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Abstract

The mangrove forests of Australasia have many endemic bird species but their evolution and radiation in those habitats has
been little studied. One genus with several mangrove specialist species is Gerygone (Passeriformes: Acanthizidae). The
phylogeny of the Acanthizidae is reasonably well understood but limited taxon sampling for Gerygone has constrained
understanding of its evolution and historical biogeography in mangroves. Here we report on a phylogenetic analysis of
Gerygone based on comprehensive taxon sampling and a multilocus dataset of thirteen loci spread across the avian genome
(eleven nuclear and two mitochondrial loci). Since Gerygone includes three species restricted to Australia’s coastal mangrove
forests, we particularly sought to understand the biogeography of their evolution in that ecosystem. Analyses of individual
loci, as well as of a concatenated dataset drawn from previous molecular studies indicates that the genus as currently
defined is not monophyletic, and that the Grey Gerygone (G. cinerea) from New Guinea should be transferred to the genus
Acanthiza. The multilocus approach has permitted the nuanced view of the group’s evolution into mangrove ecosystems
having occurred on multiple occasions, in three non-overlapping time frames, most likely first by the G. magnirostris lineage,
and subsequently followed by those of G. tenebrosa and G. levigaster.
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Introduction

Among the members of the primarily Australo-Papuan

passerine family Acanthizidae, the genus Gerygone Gould, 1841 is

the most geographically widespread. Its 19 currently recognized

member species occur in Australia, New Guinea, New Zealand,

Pacific Islands, Indonesia and south-east Asia as well as on many

offshore islands. One species, G. sulphurea, is found north of

Wallace’s Line from Thailand to the Philippines, and G. insularis of

Lord Howe Island became extinct following predation by

introduced rats in the early 19th century [1]. All species of Gerygone

are small, relatively drab, and forage arboreally. Habitats range

from closed canopy moist forests to open arid zone woodlands,

and at least three species (G. magnirostris, G. tenebrosa, G. levigaster)

occur predominantly in coastal mangrove forests, and another, G.

chloronota, enters them in Australia as well [1–3]. Given their

diverse biogeographic and ecological patterns, gerygones are

among the groups best-suited for elucidating the origin of

Australia’s rich mangrove avifauna [2–5]. To date, the inclusion

of Australasian mangrove specialist bird species in molecular

phylogenetic studies has been incidental rather in relevant work

[6–7]. Gerygone provides an ideal group with which to redress this.

They are an ideal group with which to apply molecular

phylogenetics to the testing of hypotheses that have been advanced

for evolution of mangrove specialist birds in the region [2–5].

Despite Ford’s (1986) pioneering attempt to analyze Gerygone

phylogenetically, the conservative morphology of the group has

inhibited development of a comprehensive phylogenetic frame-

work. This in turn has complicated interpretations of biogeo-

graphic patterns. A recent phylogenetic study of the largest

radiation of Australasian songbirds, the Meliphagoidea [8], was

the first molecular analysis of acanthizids that included Gerygone.

The eight species of Gerygone analysed there comprised a

monophyletic group, which, together with the monotypic

Fernwren Oreoscopus gutturalis, was basal to all other acanthizids.

Support for the monophyly of the eight species was high but

relationships within the genus were not well resolved.

Several molecular phylogenetic studies have now documented

the importance of island radiations in diversification of continental

avifaunas [9–11]. They have led to the conclusion that islands are

not necessarily evolutionary dead ends, but rather that they can be

sources of biological diversity for mainland groups through back-

colonization events. By analogy, the role of mangrove forests as

ecological islands for closed-canopy-dwelling birds, especially

during Australia’s long history of aridification [12], might also

be tested.
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Here we explore the evolution of mangrove-inhabiting species

