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Abstract

Objective: First, to investigate and compare associations between alcohol consumption and variants in alcohol
dehydrogenase (ADH) genes with incidence of cardiovascular diseases (CVD) in a large German cohort. Second, to
quantitatively summarize available evidence of prospective studies on polymorphisms in ADH1B and ADH1C and CVD-risk.

Methods: We conducted a case-cohort study nested within the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Potsdam cohort including a randomly drawn subcohort (n = 2175) and incident cases of myocardial
infarction (MI; n = 230) or stroke (n = 208). Mean follow-up time was 8.262.2 years. The association between alcohol
consumption, ADH1B or ADH1C genotypes, and CVD-risk was assessed using Cox proportional hazards regression.
Additionally, we report results on associations of variants in ADH1B and ADH1C with ischemic heart disease and stroke in the
context of a meta-analysis of previously published prospective studies published up to November 2011.

Results: Compared to individuals who drank .0 to 6 g alcohol/d, we observed a reduced risk of MI among females
consuming .12 g alcohol/d (HR = 0.31; 95% CI: 0.10–0.97) and among males consuming .24 to 60 g/d (HR = 0.57; 95% CI:
0.33–0.98) or .60 g alcohol/d (HR = 0.30; 95% CI: 0.12–0.78). Stroke risk was not significantly related to alcohol consumption
.6 g/d, but we observed an increased risk of stroke in men reporting no alcohol consumption. Individuals with the slow-
coding ADH1B*1/1 genotype reported higher median alcohol consumption. Yet, polymorphisms in ADH1B or ADH1C were
not significantly associated with risk of CVD in our data and after pooling results of eligible prospective studies [ADH1B*1/1:
RR = 1.35 (95% CI: 0.98–1.88; p for heterogeneity: 0.364); ADH1C*2/2: RR = 1.07 (95% CI: 0.90–1.27; p for heterogeneity:
0.098)].

Conclusion: The well described association between alcohol consumption and CVD-risk is not reflected by ADH
polymorphisms, which modify the rate of ethanol oxidation.
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Introduction

Considerable epidemiologic evidence links moderate alcohol

consumption to a reduced risk of coronary heart disease (CHD)

and stroke [1]. Because alcohol consumption is related to many

potentially confounding factors, the causal effect of alcohol

consumption on CVD risk is difficult to assess in observational

studies. Long-term randomized controlled trials investigating the

effects of regular alcohol consumption on hard cardiovascular

endpoints are unlikely to be ever carried out. However, short- to

medium-term intervention studies have demonstrated a favorable

effect of ethanol on lipids, haemostasis, and insulin sensitivity [2].

As biologically plausible mediators these mechanisms may be

viewed as an indirect support for a protective effect of moderate

alcohol use on cardiovascular events.

In addition, genetic variants associated with average alcohol

consumption and/or circulating ethanol levels may act as

unconfounded and precisely measured markers of the exposure

and thereby contributing to strengthen causal inference [3]. In this

respect, genes coding for alcohol dehydrogenases (ADH) deserve
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attention. ADHs catalyze the oxidation of alcohols to aldehydes.

In humans, five ADH classes exist and functional polymorphisms

in the genes ADH1B and ADH1C produce isoenzymes with

different maximal activities (Vmax) and affinities for ethanol [4]. At

the ADH1C locus, two single nucleotide polymorphisms (SNPs) in

very strong linkage disequilibrium have been described [5]. The

respective alleles ADH1C*1 and ADH1C*2 code for two ADH

subunits (g1 and g2) which differ at amino acid positions 271 and

349. Compared to the homodimeric g2 isoenzyme, g1g1 has a 2.5-

fold higher Vmax of ethanol oxidation [6]. An even 40-fold

difference in Vmax has been observed between b1b1 and the fast

metabolizing b2b2 isoenzyme, resulting from variation at

rs1229984 (ADH1B Arg48His) [4].

A few prospective studies have investigated the association

between alcohol consumption and risk of cardiovascular diseases

(CVD) in combination with variations in genes coding for ADH1C

or ADH1B [7,8,9,10,11,12,13]. In line with the hypothesis that

ethanol is largely responsible for the inverse association between

alcohol consumption and coronary events, individuals with the

slow ADH1C*2/2 genotype had a lower risk of myocardial

infarction (MI) in a study among male physicians [9]. However,

later studies on this subject were inconsistent [7,8,10,11,12].

Comparable data on polymorphisms in ADH1B is rare because of

the low frequency of the ADH1B*2 allele in caucasians [14]. Risk

of MI did not change across ADH1B genotypes in a Danish

population [10], whereas the ADH1B*1 allele coding for the slow

isoenzyme was associated with a higher prevalence of cerebral

infarction in Japanese men but not in women [15].

In this study we examined and compared the associations of

alcohol consumption and SNPs in ADH1C and ADH1B with

incident cardiovascular events in a prospective cohort. To

summarize the available evidence on polymorphisms in the above

genes with ischemic heart disease and stroke, we also carried out a

meta-analysis of prospective population-based studies.

Methods

Ethics statement
Study procedures were approved by the Ethics Committee of

the medical association of the State of Brandenburg (Germany)

and all participants gave their written informed consent.

Study design and study population
The European Prospective Investigation into Cancer and

Nutrition (EPIC)-Potsdam study is part of the large-scale EPIC

cohort and includes 10,904 male and 16,644 female participants

recruited from the general population of Potsdam and surrounding

areas. The preferred age range for recruitment was 35–65 years.

Baseline examination was conducted from 1994 through 1998 and

included blood sampling, measurements of blood pressure and

anthropometric parameters, self-administered questionnaires on

diet and lifestyle, and personal computer-assisted interviews [16].

Data on ADH1C and ADH1B genotypes was not available for

the whole cohort, but only for a case-cohort study nested within

the EPIC-Potsdam cohort, which has been described elsewhere

[17]. With this type of study design, the results are expected to be

generalizable to the source population without the need to

measure the polymorphisms in the entire cohort [18]. For reasons

of consistency, all analyses were performed in this case-cohort

study.

