]. Since

I-Ag7 is the only expressed MHC class II molecule in the NOD

mouse [9,10], additional efforts have subsequently been expended

on the prediction of I-Ag7 or HLA-DQ8 epitopes [20–23]. In

2006, Rajapakse et al. developed the first online server of

PREDNOD for the prediction of I-Ag7, and the two MHC class I

molecules Kd and Db binding peptides in the NOD mouse [20].

They subsequently refined the predictor using multi-objective

evolutionary algorithms (MOEA) [23]. Chang et al. used an

expectation-maximization alignment algorithm to design compu-

tational programs for the prediction of I-Ag7 [21] and HLA-DQ8

[22] epitopes, respectively. Furthermore, the two integrative tools

of MHC2Pred [24,25] and RANKPEP [26] also include

predictors for I-Ag7 and HLA-DQ8, although they were developed

for the comprehensive prediction of a variety of MHC class I and/

or II binding peptides. Currently, although a number of

computational studies have been performed, only MHC2Pred

[24,25] and RANKPEP [26] are accessible over the internet.

In this work, we developed a novel GPS-MBA software package

for the prediction of I-Ag7 and HLA-DQ8. The experimentally

identified epitopes were obtained from the scientific literature, and

a modified Gibbs sampling approach was adopted to determine

the core nonamers in these epitopes. For training and prediction, a

refined GPS algorithm [27,28] was used. By extensive evaluation

and comparison, the prediction performance of GPS-MBA was

shown to be highly promising and much better than the other tools

currently in use. Moreover, by cross-evaluation using the HLA-

DQ8 predictor in GPS-MBA to predict the I-Ag7 epitopes and vice

versa, the results show that I-Ag7 and HLA-DQ8 recognize highly

similar peptide profiles. With this powerful tool, we predicted

potentially novel I-Ag7 and HLA-DQ8 binding peptides from

T1D-associated epitopes, which bind to other types of MHC

molecules. All of the experimentally identified T1D antigens

together with their epitopes were absorbed into TEDB 1.0. The ab

initio predicted epitopes were also provided. Taken together, the

prediction and analysis results are helpful for further experimental

investigation, and the GPS-MBA can serve as a practically useful

adjunct program for experimentalists. The online service and local

packages of GPS-MBA 1.0 were implemented in JAVA and freely

accessible for academic research purposes at: http://mba.

biocuckoo.org.

Methods

Data preparation
A search of the scientific literature from PubMed (before Sept.

20th, 2011) with the keywords ‘‘I-Ag7 peptide’’, ‘‘HLA-DQ8

peptide’’, or ‘‘Type 1 diabetes epitope’’, we collected 318

experimentally verified and naturally processed mouse I-Ag7

binding peptides in 177 proteins, and 134 human HLA-DQ8

epitopes from 84 proteins (Table 1). Additional keywords were

tried, but the data set was not changed. The protein sequences

were retrieved from the UniProt database (http://www.uniprot.

org/uniprot/).

In our data set, the length of most of the epitopes varies from

9,30aa. Thus, we adopted a refined Gibbs sampling approach

[29,30] to determine the 9aa core peptides, and obtained 301

unique nonamer epitopes for the I-Ag7 and 127 HLA-DQ8 core

peptides for training. We also prepared positive (+) and negative

(2) data sets for testing. The 318 I-Ag7 and 134 HLA-DQ8

epitopes of known length were regarded as the (+) set. If at least

one predicted nonamer is fully located in the epitope region, the

epitope is predicted as a positive hit. To avoid any bias, all of the

9-mer lengths of the same proteins which were either not covered

or not fully covered by the original epitopes were taken to be the

(2) set.

By further literature review, we collected 203 T1D-associated

epitopes in 25 proteins which have the potential to be recognized

by other types of MHC or unknown molecules (Table 1).

Performance evaluation
As previously described [27,28], we used the four measurements

of sensitivity (Sn), specificity (Sp), accuracy (Ac) and Mathew’s

Correlation Coefficient (MCC). The measurements were defined as

below:

Sn~
TP

TPzFN
, Sp~

TN

TNzFP
, Ac~

TPzTN

TPzFNzTNzFP

and

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p :

To evaluate the prediction performance and robustness, the

leave-one-out (LOO) validation and 4-, 6-, 8- and 10-fold (n-fold)

cross-validations were performed. In the LOO validation, each

core nonamer in the data set was picked out in turn as an

independent test sample, and all the remaining core nonamers

were regarded as training data. This process was repeated until

each nonamer was used as test data one time. In the n-fold cross-

validation, all the (+) core nonamers and (2) nonamers were

mixed and then divided equally into n parts, keeping the same

distribution of (+) and (2) nonamers in each part. Then n-1 parts

were merged into a training data set while the remnant part was

taken as a testing data set. This process was repeated 20 times and

the average performance of n-fold cross-validation was computed.