of Gerygone. As well as using established mitochondrial DNA-based

methodologies, we also explore the question of whether additional

resolving power might be brought to the question by way of a

multilocus dataset. This approach reflects two now well-estab-

lished observations: that individual gene trees can differ from the

true species tree, and that these datasets offer richer windows into

the evolutionary history of lineages than studies based on

mitochondrial DNA (mtDNA) [11–20]. Gene tree – species tree

discordances can result from stochastic sorting of ancestral

polymorphisms, or varying degrees of gene flow following

lineage-splitting events at different depths within the phylogenetic

history of a group of organisms [21–23]. Reliable detection and

discrimination of all of these confounding processes calls for

increased complexity and thoroughness of model-based phyloge-

netic estimations from multilocus datasets. These range from

individual gene tree analysis, concatenation and partitioning of an

entire multilocus dataset, to Bayesian Estimation of Species Tree

methods. The latter estimates the joint posterior distribution of

gene trees for each locus and uses that to approximate the

Bayesian posterior distribution of the species tree based on

coalescent theory [23,24]. The implications of these methodolog-

ical advances are far reaching. Anomalous gene trees [23] are

known to be quite common, particularly in groups that have seen

rapid bursts of speciation [10].

Accordingly, we here use comprehensive taxon sampling and an

analysis of sequence data derived from 13 loci spread across the

avian nuclear and mitochondrial genomes to test monophyly of

the acanthizid genus Gerygone as well as the relationships of the set

of mangrove-inhabiting species (G. magnirostris, G. tenebrosa, and G.

levigaster). We also examine the biogeographic influence of island

species and timing of speciation events tied to mangrove forests.

Materials and Methods

Taxon sampling and laboratory protocols
Our ingroup of 16 of the 19 Gerygone species comprised single

samples per taxon and so was not designed to test species limits,

which mostly are uncontroversial. We recognize that we are thus

providing a framework with which later work can screen multiple

samples for cryptic diversity and gain further evolutionary insight

especially concerning some more geographically widespread (e.g.,

G. fusca, G. sulphurea) and naturally fragmented species (G. levigaster,

G. chloronota). Unsampled taxa included the now extinct G. insularis

of Lord Howe Island and extant populations of G. dorsalis and G.

albofrontata from the Lesser Sundas and Chatham Islands,

respectively. Outgroup taxa were chosen based on results of

previous higher-level phylogenetic studies of passerines, and

included diverse acanthizids: Oreoscopus gutturalis (Fernwren),

Smicrornis brevirostris (Weebill), and Acanthiza apicalis (Inland

Thornbill).

Genomic DNA was extracted from frozen or ethanol preserved

tissue samples from vouchered specimens collected by us and

researchers from other institutions (Table 1) via the standard

Qiagen DNeasyTM tissue extraction protocols (Qiagen, Valencia,

CA). We amplified and sequenced 13 distinct loci distributed

across the avian nuclear and mitochondrial genomes using a

published set of primers and protocols (Table 2). A detailed list of

GenBank accession numbers for all loci and species is listed in

Methods S1. All PCR amplifications were performed in 25 ml

reactions using PureTaqTM RTG PCR beads (GE Healthcare Bio-

Sciences Corp.). Amplified double-stranded PCR products were

cleaned with ExoSAP-ITTM (GE Healthcare Bio-Sciences Corp.),

and visualized on high-melt agarose gels stained with ethidium

bromide. Purified PCR products were subsequently cycle-

sequenced with ABI Prism BigDyeTTM v3.1 terminator chemistry

using the same primers as for each PCR reaction. Cycle-

sequenced products were further purified using SephadexTM spin

columns (GE Healthcare Bio-Sciences Corp.), and finally

sequenced on an ABI 3130 automated sequencer. Sequences of

both strands of each gene were examined and aligned in

Sequencher 4.8 (GeneCodes Corp.). We did not attempt to

reconcile the allelic phase of heterozygous base calls, but rather

coded them as ambiguous according to the International Union of

Pure and Applied Chemistry (IUPAC) standards. All sequences

were deposited on GenBank under accession numbers JQ039483-

JQ039727.