Selection of cases. After excluding EPIC-Potsdam

participants with a history of MI or stroke at baseline, we

identified 269 individuals with incident MI and 246 individuals

with incident stroke occurring between baseline examination and

30th November 2006 (mean follow-up time 8.262.2 years). In 6

individuals with more than one cardiovascular event, only the first

event was considered. For the present analyses, we excluded 41

cases of MI and 34 stroke cases because blood specimens were not

available or because of missing values in relevant covariates,

dietary or genetic data.
Selection of the subcohort. For the subcohort, we randomly

selected 2500 individuals from the EPIC-Potsdam cohort.

Consistent with the applied case-cohort design, the subcohort

included 60 subjects who experienced MI or stroke during the

study period. In the subcohort, we excluded participants with a

history of MI or stroke at baseline, with missing follow-up data,

unavailable blood samples, or missing information on relevant

covariates, alcohol consumption data or the SNPs.

Thus, our analyses are based on a case-cohort sample of 2558

individuals (230 MI cases, 208 stroke cases, and 2175 who

remained free of MI or stroke during follow-up).

Ascertainment of incident MI and stroke
Potential cases of incident MI or stroke were identified by death

certificate or by self-report in one of the four biennial follow-up

questionnaires [19]. To reduce the number of false-negative

reports, the questionnaire also contained items on stroke

symptoms, as described earlier [20]. The diagnosis was verified

by review of medical records from the hospital, by contacting the

patients’ attending physician, or by review of death certificates

according to WHO criteria. Cases were subsequently classified as

incident MI (ICD-10 I21), ischemic stroke (ICD-10 I63.0–I63.9),

intracerebral (ICD-10 I61.0–I61.9) or subarachnoidal hemorrhage

(ICD-10 I60.0–I60.9), or undetermined stroke (ICD-10 I64.0–

I64.9) [21].

Assessment of alcohol consumption
Dietary habits including alcohol consumption were assessed at

baseline by use of a validated, self-administered food frequency

questionnaire [22]. Baseline alcohol consumption was calculated

based on the reported number of glasses of alcoholic beverages

consumed during the 12 months prior to recruitment. Assuming

one standard drink to be equivalent to 12 g of pure alcohol [23],

baseline alcohol consumption was modeled using the following

categories: non-drinker, .0 to 6 g/d (.0 to 0.5 drink/d), .6 to

12 g/d (.0.5 to 1 drink/d), .12 to 24 g/d (.1 to 2 drinks/d),

.24 to 60 g/d (.2 to 5 drinks/d), .60 g/d (.5 drinks/d).

Because the average alcohol consumption was lower among the

women than among the men, we combined the two highest

consumption categories in women. Information on past consump-

tion of alcoholic beverages at 20, 30, and 40 years of age was

obtained by a lifestyle questionnaire. This information was

combined to define three groups: never use of alcohol in the past,

heavy alcohol consumption at one or more time points in the past,

never heavy alcohol consumption at any time in the past. Heavy

alcohol consumption was defined as 60 g/d in men and 30 g/d in

women, thus reflecting 2.5 times the upper recommended limit of

two standard drinks a day for men and one standard drink a day

for women [24].

Assessment of covariates
Smoking habits, physical activity, educational attainment, and

medical history were assessed during a standardized interview. We

divided the study population according to their smoking status into

never smokers, former smokers .5 years, former smokers #5

years, smokers ,20 units/day, and smokers $20 units/day; with

one unit being equivalent to one cigarette/cigar/pipe. Physical

activity was expressed as the mean duration of leisure time
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physical activities during the summer and winter seasons. This

variable was dichotomized using a cut point of $2 h/week.

Educational attainment was expressed as vocational school or less,

technical school, and university degree.

Baseline measurements of anthropometric parameters and

blood pressure were obtained by trained personnel [25]. BMI

was calculated as the ratio of body weight (kg) to height squared

(m2). Systolic and diastolic blood pressure (BP) was measured after

a resting period of 15–30 minutes. Prevalent hypertension was

defined as systolic BP$140 mmHg, diastolic BP$90 mmHg, self-

reported hypertension diagnosis, or use of antihypertensive

medication. The prevalence of diabetes mellitus at baseline was

evaluated by a study physician using information on self-reported

medical diagnosis, medication records, and dieting behaviors. In

ambiguous cases, the diagnosis was confirmed by personal

communication with the participant and/or treating physician.

Blood collection and laboratory analyses
During baseline examination, peripheral venous citrate blood

samples were taken and subsequently centrifuged at 10006 g for

10 min at 4uC. Plasma was aliquoted and stored in liquid nitrogen

at 2196uC. Plasma levels of total cholesterol were measured with

the automatic ADVIA 1650 analyzer (Siemens Medical Solutions,

Erlangen, Germany). Genomic DNA was extracted from periph-

eral blood leukocytes using the Qiagen QIAamp 96 Blood Kit.

Following whole genome amplification (GenomiPhi DNA Ampli-

fication Kit, Amnersham Biosciences), genotyping was performed

with the TaqMan SNP Genotyping Assay using the ABI PRISM

7900HT Sequence Detection System according to the manufac-

turer’s protocol (Applied Biosystems, Foster City, CA, USA). The

genotyping success rates in SNPs rs1229984 and rs698 were

98.8% and 99.4%, respectively.

Statistical analysis
Statistical analysis was performed using SAS software package,

release 9.2 (SAS Institute, Cary, NC). All tests were performed

two-sided with p,0.05 considered as statistically significant.