Furthermore, the Receiver Operating Characteristic (ROC)

curves were drawn, and AROC (area under ROC) values were

calculated.

The algorithm
Previously, we developed a series of GPS algorithms for the

prediction of post-translational modification (PTM) sites in

proteins [27,28]. For the prediction of the I-Ag7 and HLA-DQ8

binding peptides, we used the original method to develop a new

Table 1. The statistical data on the experimentally validated
epitopes collected in this study.

Experimental data set Protein Epitopea Core 9-merb

Mouse I-Ag7 177 318 301

Human HLA-DQ8 84 134 127

Other T1D-associated 25 203

Total 245 623

aEpitope, the number of original epitopes;
bCore 9-mer, the number of nonamer core peptides derived from the adapted
Gibbs sampling procedure.
doi:10.1371/journal.pone.0033884.t001

Prediction of I-Ag7 and HLA-DQ8 Binding Peptides
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algorithm containing two computational parts, a scoring strategy

and performance improvement.

The basic hypothesis behind the scoring strategy is that similarly

short peptides would exhibit similar 3D structures and biochemical

properties [27,28]. Thus, we can directly use an amino acid

substitution matrix, e.g., BLOSUM62, to calculate the similarity

between two 9-mer peptides A and B as:

S A,Bð Þ~
X

1ƒiƒ9

Score A i½ �,B i½ �ð Þ

Score(A[i], B[i]) denotes the substitution score of the two amino

acids of A[i] and B[i] in the BLOSUM62 at the position i. If S(A,

B),0, we redefined it as S(A, B) = 0. A given nonapeptide is then

compared with each of the 9aa core peptides from the training

data in a pairwise manner to calculate the similarity score. The

average value of the substitution scores is regarded as the final

score.

The performance improvement procedure is comprised of two

steps, weight training (WT) and matrix mutation (MaM). To

evaluate the degree of performance improvement, we calculated

the scores for all sites of the training data set in each time. By

gradually increasing the threshold, we computed the Sn, Sp, Ac and

MCC under different cut-off values. Thus, we fixed the Sp at 90%

and compared the Sn values of the LOO validation.
1) Weight training (WT). In this step, the substitution score

between the two 9-mer peptides A and B was updated as follows:

S’ A,Bð Þ~
X

1ƒiƒ9

wiScore A i½ �,B i½ �ð Þ

Initially, the weight of each position was defined as 1. The wi

value is the weight of the position i. Again, if S9(A, B) is ,0, we

redefined it as S9(A, B) = 0. Then we randomly picked out the

weight of any position for +1 or 21 and re-computed the LOO

result. The manipulation was adopted if the Sn value was

increased. This process was continued until the Sn value did not

increase any further.
2) Matrix mutation (MaM). The aim of this step is to

generate an optimal or near-optimal scoring matrix from an initial

matrix. We re-calculated the LOO result to improve the Sn value

by randomly picking out an element of the BLOSUM62 matrix

for +1 or 21. The process was repeated until convergence was

reached. Selecting a different initial matrix, e.g., BLOSUM45 will

generate a convergent result if the training time is sufficient (Data

not shown).

Implementation of the online service and local packages
The online service and local packages of GPS-MBA 1.0 were

implemented in JAVA. For the online service, we tested GPS-

MBA 1.0 on a variety of internet browsers, including Internet

Explorer 6.0, 8.0 and 9.0, Mozilla Firefox 8.0 and Google Chrome

under the Windows XP and Windows 7 Operating System (OS),

Mozilla Firefox 8.0 and Google Chrome under Fedora Core 15

and Ubuntu 10.04 LTS (Linux), and Safari 5.1.1 under Apple

Mac OS 610.5 (Leopard) and 10.7 (Lion). For the Windows and

Linux systems, the latest version of Java Runtime Environment

(JRE) package (Java SE 5.0 or later versions) should be pre-

installed. However, for Mac OS, GPS-MBA 1.0 can be directly

used without any additional packages. For convenience, we also

developed local packages of GPS-MBA 1.0 which support the

three major Operating Systems Windows, Linux and Mac OS X.