Data matrix construction and phylogenetic analyses
Complementary gene sequence contigs derived from all 13 loci

for all taxa were aligned using ClustalX 2.0.7 [25], and scrutinized

further by eye in Mesquite 2.74 [26]. Separate data matrices of 19

taxa (16 ingroup and 3 outgroup) were assembled for each of the

11 nuclear loci, while the two mitochondrial genes (ND2 and

ND3) were combined in a single dataset. Subsequent analyses

examined individual loci and a partitioned dataset through model-

based phylogenetic algorithms under both Maximum Likelihood

(ML) and Bayesian analysis (BA) approaches. ModelTest 3.7 [27]

was used to determine the most appropriate model of sequence

evolution via the Akaike Information Criterion (AIC).

ML heuristic tree searches were conducted using the program

GARLI 2.0 [28], under a single data partition and the GTR+I+G

model of sequence evolution as well as partitioned by locus with

the respective models of evolution and parameter values estimated

from the data. Two separate runs were performed and nodal

support was assessed via 1000 non-parametric bootstrap replicates.

BA was carried out within the Markov Chain Monte Carlo

(MCMC) tree search algorithm framework as implemented in the

program MrBayes 3.1.2 [29]. The concatenated data set was

partitioned by each locus, and by codon position for the

mitochondrial genes. We ran two independent runs of 107

generations, using the previously inferred model of sequence

evolution specified for each locus. Search parameters included

unlinking of all partition-specific rates and models of evolution,

adjustment of chain heating conditions (temp = 0.1–0.05) for

improved chain swap acceptance rates, and sampling every 100

generations. Evaluation of stationarity and chain convergence was

conducted by plotting posterior probabilities from the two runs in

the program Tracer [30]. The resulting pool of topologies sampled

from the first 30% of generations of each of the two independent

runs was discarded as an initial ‘burn-in’, and the resulting pool of

trees from both runs were finally summarized to produce a single

50% majority-rule consensus tree, rooted with the Fernwren

Oreoscopus gutturalis. Lastly, we proceeded to evaluate the

monophyly of the 3 mangrove-restricted gerygones by enforcing

their monophyly as a constraint on ML GARLI searches. Site

likelihood outputs from the best constrained trees were used in

subsequent test against our ML tree via the Approximately

Unbiased (AU) test, as implemented in the program CONSEL

[31].

Additionally, a species tree was estimated from the joint

distribution of individual gene trees via the program BEST 1.6

[32,33]. The dataset was again partitioned by locus, each with an

appropriately specified model of evolution. We assigned default

settings for the parameter values of the Bayesian search, as

recommended by the authors: flat priors, inverse gamma

distribution with values of a= 3 and b= 0.003 for priors of

population size, and a uniform distribution with bounds of 0.5 and

Multilocus Phylogeny of Gerygone Warblers
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Table 1. Taxon sampling, voucher information, and locality information of Gerygone species included in the present study.

Taxon Voucher Locality

Gerygone albogularis ANWC 26490 New Guinea, Central Province, Port Moresby

Gerygone chloronota ANWC 39172 Australia, WA, Mitchell Falls

Gerygone chrysogaster KUBI 7504 New Guinea, Western Province, Ekame Camp

Gerygone cinerea KUBI 16404 New Guinea, Central Province, Mt. Simpson Bush Camp

Gerygone flavolateralis AMNH DOT6559 Solomon Islands, Rennell Island, Tahamatangi