For subjects of the subcohort we calculated means 6 standard

deviation (SD) or frequencies of selected baseline characteristics

across categories of alcohol consumption. As drinking habits and

participant characteristics are likely to differ between men and

women, gender-specific values are presented. To investigate the

association of alcohol consumption with risk of CVD, MI, and

stroke, we conducted Cox proportional hazards regression

adapted for the case-cohort design using the weighting method

described by Prentice [18]. To examine the association of alcohol

consumption with CVD risk, gender-specific multivariable-adjust-

ed hazard ratios (HR) were derived using subjects with an alcohol

consumption of .0 to 6 g/d as the reference group. Because of

the dependence among observations introduced by the case-cohort

design, we used robust standard errors obtained from the robust

sandwich covariance estimates for calculating 95% confidence

intervals (CI). For the counting process style of input, the subjects’

age at recruitment was used as the entry time and age at censoring

or at diagnosis of MI or stroke as the exit time. All models were

stratified according to age at recruitment in one year categories

and adjusted for BMI (kg/m2), waist circumference (cm), smoking

status (never smokers, former smokers .5 years, former smokers

#5 years, smokers ,20 units/day, and smokers $20 units/day),

educational attainment (vocational school or less, technical school,

university), physical activity $2 h/week, non-alcohol energy

intake (kJ/d), prevalent hypertension, prevalent diabetes mellitus,

and plasma total cholesterol level. In additional models we also

adjusted for reported past alcohol consumption and polymor-

phisms in ADH1B and ADH1C.

The x2 test was used to determine whether the distributions of

ADH1B and ADH1C genotypes were in Hardy-Weinberg equilib-

rium among subjects of the subcohort. As expected from their

random allocation at meiosis, the distribution of the investigated

alleles was comparable between men and women. Therefore, to

increase statistical power, both genders were combined for all

analyses involving SNP data. We also examined the associations

between ADH genotypes with risk of MI/stroke in models

stratified by age and adjusting for the above mentioned covariates

plus gender. For that purpose, subjects with a genotype coding for

a faster isoenzyme – ADH1C*1/1 and ADH1B*1/2 or 2/2 – were

used as the respective reference group. The impact of alcohol

consumption on these associations was analyzed in models

additionally adjusted for the categories of baseline alcohol

consumption defined above. To test for interaction, we used a

likelihood ratio test to compare a model including alcohol

consumption (0 g/d, .0 to 12 g/d (women)/.0 to 24 g/d

(men), .12 g/d (women)/.24 g/d (men)) and the ADH1C

genotypes with a model additionally including the interaction

terms. Because of low number of cases with the fast-metabolizing

ADH1B*1/2 or 2/2 genotypes, we were unable to further stratify

this group and therefore, no p-values for interactions are reported

for ADH1B.

The power for detecting an association between ADH

polymorphisms and MI or stroke was calculated based on an

algorithm developed for case-cohort studies [26] and assuming an

incidence rate of 0.01, a sampling rate of 0.08 for the random

subcohort, and an allele frequency of 58% for the ADH1C*1 allele

and 2% for the ADH1B.2 allele [27]. With an alpha of 0.05, we

had 84% power to detect an HR for either MI or stroke of 0.70 for

the comparison of ADH1C*2/2 (slow) versus ADH1C*1/1 (fast),

which is an effect size similar to what was found by Hines et al. [9].

For the comparison of individuals with the ADH1B*1/1 genotype

(slow) with ADH1B*1/2 or ADH1B*2/2 (fast), power was only

43% to detect an HR of 0.70. That’s why we also conducted a

meta-analysis to pool our results with results obtained from

comparable studies.

Meta-analysis
For a meta-analysis, we aimed to identify prospective studies

investigating SNPs in the ADH1B or ADH1C gene in relation to

incidence of ischemic heart disease or stroke. For that purpose we

searched Medline, EMBASE, and Web of Science for studies

published by November 24, 2011. No language restriction was

applied. The following search strategy was applied: 1) Coronary

OR Myocardial OR Heart OR Cerebral OR Cerebrovascular

OR Brain; 2) Syndrome OR Disease* OR Infarction* OR

Attack*; 3) (#1 AND #2); 4) Alcohol dehydrogenase*; 5)

Prospective OR Cohort OR Longitudinal OR Incidence; 6) #3

AND #4 AND #5. The search in Medline and EMBASE was

limited to human studies. For the Medline search, we additionally

included the terms ‘‘OR ’’Myocardial Ischemia‘‘ [MeSH] OR

’’Stroke‘‘ [MeSH]’’ in #3, ‘‘OR ’’Alcohol Dehydrogenase‘‘

[MeSH]’’ in #4, ‘‘OR ’’Cohort studies‘‘ [MeSH]’’ in #5. In

EMBASE, we replaced these MeSH terms by the respective index

terms ‘Ischemic Heart Disease’, ‘Stroke’, ‘Alcohol Dehydroge-

nase’, and ‘Cohort Studies’.

Our search identified 44 references which were reviewed by two

independent assessors (DD and RdG). A total of 36 references

were excluded for the following reasons: no original data (n = 15),

no relevant outcome (n = 16), no relevant exposure (n = 3), no

relevant study design (n = 2). Thus, eight studies met our inclusion
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criteria of which one was examining stroke [13]. Eligible studies on

ischemic heart disease included studies on CHD [7,8,12], MI

[9,10], and acute coronary events [11]. In total, two of the

identified studies analyzed SNP rs1229984 in the ADH1B gene

[10,11] and seven analyzed either SNP rs698 [8,9,10,12,13] or

rs1693482 [7,11] in the ADH1C gene. Because the latter are in

very high linkage disequilibrium [5], we combined this data.

Scanning the references of the retrieved reports did not lead to as

yet unknown eligible studies.

Two authors (DD and RdG) independently extracted and

tabulated information on study design, study population, sample

size, the number of cases, outcome, the investigated SNP as well as

point estimates and 95% CI from the original reports. Discrep-

ancies were resolved via review of the original articles. For three

studies that did not provide information on risk estimates and 95%

CI, we attempted to obtain it by correspondence with the authors

[7,11,12]:

N One reply enabled additional unpublished data of the Second

Northwick Park Heart to be incorporated in the meta-analysis

(PJ Talmud, personal communication) [12].