Results

Determination of the core nonamers from the I-Ag7 and
HLA-DQ8 epitopes

From the scientific literature, we collected 318 naturally

processed I-Ag7 epitopes and 134 HLA-DQ8 binding peptides of

various lengths from 8,30aa (Table 1). The prerequisite for the

usage of GPS algorithm is that the length of peptides must be fixed

and identical in the training data set [27,28]. Previously,

experimental analyses had suggested that the I-Ag7 and HLA-

DQ8 epitopes contain the 9aa core sequences needed for

recognition and binding [9–11]. Since there is only one epitope

with 8aa, we added one residue upstream and one residue

downstream for the 8aa peptide so as to form a decapeptide. Then

we used an adapted Gibbs sampling approach to determine the

core nonamers of the I-Ag7 (Table S1) and HLA-DQ8 epitopes

(Table S2) [29–31].

Given a set of N epitopes S1, …, SN, we sought to identify the

most probable nonapeptides that were mutually present in both

epitopes (Figure 1). First, one 9-mer length per epitope as P1, …,

PN was randomly selected, while we randomly singled out one

epitope Si together with its nonapeptide Pi (Figure 1). Then we

calculated the similarity scores for all of the 9-mer peptides

sequentially in Si, as described below:

Score PiÞð ~

P
1ƒiƒN,j=i

S(Pi,Pj)

N{1

The Score(Pi) is the average final similarity score compared with

the other nonamers, while S(Pi, Pj) is the similarity score between Pi

and Pj. The 9-mer with the maximal Score(Pi) is sampled and then

updated to the new nonapeptide Pi (Figure 1). Such a sampling

procedure was iteratively repeated until convergence was attained

(Figure 1). Ultimately, the redundant 9-mer core peptides were

made clearly evident (Table 1, Table S1 and S2).

Development of GPS-MBA for the prediction of I-Ag7 and
HLA-DQ8 binding peptides

The series of GPS algorithms contain two computational

procedures of a scoring strategy and performance improvement

[27,28]. The scoring step has remained the same in all the versions

of the GPS algorithms, while the latter process is still in the process

Figure 1. A schematic diagram for the adapted Gibbs sampling
approach which was used to determine the nonamer core
peptides for I-Ag7 and HLA-DQ8 epitopes.
doi:10.1371/journal.pone.0033884.g001

Prediction of I-Ag7 and HLA-DQ8 Binding Peptides
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of being improved for better performance [27,28]. In the latest

GPS 3.0 release, the performance improvement procedure is

comprised of the four sequential steps of k-means clustering, motif

length selection (MLS), WT and MaM [28]. Originally, we

proposed that such a training order could not be changed [28],

whereas our recent analysis instead suggests that such an order can

be shuffled if the training time is sufficient (Data not shown).

When the training data set is large, the k-means clustering

approach can be used to classify positive data into multiple groups

[28]. However, due to limited data available, this method was not

used in this work. The MLS approach was designed for

determining the motif length for optimal performance [28]. Since

experimental studies suggest that the nonamer core peptides are

essential for I-Ag7 and HLA-DQ8 recognition [9–11], this strategy

was also not adopted.

Taken together, the GPS algorithm has been improved, and the

performance improvement process only required the two steps of WT

and MaM. The training order was shuffled for better performance, and

the online service and software packages of GPS-MBA 1.0 were

implemented in JAVA. As an example, the prediction results for the

mouse Igk chain C region (UniProt ID: P01837) are shown (Figure 2).

Previously, a peptide in the mouse Igk L chain (174ERQNGV

LNSWTDQDS188, identical to 46–60 in the Igk chain C region) was

sequenced as an I-Ag7 epitope by MS/MS analysis [32]. In our results,

four potential I-Ag7 epitopes of 4APTVSIFPP12, 49NGVLNSWTD57,
68SSTLTLTKD76, and 69STLTLTKDE77 were predicted (Figure 2).

The 49NGVLNSWTD57 nonamer gives complete coverage of the

experimental epitope (46–60), while the other three predicted hits are

available for further experimental investigation.