Gerygone fusca ANWC 40265 Australia, NT, Kunoth Bore, NW of Alice Springs

Gerygone igata MUNZ 12431 New Zealand, Palmerston North, Turitea Road

Gerygone inornata WAM 23458 Indonesia, Sabu

Gerygone levigaster ANWC 39335 Australia, QLD, SE of Gladstone

Gerygone magnirostris ANWC 39961 Australia, QLD, N of Innisfail

Gerygone modesta ANWC 40523 Australia, Norfolk Island Territory

Gerygone mouki ANWC 39196 Australia, NSW, NNE of Kempsey

Gerygone palpebrosa ANWC 39361 Australia, QLD, Miriam Vale

Gerygone ruficollis ANWC 26963 New Guinea, Gulf Province, Mountain Camp

Gerygone sulphurea AMNH DOT12621 Indonesia, Sulawesi, Bangai

Gerygone tenebrosa ANWC 39184 Australia, WA, Point Torment

Acanthiza apicalis ANWC 24367 Australia, QLD, S of Winton

Smicrornis brevirostris ANWC 24332 Australia, NSW, NW of Cootamundra

Oreoscopus gutturalis ANWC 39536 Australia, QLD, Longlands Gap, S of Atherton

Institutional abbreviations for voucher sources are as follows: American Museum of Natural History (AMNH), Australian National Wildlife Collection (ANWC), The
University of Kansas Biodiversity Institute (KUBI), Massey University New Zealand (MUNZ), Western Australian Museum (WAM).
doi:10.1371/journal.pone.0031840.t001

Table 2. Summary of the thirteen loci included in the present study.

Locus

Length
(aligned
bp)

Category,
chromosome #a

Substitution
model A,C,G,T frequency

Variable
sites (%
total)

Informative
sites (%
total/% variable) Source

MameAL-06 415 anonymous locus TrN 0.267, 0.169, 0.270, 0.293 47 (11.32) 15 (3.61/31.91) Lee and Edwards
(2008) [55]

MameAL-16 387 anonymous locus HKY+G 0.241, 0.230, 0.213, 0.314 66 (17.05) 24 (6.20/36.36) Lee and Edwards
(2008) [55]

MameAL-23 428 anonymous locus TrN+I 0.324, 0.234, 0.177, 0.264 88 (20.56) 25 (5.84/28.40) Lee and Edwards
(2008) [55]

CDC132 597 intron, 2 TVM+G 0.264, 0.171, 0.216, 0.347 93 (15.57) 39 (6.53/41.93) Backström et al. (2008)
[56]

HMG2 494 intron, 4 TVM 0.314, 0.172, 0.203, 0.309 76 (15.38) 15 (3.03/19.73) Backström et al. (2008)
[56]

Fib5 621 intron, 4 HKY+G 0.299, 0.176, 0.201, 0.323 96 (15.46) 41 (6.60/42.70) Marini and Hackett
(2002) [57]

G3PDH 279 intron, 1 HKY 0.260, 0.337, 0.185, 0.216 37 (13.26) 9 (3.22/24.32) Fjeldså et al. (2003) [58]

TGFb2 563 intron, 3 GTR+I 0.229, 0.243, 0.211, 0.315 105 (18.65) 33 (5.86/31.42) Primmer et al. (2002)
[59]

MUSK 560 intron, Z HKY+I 0.298, 0.168, 0.194, 0.337 117 (20.89) 22 (3.92/18.80) F.K. Barker
(pers.comm.)

RAG1 1350 exon, 5 TrN+I+G 0.316, 0.219, 0.232, 0.232 108 (8.00) 41 (3.03/37.96) Barker et al. (2002) [60]

RAG2 1038 exon, 5 HKY+I+G 0.289, 0.210, 0.238, 0.262 94 (9.05) 25 (2.40/26.04) Barker et al. (2002) [60]

ND2 1041 mitochondrial GTR+I+G 0.298, 0.389, 0.104, 0.206 359 (34.48) 255 (24.50/71.03) Sorenson et al. (1999)
[61]

ND3 351 mitochondrial TrN+I+G 0.325, 0.361, 0.097, 0.215 133 (37.89) 86 (24.50/64.66) Sorenson et al. (1999)
[61]

aLocus information and chromosome number was inferred from the genome map of the chicken genome on GenBank.
doi:10.1371/journal.pone.0031840.t002
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1.5 for priors of the mutation rates. Two runs with four separate

chains (one heated and three cold) were run simultaneously for 108

generations, sampling every 1000 generations. A consensus

topology from the two separate runs was obtained after discarding

an initial burn-in of 50% of the sampled topologies. Additionally,

we also used the species tree reconstruction options in the program

*BEAST 1.6 [34,35] using the same set of model parameteriza-

tions and number of generations as for the BEST run.

