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Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal

Abstract

Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-
wide behavior that one observes often bears no relation to the individual processes it stems from. Up to now, linking the
global networked dynamics to such individual mechanisms has remained elusive. Here we study the evolution of
cooperation in networked populations and let individuals interact via a 2-person Prisoner’s Dilemma – a characteristic
defection dominant social dilemma of cooperation. We show how homogeneous networks transform a Prisoner’s Dilemma
into a population-wide evolutionary dynamics that promotes the coexistence between cooperators and defectors, while
heterogeneous networks promote their coordination. To this end, we define a dynamic variable that allows us to track the
self-organization of cooperators when co-evolving with defectors in networked populations. Using the same variable, we
show how the global dynamics — and effective dilemma — co-evolves with the motifs of cooperators in the population,
the overall emergence of cooperation depending sensitively on this co-evolution.
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Introduction

Dynamical processes involving populations of individuals

constitute paradigmatic examples of complex systems. From

epidemic outbreaks to opinion formation and behavioral dynamics

[1–9], the impact of the underlying web of ties in the overall

behavior of the population is well known. In this context,

Evolutionary Games [10,11] provide one of the most sophisticated

examples of complex dynamics in which the role of the underlying

network topology proves ubiquitous. For instance, when cooper-

ation is modeled as a prisoner’s dilemma game, cooperation may

emerge (or not) depending on how the population is networked

[12–37].

Up to now, it has been hard to characterize in detail the

global dynamics by which local self-regarding actions lead to a

collective cooperative scenario, relating it to the network topo-

logy. Indeed, most network studies have been focused on the

analysis of the evolutionary outcome of cooperation [14] —

either by means of the numerical analysis of steady states

[12,16,18,19,24,25,29,32,34,35,38–40] or by means of the an-

alytical determination of the conditions for fixation in the

population or by means of the determination of positive inclusive

fitness effects for particular homogeneous network interaction

structures and low intensities of selection [17,20,22] — without

characterizing the self-organization process by which one of the

strategies outcompetes the other. Here we show how networked

individuals, engaging in a prisoner’s dilemma (PD) of cooperation,

give rise to a global, population wide, behavioral dynamics which

deviates strongly from the original PD, depending sensitively on

the underlying network of contacts: Homogeneous networks

promote a coexistence dynamics between cooperators and

defectors — akin to the Chicken or Snowdrift game [11,38,41–

43] — whereas heterogeneous networks, from broad scale to scale-

free [4,44], favor the coordination between them, similar to the

Stag-hunt game [45].

To this end we define a time-dependent variable — that we call

the average gradient of selection (AGoS) — and use it to track the

self-organization of cooperators when co-evolving with defectors

under network reciprocity. Similar to existing analytical approach-

es [43,46], the AGoS is able to provide a measure of the change in

time of the frequency of cooperative traits under selection. The

AGoS can be computed for arbitrary intensity of selection (see

Methods), arbitrary population structure and arbitrary game

parameterization. We further prove that the global games are not

fixed: they change in time, co-evolving with the motifs of

cooperators in the population. The evolutionary outcome of such

a self-organization process will depend sensitively on this co-

evolution, which can be followed using a time-dependent AGoS.

Dynamical Model
Let us consider pairwise interactions between individuals who

can behave either as a Cooperator (C) or Defector (D). Whenever

cheated by a D, a C receives a payoff S (the sucker’s payoff), while

the D receives T (temptation to defect). Mutual cooperation

provides R (reward) to each player, while mutual defection

provides P (punishment). One obtains the prisoner’s dilemma (PD)