N One study was excluded from the meta-analysis because we

were unable to obtain the requested results [11].

N Because we were unable to obtain data for the study of

Ebrahim et al. [7], we used the reported crude incidence rates

of CHD across ADH1C genotypes to calculate Relative Risks

(RR) and 95% CI as described by Rothman et al. [28].

The meta-analysis was performed using the R software (version

2.12.1) and the package meta [29]. Pooled estimates of RR and

95% CI were obtained by means of a random effects approach

with study-specific exposure-disease effects weighted according to

the inverse of their variances plus the common between-studies

variance [30]. Heterogeneity was estimated using the I2 statistic

and tested using the Q statistic. Publication bias was evaluated by

visual inspection of the funnel plot and the tests of Begg and

Mazumdar [31] and of Egger et al. [32]. These tests were

conducted for data on ADH1C only, because only one report was

eligible for the meta-analysis on ADH1B in addition to our own

data.

Results

The present analyses are based on 2558 subjects including 438

major CVD events (MI: n = 230; IS: n = 169; HS: n = 35;

undetermined stroke: n = 4). Among subcohort participants about

50% of women consumed .0 to 6 g/d (Table 1) whereas most

men (32%) reported an alcohol consumption of .24 to 60 g/d

(Table 2). In both genders, never smoking was most prevalent in

those reporting low alcohol consumption (.0 to 6 g/d) and the

highest proportion of prevalent type 2 diabetes was observed

among individuals with zero alcohol consumption at baseline.

Compared to individuals consuming .0 to 6 g alcohol/d there

was a significantly lower risk of MI among females consuming

.12 to 24 g alcohol/d (HR = 0.31; 95% CI 0.10 to 0.97; Table 3)

and among males consuming .24 to 60 g/d (HR = 0.57; 95% CI

0.33 to 0.98) or .60 g/d (HR = 0.30; 95% CI 0.12 to 0.78;

Table 4). Further adjustment for past drinking behaviors or

genotypes of ADH1B and ADH1C did not materially change risk

estimates associated with moderate to high alcohol consumption.

Because only one man and 14 women reported lifelong abstinence

from alcohol, we had insufficient power to derive risk estimates for

this group. Excluding them from the analyses resulted in a

HR = 1.51 (95% CI: 0.62–3.68) for men and a HR = 1.52 (95%

CI: 0.41–5.61) for women consuming no alcoholic beverages at

baseline but with an alcohol consumption.0 g/d at any point in

their past.

Table 1. Baseline characteristics across drinking categories in 1360 women of a randomly drawn subcohort.

Alcohol consumption
0 g/d
n = 35 (2.6%)

.0 to 6 g/d
n = 708 (58.1%)

.6 to 12 g/d
n = 324 (23.8%)

.12 to 24 g/d
n = 192 (14.1%)

.24 g/d
n = 101 (7.4%)

Age, y, mean 6 SD 52.6611.5 49.669.4 47.969.0 47.868.8 47.368.6

BMI, kg/m2, mean 6 SD 25.564.8 26.164.9 25.564.6 25.264.1 2564.0

Waist circumference, cm, mean 6 SD 80.5611.5 81.5612.3 80.2611.3 79.8610.8 79.1610.5

ADH1C genotype, %

ADH1C*1/1 (fast) 28.6 34.6 32.7 39.1 29.7

ADH1C*1/2 (intermediate) 54.3 48.7 50.0 47.4 51.5

ADH1C*2/2 (slow) 17.1 16.7 17.3 13.5 18.8

ADH1B*1/1 (slow) 88.6 90.7 92 92.2 92.1

Smoking status, %

Never smokers 57.1 63.6 56.5 48.4 39.6

Past smokers .5 years 17.1 13.6 18.8 24.5 26.7

Past smokers #5 years 5.7 6.6 8.6 5.2 8.9

Current smokers ,20 units 14.3 13.6 13.6 16.1 19.8

Current smokers $20 units 5.7 2.7 2.5 5.7 5.0

University degree, % 37.1 23.2 36.1 38.5 31.7

Physical activity . = 2 h/week, % 31.4 21.9 24.4 26.6 29.7

Hypertension, % 57.1 41.9 40.1 37.0 42.6

Diabetes mellitus, % 5.7 3.5 0.6 3.6 5.0

Total cholesterol, mg/dl, mean 6 SD 182.5643.0 174.1636.3 166.2640.7 171.1638.0 171.4635.9

doi:10.1371/journal.pone.0032176.t001
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Risk of stroke was not significantly related to alcohol consump-

tion above 6 g/d (Tables 3 and 4). However, abstinence from

alcohol at baseline was associated with a significantly increased risk

of stroke in men (HR = 3.57; 95% CI: 1.13–11.32). We had

insufficient case numbers to perform a sub-analysis for hemorrhagic

stroke. Yet, when restricting the outcome to ischemic stroke the HR

for .6 to12 g/d, .12 to 24 g/d, .24 to 60 g/d, and .60 g/d

were 1.01 (95% CI: 0.47–2.17), 1.07 (95% CI: 0.51–2.25), 1.68

(95% CI: 0.85–3.32), 1.01 (95% CI: 0.41–2.46) in men compared to

the reference group (data not shown in a table). In women, HR of

ischemic stroke associated with .6 to12 g/d, .12 to 24 g/d,

.24 g/d were 1.28 (95% CI: 0.71–2.31), 1.11 (95% CI: 0.53–2.30),

and 0.52 (95% CI: 0.14–1.87), respectively.