Phylogenetic affinities and timing of divergence of G.
cinerea

Initial examination of the data revealed that sequences of the

Grey Gerygone, G. cinerea, from the highlands of New Guinea were

substantially distinct from other Gerygone species. This prompted us

to consider further testing of the phylogenetic placement of G.

cinerea within the Meliphagoidea in which Gerygone itself is

embedded. Gardner et al. ’s (2010) study of Meliphagoidea shared

three markers with our dataset. Accordingly, we assembled a

separate data matrix from published and newly derived sequences

for nuclear exons of RAG1 and RAG2 and the mtDNA gene ND2

to examine relationships of G. cinerea within the Acanthizidae

specifically and Meliphagoidea more generally (Methods S1).

We performed a Bayesian analysis using the program MrBayes

3.1.2 as described above, partitioning our data by gene and by

codon for the two nuclear and the mitochondrial genes,

respectively. This larger dataset was also used to estimate relative

timing events of cladogenesis using the program BEAST 1.6 [34]

by producing an ultrametric tree with 95% confidence intervals

for node heights. Given the lack of reliable fossil calibration

points for acanthizids, we placed a broad normal distribution

(2.06102863.561029 substitutions/site/year) on the ND2 muta-

tion rate prior, while the RAG genes were parameterized with a

broader lognormal prior. This range encompasses previously

published passerine mitochondrial rates of evolution based on

calibrations using a combination of fossil and biogeographic dates

[36–38]. A topological constraint in the form of the Bayesian

consensus tree was placed onto the MCMC run, such that rates

were allowed to vary only along this given scenario. A relaxed

clock model [39] with uncorrelated rates drawn from a lognormal

distribution was selected, and two MCMC runs of 107 generations

with parameters logged every 100 generations were performed.

The first 40% of generations of each run were discarded as burn-in

after inspection of likelihood scores and parameters for stationar-

ity. The final ultrametric tree was generated from the combined

tree files of the two MCMC runs.

Results

Phylogenetic analyses of gene trees and species tree
reconstruction

Alignment of sequence data derived from all thirteen loci was

straightforward, resulting in a total of 8124 base pairs (bp). Overall

sequence length ranged from 279 bp to 1350 bp for nuclear loci,

whereas the two mitochondrial genes were 1041 bp and 351 bp in

length (Table 2). Among the nuclear loci, MameAL-23, MUSK,

and TGFb2 were the most variable; however, MameAL-16,

CDC132 and Fib5 had the highest percentage of informative sites

(Table 2). The two mtDNA protein-coding genes ND2 and ND3

had no insertions, deletions, or anomalous stop-codons. Base

composition was typical of avian mtDNA (Table 2), consistent with

true mitochondrial origin as opposed to nuclear pseudogenes [40].

Information content in the two mitochondrial loci was significantly

higher than in the nuclear loci: out of the total number of variable

sites, ND2 and ND3 had over 70% and 64% parsimony

informative sites, respectively (Table 2).

Resolution of individual gene trees varied at diverse nodes

throughout their topologies, most loci showing consistent patterns

of sister species relationships (Figure 1). G3PDH was the least

informative locus and also the shortest sequence, but all other

nuclear loci showed at least four strongly supported nodes

(Figure 1). The combined mitochondrial dataset (ND2 and ND3)

featured the best-resolved topology, and all but three nodes

received high support. Analysis of the concatenated dataset under

a single partition and partitioned by gene and codon region for the

two mtDNA protein-coding genes recovered similar topologies

and statistical support to our species tree estimate (Figure 2, see

below). Nodal support was strong throughout the concatenated

and partitioned datasets: only some terminal nodes received

relatively low statistical support (Figure 2). Compared to the

species tree estimate, the concatenated and partitioned datasets

differed in placement of G. tenebrosa relative to G. flavolateralis, a

relationship that has seen generally weak support. Further

differences are also evident along subsequent nodes, although

the three different data analysis schemes agreed on the majority of

the relationships except for the most recent speciation events.