Performance evaluation and comparison
To evaluate the prediction performance and robustness of GPS-

MBA, LOO validation and 4-, 6-, 8-, 10-fold cross-validations

were performed (Figure 3A, 3B). ROC curves were drawn, while

the AROC values were 0.909 (LOO), 0.909 (4-fold), 0.904 (6-fold),

0.916 (8-fold) and 0.919 (10-fold) for mouse I-Ag7 (Figure 3A), and

0.921 (LOO), 0.933 (4-fold), 0.928 (6-fold), 0.937 (8-fold) and

0.931 (10-fold) for human HLA-DQ8 (Figure 3B). Since the results

of the 4-, 6-, 8- and 10-fold cross-validations were closely similar to

the LOO validation, the GPS-MBA 1.0 is evidently a stable and

robust predictor. The performance of the LOO validation was also

used for the cut-off setting and further comparison, and the three

thresholds of high, medium and low were selected with the Sp

values of 97%, 95% and 90%, respectively (Table 2). In addition,

given the highest MCC values, the medium thresholds were chosen

Figure 2. Screen snapshot of the GPS-MBA 1.0 software. The default threshold was chosen for MHC Class II I-Ag7 (Medium). As an example, the
prediction results for the Mouse Igk chain C region (UniProt ID: P01837) are shown.
doi:10.1371/journal.pone.0033884.g002

Prediction of I-Ag7 and HLA-DQ8 Binding Peptides
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as the default thresholds of I-Ag7 (0.1541) and HLA-DQ8 (0.1534),

respectively (Table 2).

To clearly demonstrate the superiority of GPS-MBA, we also

used the same data sets to evaluate the performances of

MHC2Pred [24,25] and RANKPEP [26]. We fixed the Sp values

of MHC2Pred and RANKPEP so as to be similar to GPS-MBA

and compared the Sn values (Table 2). For I-Ag7, when the Sp

value was ,97%, the Sn values of GPS-MBA, MHC2Pred and

RANKPEP were 62.89%, 23.58%, and 33.65%, respectively

(Table 2). Also, when the Sp value was ,95%, the Sn values of

GPS-MBA, MHC2Pred and RANKPEP were 71.70%, 32.70%,

and 45.91%, respectively (Table 2). Furthermore, when the Sp

Figure 3.The performance evaluation of GPS-MBA 1.0 and a comparison with other approaches. The LOO validation and 4-, 6-, 8- and
10-fold cross-validations were performed for (A) mouse I-Ag7 and (B) human HLA-DQ8, respectively. We compared the performance of GPS-MBA 1.0
with MHC2Pred and RANKPEP using the LOO validation for (C) I-Ag7 and (D) HLA-DQ8, respectively. We also performed a cross-evaluation by using
the HLA-DQ8 predictor in GPS-MBA to predict (C) I-Ag7 epitopes and (D) vice versa.
doi:10.1371/journal.pone.0033884.g003

Prediction of I-Ag7 and HLA-DQ8 Binding Peptides
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value was ,90%, the Sn of GPS-MBA (84.91%) was still much

better than MHC2Pred (47.80%) and RANKPEP (64.15%)

(Table 2). Once again, for HLA-DQ8, the GPS-MBA perfor-

mance is still much better than the other two predictors. In

addition, ROC curves were drawn, showing that the AROC

values of the GPS-MBA were generally better than the other

approaches to I-Ag7 (Figure 3C) and HLA-DQ8 (Figure 3D).

Previous experimental studies suggested that the mouse I-Ag7

haplotype is equivalent to the human HLA-DQ8 linkage, and

exhibits a similar specificity for peptide recognition and binding

[1–6,8–11]. To investigate this viewpoint, we performed a cross-

evaluation using the HLA-DQ8 predictor in GPS-MBA to predict

I-Ag7 epitopes (Figure 3C) and vice versa (Figure 3D). In our results,

the cross-evaluation performance is closely similar to the LOO

validations (Figure 3C, 3D, and Table 2). Thus, we propose that

the binding patterns of I-Ag7 and HLA-DQ8 are highly similar

and conserved.

Prediction of potentially new I-Ag7 and HLA-DQ8
epitopes in T1D

Besides I-Ag7 and HLA-DQ8, certain other MHC class I and II

molecules are also implicated in T1D [1–7,17–19]. We collected 203

epitopes in 25 proteins from the scientific literature, with 70 MHC

class I epitopes, 84 MHC class II binding peptides and 49 epitopes for

which the MHC molecules are still undetermined (Table 3, Table

S3). Although at present there is a lack of experimental verification,

we propose that a number of these epitopes will also come to be

recognized by I-Ag7 and/or HLA-DQ8.