Among the individuals of the subcohort, frequencies of

ADH1B*1/1 and ADH1C*2/2 coding for the respective less active

isoenzymes were 91.6% and 17.4%. The distributions of the

investigated ADH genotypes were in Hardy-Weinberg equilibrium

(ADH1B: p = 0.991; ADH1C: p = 0.993). We observed no significant

association between ADH1C genotypes and alcohol consumption

(Tables 1 and 2, Figure 1). In comparison, the frequency of the slow

metabolizing ADH1B variant (ADH1B*1/1) was lowest in men

consuming .0 to 6 g/d and gradually increased with increasing

alcohol consumption (Table 1). In line with this observation, median

alcohol consumption was 7.8 g/d higher in males carrying the

ADH1B*1/1 genotype as compared to males with the ADH1B*1/2

or ADH1B*2/2 genotype, respectively (Figure 1; p = 0.001). The

same tendency was observed in women, but the differences in

alcohol consumption were very low (1.6 g/d; p = 0.046).

In multivariable-adjusted models ADH1C and ADH1B geno-

types were not significantly associated with risk of MI or stroke in

our cohort (Figures 2A and 3A). Further adjustment for baseline

alcohol consumption only slightly changed risk estimates related to

ADH1C (Figure 2B), whereas the association between ADH1B*1/1

genotype and risk of MI became statistically significant

(HR = 2.11; 95% CI: 1.02–4.05; Figure 3B). We also analyzed

the association between ADH1C and risk of CVD stratified by

alcohol consumption level (Table S1). For MI, the majority of risk

estimates were not significantly different from unity. While women

consuming .12 g/d and men consuming .24 g/d had a

decreased risk of MI in all strata of ADH1C, this finding was

statistically significant only for the ADH1C*1/2 genotype. In

comparison, individuals belonging to the highest consumption

category and carrying the slow-metabolizing ADH1C*2/2 geno-

type were found to be at an increased risk of stroke. Probability

values for interaction between ADH1C genotype and alcohol

consumption were 0.097 for MI and 0.074 for stroke. Because of

insufficient case numbers at some indicator levels, no equivalent

analyses were performed for ADH1B.

When pooling results from eligible prospective studies, the overall

RR of CVD was 1.07 (95% CI: 0.90–1.27; p for heterogeneity

0.098) for individuals carrying the ADH1C*2/2 slow metabolizing

genotype as compared to ADH1C*1/1 (Figure 2A). Subgroup

analyses did not indicate differences in risk estimates between

ischemic heart disease and stroke. Four publications provided HR of

CVD associated with ADH1C*2/2 upon adjustment for alcohol

consumption and pooling them resulted in a RR = 1.05 (95% CI:

0.83–1.32). Results from Begg’s rank correlation test (p = 0.484) and

Egger’s (p = 0.582) indicated no significant evidence of publication

bias. The funnel plot revealed a largely symmetrical distribution

around the RR of 1, however, with a certain clustering around the

standard error of 0.2 (Figure S1). Furthermore, the two studies with

the lowest risk estimates [8,9] and one with the largest risk estimate

[7] were outside the lower 95% confidence limit. For the

comparison between ADH1B*1/1 carriers and individuals with

ADH1B*1/2 or 2/2, we were unable to obtain risk estimates of one

study. Thus, pooling our results with those of the only available

Table 2. Baseline characteristics across categories of baseline alcohol consumption in 815 men of a randomly drawn subcohort.

Alcohol consumption
0 g/d
n = 26 (43.3%)

.0 to 6 g/d
n = 137 (16.8%)

.6 to 12 g/d
n = 135 (16.6%)

.12 to 24 g/d
n = 200 (24.5%)

.24 to 60 g/d
n = 257 (31.5%)

.60 g/d
n = 60 (7.4%)

Age, y, mean 6 SD 49.768.6 52.868.3 53.067.9 51.768.2 51.468.0 53.068.1

BMI, kg/m2, mean 6 SD 25.363.9 26.664.0 27.163.7 26.763.4 26.563.1 26.964.0

Waist circumference, cm, mean 6 SD 90.5611.5 92.969.9 94.7610.2 93.969.7 93.769.3 95.6612.1

ADH1C genotype, %

ADH1C*1/1 (fast) 34.6 32.8 39.3 35.0 34.2 31.7

ADH1C*1/2 (intermediate) 46.2 48.2 41.5 46.0 48.2 46.7

ADH1C*2/2 (slow) 19.2 19.0 19.3 19.0 17.5 21.7

ADH1B*1/1 (slow) 96.2 83.9 92.6 94.0 93.4 98.3

Smoking status, %

Never smokers 7.7 35.8 34.1 33.5 25.7 16.7

Past smokers .5 years 23.1 32.1 26.7 37.0 39.7 38.3

Past smokers #5 years 3.8 8.0 13.3 7.5 8.2 6.7

Current smokers ,20 units 26.9 12.4 17.0 16.0 16.7 20.0

Current smokers $20 units 38.5 11.7 8.9 6.0 9.7 18.3

University degree, % 38.5 46.0 57.8 52.5 61.9 41.7

Physical activity $2 h/week, % 15.4 26.3 22.2 22.0 26.8 23.3

Hypertension, % 53.8 49.6 63.0 60.5 57.2 63.3

Diabetes mellitus, % 15.4 5.8 7.4 4.5 3.5 10.0

Total cholesterol, mg/dl, mean 6 SD 171.4655.3 170.2631.4 175.8637.0 178.6633.1 179.5641.3 186.3636.7

doi:10.1371/journal.pone.0032176.t002
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prospective cohort study gave rise to a RR = 1.35 (95% CI: 0.98–

1.88; p for heterogeneity 0.364; Figure 3A). This association became

somewhat stronger after pooling risk estimates which were

additionally adjusted for alcohol consumption (RR = 1.44; 95%

CI: 0.99–2.08; Figure 3B).

Discussion

In this case-cohort study nested within the EPIC-Potsdam

cohort, risk of MI but not risk of stroke tended to decrease with

increasing alcohol consumption. Although there was a trend

towards higher alcohol consumption in individuals with the slow-

metabolizing ADH1B*1/1 variant, we found no statistically

significant relation between ADH1B or ADH1C genotypes and

risk of cardiovascular events in our data and after pooling results of

eligible prospective studies.