— the most famous metaphor of cooperation — whenever

T.R.P.S. We formalize the dilemma in terms of a single

parameter B (benefit) by defining T = B.1, R = 1, S = 1-B and

P = 0. The results remain quantitatively unaltered if one adopts

the more popular parameterization T = b, R = b–c, S = 2c and

P = 0.
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In the framework of evolutionary game theory, we adopt a

stochastic update rule of social learning, where in each time step a

random individual i imitates the strategy of a randomly selected

neighbor j with a probability that increases with the fitness

difference between them [14,24,47–50] (see Methods). In the limit

of well-mixed populations of size N [10,11], the frequency j/N of

Cs will increase (decrease) in time depending on whether the

gradient of selection [51,52] G(j)~Tz(j){T{(j) is positive

(negative), where T+(j) [47] represent the probabilities to increase

and decrease the number of Cs in the population by one. For the

PD, G(j)v0 for all j and, as a result, cooperation will most

probably die out. The same scenario is obtained when NR‘,

where we recover the scenarios described by the famous replicator

dynamics [11,47–50]. The elegance of this result (despite the

doomsday scenario for Cs) is best appreciated when we realize that

the population ends up adopting the Nash-equilibrium of a PD
game interaction between two individuals: everybody defects.

Consequently, there is no difference in the outcome of the game,

from an individual or from a (collective) population wide

perspective, a feature that, as discussed below, will not remain

true in structured populations.

Results

The previous analysis assumes finite yet structureless popula-

tions, a feature which is seldom observed in practice, with strong

implications in many natural phenomena. A homogeneous

network of size N represents the simplest case of a structured

population, where all individuals engage in the same number of

games k with their first neighbors, also imitating their behavior.

Let us consider a homogeneous random network — also called a

regular random graph — in which all links are randomly

connected, while all nodes have each the same number of links

[4,53,54]. In this case, individuals with the same strategy no longer

share the same fitness: fitness becomes context-dependent. The same

happens to G(j), becoming hard to define it analytically.

Consequently, we define the AGoS — denoting it by GA(j) —

as the average i) over all possible transitions taking place in every

node of the network throughout evolution, and ii) over a large number

of networked evolutions (see Methods). This AGoS, which must be

computed numerically, becomes therefore network dependent but

context independent, as it recovers its population averaged, or

mean-field, character. Hence, the AGoS may constitute a

powerful tool to understand dynamical processes at a popula-

tion-wide scale stemming from individually defined, but often

seemingly unrelated, rules.

The results for GA(j) on homogeneous networks of size N = 103,

k = 4 and different values of B are shown in Fig. 1a. Unlike well-

mixed populations where cooperation has no chance, homoge-

neous networks can sustain cooperation [12,14,15,24,54]. The

shape of GA(j) no longer pictures a defection dominance dilemma

typical of a PD, but a gradient of selection similar to what one

observes under co-existence dilemmas in well-mixed populations

[43]. In other words, even though every individual engages in a

PD, from a global, population-wide perspective, homogeneous

networks are able to create an emerging collective dynamics

promoting the co-existence between Cs and Ds. As we show

below, the emergence of an unanticipated global (macroscopic)

dynamics from a distinct individual (microscopic) dynamics

pervades throughout all evolutionary dynamical processes in

structured populations studied here. The co-existence point xR

(see Fig. 1a) is associated with the internal root (xR[ 0,1� �) of

GA(j)— inexistent in well-mixed populations — whose location

decreases with increasing B. Together with xR one obtains a

coordination root (xL&0, see Fig. 1a) of GA(j) since, in the

absence of cooperative partners, Cs will always be disadvanta-

geous. However, the impact of xL is minor, as shown in Fig. 1b

(see discussion below). Remarkably, this characterization remains

valid for other types of homogeneous networks, such as lattices and

regular rings (as well as for other possible mechanisms of strategy

update) whereas differences in the positions of the stable root (xR)

in of GA(j) and their dependence on B correlate perfectly with

results obtained previously [14,18,24,54–58], where steady-states

of evolution were analyzed for such structures (see Text S1).