Table 2. Comparison of GPS-MBA 1.0 with other approaches.

Method Threshold Mouse I-Ag7 Human HLA-DQ8

Ac (%) Sn (%) Sp (%) MCC Ac (%) Sn (%) Sp (%) MCC

GPS-MBA High 96.88 62.89 97.01 0.2066 97.03 51.49 97.17 0.1575

Medium 94.96 71.70 95.05 0.1829 95.29 64.93 95.38 0.1553

Low 90.32 84.91 90.34 0.1530 90.11 81.34 90.13 0.1307

Crossa 96.83 48.11 97.01 0.1569 97.04 50.00 97.18 0.1532

94.90 65.09 95.01 0.1646 95.21 60.45 95.32 0.1430

90.02 82.70 90.05 0.1461 90.09 80.60 90.12 0.1293

MHC2Pred 96.79 23.58 97.07 0.0736 96.90 17.16 97.14 0.0469

94.79 32.70 95.02 0.0768 94.98 26.87 95.19 0.0564

89.86 47.80 90.02 0.0763 90.19 44.03 90.33 0.0637

Rankpep 96.77 33.65 97.01 0.1075 96.84 30.60 97.04 0.0886

94.85 45.91 95.03 0.1130 95.13 40.30 95.30 0.0916

89.96 64.15 90.06 0.1093 90.02 64.18 90.10 0.0993

For the construction of the GPS-MBA 1.0 software, the three thresholds of high, medium and low were chosen. For comparison, we fixed the Sp values of GPS-MBA 1.0
to be identical or similar to other methods and compared the Sn values.
aCross, cross-evaluation by using the HLA-DQ8 predictor to predict I-Ag7 epitopes and vice versa.
doi:10.1371/journal.pone.0033884.t002

Table 3. The statistical data for the prediction of potentially new I-Ag7 and HLA-DQ8 epitopes in T1D.

Tool Data set Protein Epitope I-Ag7 HLA-DQ8 Either

Num.a Per.b Num. Per. Num. Per.

GPS-ARM Class I 15 70 1 1.43% 3 4.29% 4 5.71%

Class II 11 84 31 36.90% 28 33.33% 36 42.86%

Unknown 5 49 23 46.94% 19 38.78% 28 57.14%

Total 25 203 55 27.09% 50 24.63% 68 33.50%

MHC2Pred Class I 15 70 5 7.14% 2 2.86% 7 10.00%

Class II 11 84 25 29.76% 24 28.57% 42 50.00%

Unknown 5 49 22 44.90% 14 28.57% 29 59.18%

Total 31 203 52 25.62% 40 19.70% 78 38.42%

RANKPEP Class I 15 70 14 20.00% 3 4.29% 15 21.43%

Class II 11 84 42 50.00% 24 28.57% 48 57.14%

Unknown 5 49 28 57.14% 18 36.73% 33 67.35%

Total 31 203 84 41.38% 45 22.17% 96 47.29%

aNum., the number of manually collected epitopes predicted with core 9-mers.
bPer., percentiles.
doi:10.1371/journal.pone.0033884.t003

Prediction of I-Ag7 and HLA-DQ8 Binding Peptides
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To predict potential I-Ag7 and HLA-DQ8 epitopes, we used

GPS-MBA 1.0 with the default thresholds. In total, 68 epitopes

were predicted to interact with either I-Ag7 or HLA-DQ8 (33.5%)

(Table 3). Also, the prediction results of MHC2Pred [24,25] and

RANKPEP [26] were present with default thresholds (Table 3). In

particular, the prediction performance of GPS-MBA 1.0 is much

poorer in terms of the MHC class I epitopes, such that only one

and three epitopes were predicted as I-Ag7 and HLA-DQ8 binding

peptides, respectively (Table 3). However, GPS-MBA 1.0

displayed a considerably effective performance for MHC class II

epitopes by predicting 31 I-Ag7 and 28 HLA-DQ8 binding

peptides (Table 3). Also, the distributions of results from

MHC2Pred and RANKPEP are similar (Table 3). In this regard,

the sequence profiles of MHC class I and II are quite different,

whereas GPS-MBA, MHC2Pred and RANKPEP have the

Table 4. The statistical results of the TEDB 1.0 database.