The J-shaped relation between alcohol consumption and risk of

CHD is well established. In a meta-analysis of 28 cohort studies,

RR of CHD gradually decreased up to a daily alcohol

consumption of 20 g and the inverse association remained

Table 3. Relative Risks of MI and stroke across categories of baseline alcohol consumption in women.

Outcome 0 g/d .0 to 6 g/d .6 to 12 g/d .12 to 24 g/d .24 g/d

MI

Cases (n) 5 40 12 4 0

Person-Years 285 5966 2735 1553 805

HR (95% CI)

Model 1 0.99 (0.30, 3.23) 1 (Ref) 0.74 (0.36, 1.53) 0.31 (0.10, 0.97) n.a.

Model 2 0.72 (0.19, 2.81) 1 (Ref) 0.75 (0.36, 1.55) 0.30 (0.10, 0.91) n.a.

Model 3 1.14 (0.35, 3.73) 1 (Ref) 0.69 (0.32, 1.48) 0.32 (0.10, 1.03) n.a.

Stroke

Cases (n) 6 47 23 12 7

Person-Years 295 5983 2757 1582 835

HR (95% CI)

Model 1 1.70 (0.66, 4.40) 1 (Ref) 1.26 (0.73, 2.17) 1.00 (0.51, 1.98) 1.05 (0.43, 2.58)

Model 2 1.32 (0.46, 3.81) 1 (Ref) 1.27 (0.73, 2.22) 0.98 (0.50, 1.92) 0.87 (0.35, 2.19)

Model 3 1.71 (0.67, 4.38) 1 (Ref) 1.24 (0.71, 2.13) 1.00 (0.50, 1.99) 1.03 (0.41, 2.56)

Model 1 stratified by age at recruitment and adjusted for BMI, waist circumference, smoking status, educational attainment, physical activity, non-alcohol energy intake,
prevalent hypertension, prevalent diabetes mellitus, and plasma total cholesterol level.
Model 2: Model 1 plus past alcohol consumption.
Model 3: Model 1 plus ADH1C and ADH1B genotypes.
doi:10.1371/journal.pone.0032176.t003

Table 4. Relative Risks of MI and stroke across categories of baseline alcohol consumption in men.

Outcome 0 g/d .0 to 6 g/d .6 to 12 g/d .12 to 24 g/d .24 to 60 g/d .60 g/d

MI

Cases (n) 11 39 35 32 45 7

Person-Years 226 1231 1247 1755 2227 508

HR (95% CI)

Model 1 1.48 (0.61, 3.58) 1 (Ref) 0.76 (0.44, 1.33) 0.56 (0.32, 1.00) 0.57 (0.33, 0.98) 0.30 (0.12, 0.78)

Model 2 1.38 (0.54, 3.55) 1 (Ref) 0.76 (0.44, 1.33) 0.57 (0.32, 1.00) 0.56 (0.32, 0.97) 0.27 (0.10, 0.74)

Model 3 1.37 (0.57, 3.28) 1 (Ref) 0.69 (0.39, 1.22) 0.51 (0.29, 0.91) 0.53 (0.31, 0.90) 0.27 (0.10, 0.71)

Stroke

Cases (n) 6 18 18 24 36 11

Person-Years 215 1144 1174 1747 2185 520

HR (95% CI)

Model 1 3.57 (1.13, 11.32) 1 (Ref) 0.98 (0.47, 2.02) 1.13 (0.57, 2.24) 1.57 (0.82, 3.00) 1.50 (0.67, 3.36)

Model 2 3.69 (1.07, 12.69) 1 (Ref) 0.98 (0.47, 2.03) 1.13 (0.57, 2.24) 1.59 (0.83, 3.04) 1.53 (0.67, 3.50)

Model 3 3.48 (1.10, 10.95) 1 (Ref) 0.94 (0.45, 1.94) 1.11 (0.56, 2.20) 1.54 (0.80, 2.95) 1.46 (0.65, 3.28)

Model 1 stratified by age at recruitment and adjusted for BMI, waist circumference, smoking status, educational attainment, physical activity, non-alcohol energy intake,
prevalent hypertension, prevalent diabetes mellitus, and plasma total cholesterol level.
Model 2: Model 1 plus past alcohol consumption.
Model 3: Model 1 plus ADH1C and ADH1B genotypes.
doi:10.1371/journal.pone.0032176.t004

Alcohol Consumption, ADH Polymorphisms and CVD

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e32176



statistically significant up to 72 g/d [33]. Quite in line with the

above mentioned findings, we observed a decreased risk of MI for

women consuming .12 g alcohol/d and men consuming .24 g/

d. Yet we had limited ability to examine MI risk associated with

excessive drinking. Our finding of a ,70% decreased risk of MI in

men consuming .60 g/d was based on only seven cases and

should be interpreted with caution. In women, the case numbers

were quite low in any but the reference category and no female

participant consuming .24 g alcohol/d suffered a MI during

follow-up.

In contrast to our findings on MI, risk of stroke was not

significantly related to alcohol consumption above 6 g/d. A J-

shaped association between alcohol consumption and risk of stroke

– most notably ischemic stroke – has been confirmed by several

meta-analyses [1,34,35]. However, compared to CHD, the

reduction in stroke risk is less pronounced and limited to lower

consumption levels [1,34]. Accordingly, our reference group is

composed of individuals at low risk of stroke and therefore it is not

surprising that we did not observe statistically significant risk

estimates below unity. In men but not in women we also observed

an increase in risk of stroke for individuals with higher alcohol

consumption. Although not statistically significant, this data is in

line with epidemiological evidence [1,34,35].