Fig. 1a shows that, as we change focus from an individual to a

population wide perspective, one witnesses the emergence of an

effective game transformation, as evidenced by GA(j), which

brings along important consequences: For instance, the fixation

time — the time required for cooperators to invade the entire

population —becomes much larger in homogeneous networks

when compared to well-mixed populations, as the population

spends a large period of time in the vicinity of the xR, mainly when

selection is strong (see Methods). This, in turn, is responsible for

computer simulations to spend arbitrary amounts of time in the

same configuration, even when, in the absence of mutations (as is

the case here), the only absorbing states are associated with

monomorphic configurations of the population, that is, with

configurations comprising cooperators-only or defectors-only. The

Figure 1. Time-independent AGoS. (a) We plot GA(j) for a
population of players interacting via a PD in a homogeneous random
network, for two values of the benefit B. Globally, GA(j) indicates that
the population evolves towards a co-existence scenario. (b) Stationary
distributions showing the pervasiveness of each fraction j/N in time. In
line with the AGoS in a), the population spends most of the time in the
vicinity of the stable-like root xR of GA(j). When j/N<0, Cs become
disadvantageous, giving rise to an unstable-like root xL of GA(j) which,
however, plays a minor role as shown (N = 103, ,k. = 4 and b= 1.0).
Homogeneous random networks were obtained by repeatedly swap-
ping the ends of pairs of randomly chosen links of a regular lattice [54].
doi:10.1371/journal.pone.0032114.g001
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stationary distribution (Fig. 1b), which represents the pervasiveness

of each fraction of Cs in time, confirms the scenario portrayed by

GA(j) in Fig. 1a, stressing the similarities with the evolutionary

dynamics in (finite) well-mixed populations under co-existence

dilemmas [50,59,60], and putting in evidence the marked

difference between individual preferences and the population-

wide dynamics.

In Fig. 1, our analysis was limited to GA(j) that is, we averaged

over the entire time span of all runs. However, the AGoS itself

evolves in time — GA(j,t)— as detailed in Methods. Let us explore

this time dependence of the AGoS. If, at the beginning of each

simulated evolution, Cs and Ds are randomly spread in the

network, the occurrence of clusters of the same strategy will not

occur in general. Hence, for the PD we have that GA(j,t~0)v0
in general. As populations evolve, Cs (Ds) breed Cs (Ds) in their

neighborhood, promoting the assortment of strategies, with

implications both on the fitness of each player and on the shape

(and sign) of GA(j,t). In Fig. 2a we plot GA(j,t) for three particular

generations, whereas Fig. 2b portrays the time evolution of the

internal roots of GA(j,t), on which we superimposed two

evolutionary runs starting with 50% of Cs randomly placed in

the population. As GA(j,t~0)v0, the fraction of cooperators will

start decreasing (Fig. 2a). However, with time, strategy assortment

leads to the emergence of a co-existence root, toward which the

fraction cooperators converges. The ensuing coexistence between

Cs and Ds, entirely described by the shape of GA(j,t), steams from

the self-organization of Cs and Ds in the network, defining a global

dynamics which is impossible to foresee solely from the nature of

the local (PD) interactions.

It is now generally accepted, however, that homogeneous

networks provide a simplified picture of real interaction networks

[5,44,61,62]. Most social structures share a marked heterogeneity,

where a few nodes exhibit a large number of connections, whereas

most nodes comprise just a few. The fingerprint of this

heterogeneity is provided by the associated degree distributions,

which exhibit a broad-scale shape, often resembling a power-law

[4,44,61]. In the following we use GA(j,t) to understand how

heterogeneity shifts the internal roots in Fig. 1 to the right, thereby

transforming a co-existence scenario into a coordination one. To

this end, we compute GA(j,t) employing scale-free (SF) networks

of Barabási and Albert (BA) (see Methods) [61].