Organism Protein
Known
epitopes Predicted epitopes Total

I-Ag7 HLA-DQ8 Either

H. Sapiens 20 262 553 527 773 944

M. musculus 180 285 4,627 4,701 6,587 6,485

R.
norvegicus

13 18 331 382 505 503

Others 32 58 801 785 1,123 1,105

Total 245 623 6,312 6,395 8,988 9,037

doi:10.1371/journal.pone.0033884.t004

Figure 4. The search options for the TEDB 1.0 database. (A) Users are able to simply input ‘RAN’ and select ‘‘Gene Name’’ for querying. (B) The
results are shown in a tabular format. Users can then click on the TEDB ID (TEDB-HS-00015) to visualize the detailed information. (C) The detailed
information on human RAN. The experimentally identified and predicted epitopes are presented.
doi:10.1371/journal.pone.0033884.g004
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capacity to efficiently distinguish both MHC class I and II

epitopes. In particular, GPS-MBA, MHC2Pred and RANKPEP

predicted 28 (57.14%), 29 (59.18%) and 33 (67.35%) unannotated

epitopes as having either I-Ag7 or HLA-DQ8 binding peptides

(Table 3). Taken together, this analysis suggests that there are

additional bona fide I-Ag7 and HLA-DQ8 epitopes which still

remain to be identified, and these prediction results comprise a

useful resource for further experimental investigation. The detailed

prediction results of GPS-MBA are shown in Table S1.

The development and usage of TEDB 1.0
To provide an integrative platform for computational analysis of

the T1D epitopes, all of the experimental identified T1D-associated

antigens together with their epitopes were collected for the

development of TEDB (Table 4). Also, we used GPS-MBA 1.0 at

the default threshold to predict potential I-Ag7 or HLA-DQ8 epitopes

in 245 antigens (Table 4). In addition, the prediction results of

MHC2Pred and RANKPEP were also included in the TEDB 1.0.

TEDB 1.0 was developed in a user-friendly manner. The search

option (http://mba.biocuckoo.org/database.php) provides an

interface for querying the TEDB database with one or several

keywords such as TEDB ID, MHC Type, or UniProt Accession,

etc (Figure 4A). We also provided three advance options, including

advance search, browse and BLAST search (Figure 4A). For

example, if the keyword ‘RAN’ is inputted and submitted

(Figure 4A), the result is shown in a tabular format, with the

features of TEDB ID, UniProt accession, and protein/gene

names/aliases (Figure 4B). By clicking on the TEDB ID (TEDB-

HS-00015), the detailed information on human RAN is shown

(Figure 4C). The experimentally identified epitopes and predicted

I-Ag7 and HLA-DQ8 binding peptides are provided, while the

protein sequence, Gene Ontology annotation, domain organiza-

tion, molecular weight and computed/theoretical Ip are also

provided (Figure 4C).

Discussion

T1D, also termed Insulin-dependent diabetes mellitus (IDDM)

or juvenile diabetes, is a chronic metabolic disorder and

autoimmune disease that takes a heavy toll world-wide [1–7,33].

Currently, it is estimated that approximately 70,000 children

develop T1D per year, ,30,000 of which cases are in the United

States, and an annual global increase of ,3% [4,5,33]. Although a

number of immunotherapeutic and regenerative approaches have

been developed, the effective prevention and treatment of T1D are

both still a great challenge [1–7,33]. Recent advances in the

development of antigen-based ‘‘tolerogenic’’ immunotherapy have

provided a great opportunity for treating T1D with a high degree

of selectivity, while two investigations are still ongoing as clinical

trials, and the outcome is uncertain [1–7,12,33]. In this regard, the

Identification of T1D-speicific epitopes is needed for further

experimental and biomedical design.

Although a number of computational analyses were carried out

for the prediction of the I-Ag7 or HLA-DQ8 epitopes, the online

services have been not available over the internet [20–23]. Again,

although the two integrative tools of MHC2Pred and RANKPEP

do contain predictors of I-Ag7 and HLA-DQ8, they were actually

designed for the general prediction of MHC class I and/or II

epitopes [24–26]. Thus, they might exhibit a sensitive performance

for other MHC molecules, and yet not I-Ag7 and/or HLA-DQ8.