We were unable to provide risk estimates for lifelong abstainers

from alcohol as only one man and 14 women of the analytical

study population fell in this category. Therefore, the risk of CVD

associated with zero alcohol consumption mainly reflects the

group of study participants who had consumed alcohol in their

past. This group may contain individuals who became abstainers

from alcohol because of illness, illness-related need for medication

or as they age. We tried to acknowledge this point by adjusting for

prevalent diseases and by using individuals with very low alcohol

consumption (.0 to 6 g/d) rather than abstainers as the reference

group. The latter is justified by meta-analyses showing that former

drinking is associated with an increased risk of CHD- and CVD-

mortality [1,36]. Whilst alcohol consumption of 0 g/d was not

significantly related to risk of MI in our data, we observed a

threefold increased risk of stroke in male abstainers from alcohol

(HR = 3.57; 95% CI: 1.13–11.32). This finding even persisted after

additional adjustment for lifetime alcohol consumption suggesting

that changes in drinking behavior or periods of heavy drinking in

the past are not the major reason why male abstainers of alcohol

were at an increased stroke risk. However, risk estimates for this

group were highly imprecise, as reflected by the broad 95% CI.

Therefore, it is difficult to judge the strength of the association.

Potential protective effects of moderate alcohol drinking and rise

in CVD risk associated with non-drinking have received a lot of

attention. Although the impact of ethanol on lipoproteins, insulin

sensitivity, and haemostasis provides biologically plausible path-

ways [2,37], observational studies are limited in their ability to

prove causality. In this respect, genetic variants associated with

median alcohol consumption and/or circulating ethanol levels

may act as unconfounded and precisely measured markers of the

exposure and thereby contributing to strengthen causal inference

[3]. In our study, a polymorphism in ADH1B was associated with

average alcohol consumption. As expected from the higher

tolerance to ethanol, individuals with the respective slow

metabolizing genotype tended to consume higher amounts of

alcohol than those carrying the genotype coding for the more

active isoenzyme. These findings are in line with recent data

showing that carriers of the rs1229984 G-allele (ADH1B*1)

differed from those with the A-allele by a higher overall alcohol

consumption. In this study, individuals with the G-allele even

reported a higher number of drinking occasions and a higher

maximum number of alcoholic drinks in a single day. Though to a

lesser extent, the same tendency has been observed for rs1693482

Figure 1. Median baseline alcohol consumption across genotypes of ADH1C and ADH1B. Data derived from 815 men and 1360 women of a
randomly drawn subcohort of the EPIC-Potsdam study.
doi:10.1371/journal.pone.0032176.g001
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Figure 2. Relative Risks and 95% CI from a meta-analysis of rs698 or rs1693482 in the ADH1C gene and CVD. Estimates are for the
comparison of the slow-coding genotype (ADH1C*2/2) with the fast-coding genotype (ADH1C*1/1) (A) Including risk estimates not adjusted for
alcohol consumption. (B) Including risk estimates adjusted for alcohol consumption. Data for the Second Northwick Park Heart Study obtained by
personal communication with the corresponding author.
doi:10.1371/journal.pone.0032176.g002
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in the ADH1C gene [38]. Although this SNP is in strong linkage

disequilibrium with the one used in our study (rs698), we did not

observe diversity in alcohol consumption across ADH1C geno-

types. However, kinetic differences between ADH1C-isoenzymes

are much less pronounced than those between ADH1B-isoen-

zymes [4] and therefore the impact on alcohol consumption may

have been too small to be detectable with our dietary assessment

instrument.

If a slower rate of ethanol clearance enhances the beneficial

effect of moderate alcohol consumption on the risk of CVD,

polymorphisms in ADH coding for slow ethanol metabolism

should be associated with a decreased risk of CVD. Indeed, Hines

et al. observed a decreased risk of MI in individuals with the

ADH1C*2/2 polymorphism as compared to ADH1C*1/1 [9]. Yet,

we found no such evidence in our data and after pooling the RRs

of eligible prospective studies [stroke: RR = 1.15 (95% CI 0.85–

1.55); ischemic heart disease: RR = 1.04 (95% CI 0.84–1.29)].

Consistent with the overall null-finding observed in prospective

studies, prevalence of CVD did not differ significantly by SNPs of

the ADH1C gene (rs1693482 and rs698) in a cross-sectional

analysis of the Framingham Offspring Study [5].

To our knowledge, our study is the first investigating the

association between ADH1B genotype and risk of stroke

prospectively. Contrary to our hypothesis, we found a tendency

towards an increased risk of coronary and cerebral events in

carriers of the ADH1B*1/1 slow metabolizing genotype. However,

only one Danish population [10] and our cohort contributed to

these findings. ADH1B genotypes have also been assessed in a case-

Figure 3. Relative Risks and 95% CI of CVD from a meta-analysis of rs1229984 in the ADH1B gene and CVD. Estimates are for the
comparison of the slow-coding genotype (ADH1B*1/1) with the fast-coding genotype (ADH1B*1/2 or 2/2). (A) Including risk estimates not adjusted for
alcohol consumption. (B) Including risk estimates adjusted for alcohol consumption.
doi:10.1371/journal.pone.0032176.g003
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cohort study embedded into the prospective Danish Diet Cancer

and Health Study, for which we were unable to obtain risk

estimates [11]. However, the raw frequencies of ADH1B genotypes

in cases and the random subcohort are nearly identical. Although

standard methods for calculating RR and the standard error based

on raw data are not applicable for the case-cohort design, the

respective RR of acute coronary syndrome is likely to be close to 1.

This data further supports the overall null-finding of our meta-

analysis.

One may speculate that any potentially protective effect of slow

ethanol oxidation might be counterbalanced by a higher tolerance

to ethanol and thus a higher probability for hazardous alcohol

consumption. However, adjustment for alcohol consumption did

not materially change pooled risk estimates for ADH1C*2/2,

whereas the association between ADH1B*1/1 and risk of CVD

was even strengthened. Additionally, the impact of genotypes in

ADH may only be observable in individuals with a given level of

regular alcohol consumption. For the meta-analysis, we did not

attempt to pool risk estimates of ADH genotypes by strata of

alcohol consumption because of rather heterogeneous consump-

tion categories - especially with regards to the reference category.