G. cinerea was consistently recovered by all loci as not closely

related to other ingroup species, rendering Gerygone paraphyletic

(Figure 1, 2). Analysis of our 13-locus dataset placed this species

among the three outgroup members, and specifically with the

species we used of Acanthiza̧ A. apicalis.

We pursued the phylogenetic placement of G. cinerea within

acanthizids generally by using the three gene dataset assembled

with broad taxon sampling of the Meliphagoidea (see Methods

S1). The dataset comprised 3429 bp from RAG1 (1350 bp),

RAG2 (1038 bp) and ND2 (1041 bp) (Methods S1). Results clearly

reinforced our previous inferences based on the 13-locus dataset

that G. cinerea clustered not with Gerygone but with Acanthiza, the

second largest genus of acanthizid warblers. Placement of G. cinerea

within Acanthiza received strong nodal support (Figure 3): within

Acanthiza, G. cinerea is most closely related to A. lineata and A. nana of

Australia and A. murina, which until now was thought to be the

only species of Acanthiza in New Guinea (see Nicholls et al. 2000)

[41].

All gene trees indicated clearly that the three mangrove-

inhabiting species G. magnirostris, G. tenebrosa, and G. levigaster, do not

form a monophyletic group. Strong support was evident in all gene

trees for two sister species relationships, one between G. chrysogaster

and G. mouki, and the other between G. igata and G. modesta. The

mtDNA dataset further indicated strong support for sister species

relationships between G. chloronota and G. palpebrosa (also supported

by Fib5), between G. inornata and G. albogularis (also supported by

MUSK, HMG2, AL16), and between G. fusca and G. levigaster (also

supported by RAG2, TGFb2, HMG2, CDC132).

The species tree inferred from all 13 loci mirrored closely the

consensus among the underlying gene trees and the analysis of the

concatenated and partitioned dataset. Topologies obtained

throught the BEST and *BEAST algorithms were congruent.

Again, Gerygone was not monophyletic and the sister species

relationships of G. chrysogaster/G. mouki, and G. igata/G. modesta were

strongly supported (Figure 2). Similarly, the three mangrove

specialists were not a monophyletic group, and their constrained

monophyly constitutes a significantly worse likelihood under the

AU test. The majority of nodes in the species tree received strong

support; however, several low-to-moderately supported nodes

prevailed, especially in the recently evolved clades sister to G.

magnirostris.

Multilocus Phylogeny of Gerygone Warblers
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Timing of speciation events
The same extended dataset was used to infer a sequence of

splitting events under a relaxed-clock model coupled with an

enforced topological constraint from the Bayesian consensus tree.

The resulting ultrametric tree illustrates important variation in the

95% confidence intervals for node heights (Figure 3). As such, we

can clearly distinguish differences in evolutionary rates between

the two most speciose acanthizid genera, Gerygone and Acanthiza,

the former clearly having radiated later around the onset of the

Pliocene, and with increased speciation rate, whereas the clade

containing Acanthiza, Sericornis, and other Australo-Papuan acanthi-

zids is relatively older, stemming well into the Miocene and has

had slower rates of diversification. Based on uncorrected sequence

divergences of the two mitochondrial genes, the genetically most

distinct gerygones (excluding G. cinerea) were G. palpebrosa and G.

mouki at 13.5%. Highest divergence values within the clade

containing the three mangrove specialist species (Figure 3) were at

8.1% between G. magnirostris and G. igata. The three mangrove

endemics differed by 7.7% (G. magnirostris vs. G. tenebrosa), 7.3% (G.

magnirostris vs. G. levigaster), and 4.0% (G. levigaster vs. G. tenebrosa).