Fig. 3a shows GA(j) for BA networks of N = 103 nodes and an

average degree k = 4, whereas the circles in Fig. 3b portray the

time evolution of the internal roots of GA(j,t). Heterogeneous

networks lead to a global dynamics dominated by a coordination

threshold, originating the appearance of two basins of attraction

split by an unstable root xL of GA(j,t), analogous to the

evolutionary dynamics under 2-person and N-person Stag-hunt

dilemmas in unstructured populations [45,51,63,64]. This unsta-

ble root represents the critical fraction of Cs above which they are

able to assort, thereby invading highly connected nodes, rendering

cooperation an advantageous strategy, as Cs acquire a higher

probability of being imitated than Ds. On SF networks the

requirement to reach the hubs, which ensures the formation of

cooperative star-like clusters [39,52], makes invasion harder for

isolated Cs. This moves the unstable root located close to j/N<0 in

homogeneous networks (see Fig. 1) to higher fractions of Cs. Yet,

once this coordination is overcome, Cs benefit from the strong

influence of hubs to rapidly spread in the population, eventually

leading to fixation. As a result, the stable internal root which

characterizes GA(j) in homogeneous networks collapses into the

vicinity of j = N on heterogeneous structures, promoting the

evolution towards fully cooperative populations. Naturally, the

location of the unstable root of GA(j) is an increasing function of B

(see Fig. 3a). It is noteworthy that our results remain qualitatively

valid for other update rules, such as the discrete analogue of the

replicator dynamics on graphs, used in many references, e.g.,

[16,27,38,65]. In fact, the AGoS is capable of identifying

particular features of such dynamics: For instance, the partially

deterministic nature of such update rule may lead to evolutionary

deadlocks in heterogeneous (scale-free) networks, creating station-

ary states close to full cooperation [16,27]. In such situation, the

AGoS will reflect the occurrence of these stationary configurations

by shifting to the left-hand side the stable (xR) equilibrium, which

may no longer coincide with j = N, remaining, however, in its

vicinity.

The existence of a coordination barrier for Cs in heterogeneous

networks, which must first occupy the hubs before outcompeting

Ds, leads to an intricate interplay between the time-dependent

decline of xL (see Fig. 3b) and the global fraction of Cs. In Fig. 3b

we show, with full lines, two evolutions in BA networks (for the

same value of B = 1.25): One, which fixates in full cooperation and

another, which fixates in full defection. Whenever the fraction of

cooperators j/N remains sizeable for long enough, xL will

eventually decrease to values satisfying j/N.xL, such that the

global coordination barrier is overcome and the population will

fixate into full cooperation (light blue line). Otherwise, j/N may

Figure 2. Time-dependent AGoS. (a) We plot GA(j,t) for three
different instants of evolutionary time. Each line provides a snapshot for
a given moment, portraying the emergence of a population-wide (time-
dependent) co-existence-like dilemma stemming from an individual
(time-independent) defection dominant dilemma (PD). (b) The circles
show the position of the different interior roots of GA(j,t), whereas the
solid (dark blue) line and (light blue) crosses show two independent
evolutionary runs starting from 50% of Cs and Ds randomly placed in
the networked population. Open (full) circles stand for unstable, xL

(stable, xR) roots of GA(j,t) (B = 1.01, N = 103, ,k. = 4 and b = 10.0).
doi:10.1371/journal.pone.0032114.g002
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remain always below xL with the population fixating into full

defection (dark blue line). Clearly, heterogeneous networks lead to

the emergence of a global coordination barrier and associated

basins of attraction that evolve in time, in a way which is well

described by the time-dependent AGoS.

Discussion

To establish the link between individual and collective behavior

constitutes, undeniably, one of the main goals of the analysis of any

complex multi-particle or multi-component system [66]. Here we

establish such a link showing how it depends on the underlying

network topology. Our study shows that behavioral dynamics of

individuals facing a cooperation dilemma in social networks can be

understood as though the network structure is absent but

individuals face a different dilemma: The structural organization

of a population of self-regarding individuals helps circumventing

the Nash equilibrium of a cooperation dilemma by creating a new

dynamical system that can be globally characterized by two

internal fixed points, xL (unstable) and xR (stable). While a single

defector will be always advantageous (creating an unstable fixed

point at x = 1.0), a single cooperator will be always disadvanta-

geous (prompting a stable equilibrium at x = 0.0). As cooperators

assort into stable clusters, they may also become advantageous

above a certain critical fraction of cooperators (k/N.xL, associated

with a critical cluster size) and below another critical fraction of

cooperators xR, above which defectors will be able to ripe again the

benefits of exploiting the many surrounding cooperators. Whereas

in homogeneous networks the stable equilibria dictate the overall

dynamics — as in co-existence dilemmas — heterogeneous

networks create a global dynamics mainly dominated by the

unstable equilibria, creating a coordination problem.