Yet, previous studies analyzing this issue were rather inconsistent

showing the strongest inverse association between ADH1C*2/2

genotype and risk of coronary events either in men with the

highest alcohol consumption of at least one drink/d [8,9], or in

men with a modest consumption of 1–3 alcoholic beverages/week

[12]. Other studies provided little evidence for an association

between ADH1C genotype and coronary events [10,11] or stroke

[13] across strata of alcohol consumption and the same applies to

the association between ADH1B genotype and acute coronary

syndrome [11]. In our study, there was no clear evidence that the

slow-metabolizing ADH1C*2/2 genotype decreases risk of CVD in

any stratum of alcohol consumption (Table S1). Rather, we

observed an increased risk of stroke in study participants with this

genotype who exceeded the recommended upper limit of alcohol

consumption of two standard drinks a day for men (24 g/d) and

one standard drink a day for women (12 g/d) [24]. Although a

chance finding cannot be ruled out, a slow conversion of ethanol

to acetaldehyde may also amplify the well-established rise in stroke

risk associated with higher consumption levels. Among abstainers

from alcohol, only 16 cases of MI and 12 cases of stroke have been

observed (including 1 and 3 lifelong abstainers, respectively). That

is why risk estimates were highly imprecise for this group, but a

tendency towards an increased risk of CVD was apparent in most

strata of the ADH1C genotype. Therefore, the potential of

negatively biasing the reference group by including former

drinkers should also be acknowledged in studies investigating

interactions between genetic variants with alcohol consumption.

Taken together, we observed the expected association between

alcohol consumption and risk of MI or stroke, respectively. Yet,

genetic variants in ADH1B and ADH1C had a minor influence on

the above associations and were not significantly related to the

incidence of cardiovascular events. Because of this discrepancy in

findings, one may speculate that residual confounding, misreport-

ing of alcohol consumption or constituents of alcoholic beverages

other than ethanol are responsible for the well-documented J-

shaped association between alcohol consumption and cardiovas-

cular events. Given the consistency of epidemiological data across

several populations with different drinking behaviors, these effects

would need to be strong. Alternatively, the in vivo effect of the

investigated genetic variants on circulating ethanol levels or

alcohol drinking behaviors may not be sufficient to make causal

inference about the role of alcohol consumption on the

investigated outcomes. For a Mendelian Randomization ap-

proach, genetic variants of ALDH2 with a strong influence on

alcohol consumption might be more promising and have been

successfully applied to study the impact of alcohol consumption on

hypertension [39] and esophageal cancer [40]. On the other hand,

the principal applicability of ADH gene variants has been

demonstrated by recent studies showing that a slow-metabolizing

genotype increases the risk of cancers of the upper aerodigestive

tract [41,42]. However, a large fraction of these cancers is believed

to be attributable to alcohol consumption [43], making them a

promising target to investigate genetically determined differences

in ethanol metabolism. In comparison, the association between

alcohol consumption and risk of CVD is less strong and not even

linear. Thus, we can not exclude a causal effect of alcohol

consumption on CVD risk, but the investigated genetic polymor-

phisms in ADH1B and ADH1C do not mirror such an effect.

Our study benefits from a well-characterized study population

embedded into the EPIC-Potsdam cohort with detailed assessment

of baseline and past alcohol consumption. Data were collected

prospectively and follow-up proportions exceeded 90% [19]. As

we used a case-cohort design, our findings are expected to be

generalizable to the source population without the need to assess

genotypes in the entire cohort [18]. Compared to data obtained by

multiple 24-hour diet recalls, the validity of self-reported alcohol

consumption in the FFQ was very good [44]. We confined our

meta-analysis to prospective studies to reduce the possibility that

genotypes potentially associated with the severity of disease may

affect the participation rate. As only two study populations on

ADH1B polymorphisms met our inclusion criteria, we still had

limited power to detect changes in CVD risk associated with the

slow-metabolizing ADH1B*1/1 genotype. Despite this limitation

we believe that low statistical power can not completely explain

our findings because pooled risk estimates are not in the expected

direction. In addition, cross-sectional or retrospective data on this

topic are also inconsistent. In a hospital-based case-control study

from China, a somewhat lower prevalence of the slow-coding

ADH1B*1/1 genotype was observed in patients with premature

coronary artery disease (CAD) as compared to patients with late

onset CAD (6.6% vs. 12.3%; p = 0.064) [45]. In comparison, male

but not female carriers of the ADH1B*1 allele had a higher

prevalence of cerebral and lacunal infarction in a cross-sectional

Japanese study [15].

In summary, we found increasing alcohol consumption to be

associated with a decreased risk of MI, whereas there was a

tendency towards an increased risk of stroke. Contrary to our

hypothesis, however, polymorphisms in ADH1B and ADH1C with

an influence on the rate of ethanol oxidation do neither explain

nor reflect the well-described impact of alcohol consumption on

CVD risk.

Supporting Information

Figure S1 Funnel Plot for association studies of rs698 or
rs1693482 in the ADH1C gene and CVD. Solid vertical line

represents summary risk estimate from random effects meta-

analysis. Dashed lines represent 95% CI for the expected

distribution of studies in absence of heterogeneity. [1] Data from

the EPIC-Potsdam study [12]. Unpublished data from the Second

Northwick Park Heart Study, obtained by personal communica-

tion with the corresponding author.

(TIF)

Table S1 Relative Risks of MI and stroke across
genotypes of ADH1C and categories of baseline alcohol
consumption. Footnote: 1Stratified by age at recruitment and

adjusted for gender, BMI, waist circumference, smoking status,
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educational attainment, physical activity, non-alcohol energy

intake, prevalent hypertension, prevalent diabetes mellitus, and

plasma total cholesterol level. F: female participants. M: male

participants.
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