In this study, we focused on the prediction of I-Ag7 and HLA-DQ8

by constructing the GPS-MBA software package. By comparison,

the performance of GPS-MBA is much better than MHC2Pred

and RANKPEP (Table 2, Figure 3C, 3D).

Originally, the series of GPS algorithms were developed for the

prediction of PTM sites in proteins [27,28], and this is the first use

of the algorithm for MHC epitopes. The major difference between

PTM sites and MHC epitopes is that the PTM site positions are

anchored by the middle residues, while the lengths and positions of

the MHC epitopes are promiscuous and difficult to fix. In this

regard, the MHC epitope core sequences of defined length must

be determined prior to training. Originally, the Gibbs sampling

method was designed for detecting short conserved motifs from

multiple DNA or protein sequences [29–31]. By utilizing the

position-specific scoring matrices (PSSMs), the amino acids

frequencies were counted in the foreground and background data

sets, respectively. In this procedure, the ratio of the pattern

probability to the background probability was calculated and

improved by sampling, until convergence was attained [29–31].

However, the average similarity score, but not the frequency ratio,

was calculated for further sampling in our analysis. The 9-mer

core peptides were determined by this approach for I-Ag7 and

HLA-DQ8, respectively.

Here, we used the WebLogo server [34] to analyze the sequence

profiles of the core nonamers for I-Ag7 (Figure 5A) and HLA-DQ8

(Figure 5B), respectively. Previously, experimental studies based on

limited epitopes had suggested that P4, P6 and P9 are three

conserved positions, while P1 is a degenerate position [9–11].

However, our results suggest that P9 is the most informative

position, along with a less the comparatively weakly conserved

position of P8 (Figure 5A, 5B). P4 is weakly conserved in I-Ag7 core

nonamers (Figure 5A) and not conserved in HLA-DQ8 (Figure 5B).

Although the sequence logo of I-Ag7 is not evidently similar to

HLA-DQ8, our cross-evaluation results indicate that I-Ag7 and

HLA-DQ8 are able to recognize similar peptide profiles (Table 2,

Figure 3C, 3D). We speculated that whether most of the HLA-

DQ8 epitopes would also be I-Ag7 binding peptides in the training

data set, since the NOD mouse is the best model for T1D.

However, there are only 24 epitopes in the original data set which

interact with both I-Ag7 (24/318) and HLA-DQ8 (24/134). Again,

in the non-redundant core nonamers, only 22 9-mer peptides were

found to bind with both I-Ag7 and HLA-DQ8. Based on these

Figure 5. The sequence logos of the core nonamers for (A) I-Ag7

and (B) HLA-DQ8.
doi:10.1371/journal.pone.0033884.g005
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results, we propose that the sequence profile of I-Ag7 is intrinsically

similar to that of HLA-DQ8.

In addition to the predictions of GPS-MBA, all of the

experimentally validated T1D-associated epitopes were collected

in the online database of TEDB 1.0. The ab initio predictions with

GPS-MBA were also integrated into TEDB. Thus, such an

integrative platform should prove to be useful for experimentalists.

We believe that computational analysis, together with subsequent

experimental identification, will help advance the study of T1D

into a new and highly productive phase.

Supporting Information

Table S1 The core nonamers of the mouse I-Ag7

epitopes. a. Epitope, the original epitopes; b. Position, the

positions of core nonamers in the protein sequences; c. Core

nonamer, the finally aligned core nonamers were marked in red; d.

The protein sequence was retrieved from the UniParc (UniProt

Archive) Database (http://www.uniprot.org/help/uniparc).

(XLS)

Table S2 The core nonamers of the human HLA-DQ8
epitopes.
(XLS)

Table S3 From the scientific literature, we collected 203
epitopes in 25 proteins, with 70 MHC class I epitopes, 84

MHC class II binding peptides, and 49 epitopes for
which the MHC molecules are still unknown. The detailed

prediction results of GPS-ARM were provided. a. UniProt, the

UniProt accession numbers of T1D antigens; b. Pos., the position

of the original known epitopes; c. Peptide, the experimentally

identified epitopes; d. MHC Type, the experimentally identified

MHC molecules that recognize the epitopes; e. Pre. Pos., the

predicted position of the binding peptides; f. Pre. Peptide, the

predicted core nonamers; g. Pre. Type, the predicted MHC

molecules of I-Ag7 and HLA-DQ8 that potentially recognize the

core 9-mers.

(XLS)
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