Strictly speaking, such a dynamical system resulting from

individuals interacting (locally) via a two-person game, cannot be

mapped onto a two-person evolutionary game in a well-mixed

population, since the latter can only comply with a maximum of

one internal fixed point [43]. On the contrary, such dynamics

resembles that from, e.g., N-person dilemmas [67,68] in the

presence of coordination thresholds [51,64,69]. It is as if the global

dynamics of a 2-person dilemma in structured populations can be

properly described as a time-dependent N-person dilemma, in

which the coordination or co-existence features emerge from the

population structure itself, with different network topologies

emphasizing differently this co-existence/coordination dichotomy.

It is worth emphasizing that the approach developed here in the

context of the two-person PD may be useful _ and immediately

applicable _ in understanding the evolutionary dynamics of other

game interactions, as well as in understanding other aspects of

human sociality that extend beyond cooperation. From human

behaviors and ideas, to diseases spreading or to individual

preferences, most have been modeled as a person-to-person

spreading process embedded in a social network [5,8,62]. In such

frameworks, the identification and categorization of the global,

population-wide dynamics which emerges from the apparently

unrelated nature of the local interactions may enable one to

anticipate the emergent outcomes of such complex biological and

social systems.

Methods

Evolution is modelled via a stochastic birth-death process

[47,70,71]. Each individual x adopts the strategy of a randomly

selected neighbour y with probability given by the Fermi function

p: 1ze{b(fy{fx)
� �{1

[14,47], where fx (fy) stands for the

accumulate payoff of x (y) and b controls the intensity of selection.

In structured populations, the difference of the probabilities to

increase and decrease the number of Cs (G(j)~Tz(j){T{(j))
becomes context dependent, but can be computed numerically.

For each individual i we compute the probability of changing

behavior at time t, Ti(t)~
1
ki

P�nni

m~1

1ze{b fm(t){fi(t)ð Þ� �{1
, where ki

stands for the degree of node i and �nni for the number of neighbors

of i having a strategy different from that of i. The time-dependent

AGoS at a given time t of simulation p, where we have j Cs in the

population of size N, is defined as Gp(j,t)~Tz
A (j,t){T{

A (j,t),

where T+
A (j,t)~ 1

N

PAllDs
AllCs
i~1 Ti(t). For a given network type, we run

V= 26107 simulations (using 103 randomly generated networks)

starting from all possible initial fractions j/N of cooperators.

Each configuration of the population is defined here by the

fraction j/N of cooperators. Evolutions run for L= 105 time

steps. Hence, the overall, time-independent, AGoS is given by the

average GA(j)~ 1
VL

PL
t~1

PV
p~1 Gp(j,t) over all simulations and

time-steps. The time-dependent gradients GA(j,t0) for a particular

generation t0 (and corresponding roots shown in Fig. 2 and

3b) were computed averaging over the configurations occurr-

Figure 3. AGoS on BA networks. (a) Starting from a defection
dominant PD played at an individual level, a coordination dynamics
emerges at a global, population-wide scale, for the three values of B
depicted. (b) Evolution of the unstable root xL of GA(j,t) (open circles),
exhibiting the time-dependence of the global dynamics; solid (dark
blue) line and (light blue) crosses show two independent evolutionary
runs starting from 50% of Cs and Ds randomly placed. The ultimate fate
of Cs in each run depends on whether the population composition
crosses over the time-dependent value xL of GA(j,t) thereby overcoming
the dynamical coordination barrier during evolution. (B = 1.25, N = 103,
,k. = 4 and b = 0.1). BA networks were obtained combining growth
and preferential attachment, following the model proposed by Barabási
and Albert [61].
doi:10.1371/journal.pone.0032114.g003
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ing during N previous time-steps (1 generation):

GA(j,t0)~ 1
VN

Pt0

t~t0{N

PV
p~1 Gp(j,t). The stationary distributions

pictured in Fig. 1b were obtained computing the fraction of time

the population spent in each overall configuration j/N. In some

specific limits — in particular, for weak selection or well-mixed

populations — our numerical approach will provide results

analogous to those obtained with other methods (see for instance

[20,22,43,46,47,50,60,71–74]).

Homogeneous random networks were obtained by repeatedly

swapping the ends of pairs of randomly chosen links of a regular

network [54]. BA networks were obtained combining growth and

preferential attachment, following the model proposed by Barabási

and Albert [4,61]. All networks used have N = 103 nodes and an

average degree k = 4.

Supporting Information

Text S1 Supporting Text (containing one additional
figure) on the analysis of the evolutionary steady states
in homogeneous networks.

(PDF)

Author Contributions

Conceived and designed the experiments: FLP JMP FCS. Performed the

experiments: FLP JMP FCS. Analyzed the data: FLP JMP FCS.

Contributed reagents/materials/analysis tools: FLP JMP FCS. Wrote the

paper: FLP JMP FCS.

References

1. Granovetter M (1973) The strength of weak ties. Am J Sociol 78: 1360.

2. Watts D (2007) A twenty-first century science. Nature 445(7127): 489.

3. Lloyd AL, May RM (2001) How viruses spread among computers and people.

Science 292: 1316–1317.

4. Dorogovtsev SN (2010) Lectures on Complex Networks. Oxford: Oxford
University Press.

5. Fowler JH, Christakis NA (2010) Cooperative behavior cascades in human social
networks. Proc Natl Acad Sci U S A 107(12): 5334–5338.

6. Centola D (2010) The Spread of Behavior in an Online Social Network

Experiment. Science 329: 1194.

7. Lazer D, Pentland A, Adamic L, Aral S, Barabasi AL, et al. (2009)

Computational social science. Science 323(5915): 721–723.

8. Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes in complex

networks. Cambridge: Cambridge University Press.

9. Onnela JP, Reed-Tsochas F (2010) Spontaneous emergence of social influence in
online systems. Proc Natl Acad Sci U S A 107(43): 18375–18380.

10. Maynard-Smith J (1982) Evolution and the Theory of Games. Cambridge:

Cambridge University Press.

11. Sigmund K (2010) The Calculus of Selfishness. Princeton: Princeton University

Press.

12. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:

826–829.

13. Nakamaru M, Matsuda H, Iwasa Y (1997) The evolution of cooperation in a
lattice-structured population. Journal of Theoretical Biology 184(1): 65–81.
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40. Szabó G, Vukov J, Szolnoki A (2005) Phase diagrams for an evolutionary

prisoner’s dilemma game on two-dimensional lattices. Physical Review E 72(4):
047107.

41. Smith JM, Parker GA (1976) The logic of asymmetric contests. Animal

Behaviour 24(1): 159–175.

42. Gintis H (2000) Game Theory Evolving Princeton, Princeton University Press.

43. Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics.

Cambridge, UK: Cambridge Univ. Press.

44. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world
networks. Proc Natl Acad Sci U S A 97(21): 11149–11152.

45. Skyrms B The Stag Hunt and the Evolution of Social Structure: Cambridge

University Press.

46. Price GR (1970) Selection and covariance. Nature 227(5257): 520.

47. Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion

and fixation. Phys Rev E 74(1 Pt 1): 011909.

48. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection
temperature in evolutionary game dynamics. J Theor Biol 246(3): 522–529.

49. Traulsen A, Nowak MA, Pacheco JM (2007) Stochastic payoff evaluation

increases the temperature of selection. J Theor Biol 244(2): 349–356.

50. Traulsen A, Pacheco JM, Imhof LA (2006) Stochasticity and evolutionary
stability. Phys Rev E 74(2 Pt 1): 021905.

51. Pacheco JM, Santos FC, Souza MO, Skyrms B (2009) Evolutionary dynamics of

collective action in N-person stag hunt dilemmas. Proc Biol Sci 276(1655):

315–321.

52. Pacheco JM, Pinheiro FL, Santos FC (2009) Population Structure Induces a
Symmetry Breaking Favoring the Emergence of Cooperation. PLoS Comput

Biol 5(12): e1000596.

53. Bollobás B Random graphs: Cambridge Univ Press.

54. Santos FC, Rodrigues JF, Pacheco JM (2005) Epidemic spreading and

cooperation dynamics on homogeneous small-world networks. Phys Rev E
72(5 Pt 2): 056128.
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