Discussion

Multilocus phylogenetic analysis and taxonomy of
Gerygone

Our study represents the first comprehensive phylogenetic

analysis of the acanthizid warbler genus Gerygone and we have used

a broadly sampled, multilocus dataset. While multilocus phyloge-

netic analyses have been successfully employed throughout a

diverse array of avian groups [13,42–46], the present study

explored the utility of a moderate number of unlinked loci spread

across the avian nuclear and mitochondrial genomes to better

understand the implications of individual gene histories and their

influence on species tree estimation. [17,20,21,47]. Moreover, we

Figure 1. Phylogenetic estimates of gene trees obtained via Bayesian and Maximum Likelihood analysis of individual loci. Locus
acronyms follow Table 2 and references therein. Nodal support is indicated by circles, where the upper half corresponds to Bayesian posterior
probabilities (BPP) and the lower half depicts ML bootstrap values (MLBV). BPP support values greater than 95% are given in bold above branches,
and indicated by dark upper half-circles. MLBV greater than 80 are in bold below branches, and indicated by dark lower half-circles. Support values
below these thresholds are in regular font and depicted with an open circle half. Values below 50% BPP and 50 MLBV are denoted by double dashes
or not at all where both algorithms failed to recover that value at a node. The mitochondrial protein coding genes ND2 and ND3 have been
combined in a single partition, indicated as ‘‘mtDNA’’. Mangrove specialists are highlighted in bold.
doi:10.1371/journal.pone.0031840.g001
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focused on a group having diverse evolutionary and ecological

histories. Overall, several common phylogenetic patterns emerged

from the individual gene trees but their differences also highlight

complexity in the group’s evolutionary history. The Bayesian

estimate of species tree relationships and the analyses of the

concatenated and partitioned dataset resulted in very similar

topologies. Below, we highlight details of some of these

commonalities and differences among analytical methods.

The most novel relationship that we recovered is the exclusion

from Gerygone of G. cinerea, which clearly belongs in Acanthiza (Figure 2

and 3). Based on plumage and biogeography, Ford (1986) suggested

that G. cinerea was closely related to G. chloronota. We conclude that G.

cinerea should be assigned to Acanthiza Vigors and Horsfield, 1827,

and so be known as A. cinerea (Salvadori, 1876).

Ford’s [1] taxonomic study of Gerygone based on numerical

analysis of morphological characters noted inherent difficulties in

reconstructing relationships based solely upon morphology. It

nevertheless derived important hypotheses regarding sister species

relationships of gerygones, some of which were corroborated here

by multilocus data. For example, two relationships suggested by

Ford [1], that of G. inornata of the Lesser Sundas being closely

related to Australo-Papuan G. albogularis, and Australian G. fusca

being closely related to the mangrove forest endemic G. levigaster,

were affirmed here in the species tree, three of the gene trees, and

the mtDNA tree (Figure 1 and 2). Further, the hypothesis that

eastern Australian endemic G. mouki is a basal member of the

gerygones [1,48], was supported almost unequivocally in our

different data analyses (Figures 1, 2, and 3).

Other novel relationships within Gerygone include the eastern

Australian endemic G. mouki as sister to G. chrysogaster from the

lowlands of New Guinea, and the grouping of Gerygone chloronota

with G. inornata and G. albogularis (Figure 2). Another unequivo-

cally supported sister species relationship was between the

endemics of New Zealand and Norfolk Island, G. igata and G.

modesta, respectively. Ford [1] had alternatively concluded that G.

modesta and G. igata are not sister taxa and that the former is

possibly more closely related to mangrove-restricted G. levigaster.

Nonetheless, our analyses and earlier ones [1,48] affirm that G.

levigaster is close to G. fusca, which is widespread on the Australian

continent.

Several Gerygone species were characterized by weakly-supported

phylogenetic placements in the species tree analysis. Low nodal

support was present at more recent radiations in clades sister to G.

magnirostris. As such, phylogenetic uncertainties remain about the

position of the New Guinean montane endemic G. ruficollis. The

species tree places it with low support as sister to the G. fusca/G.

levigaster pair (Figure 2), but the concatenated and partitioned

dataset analysis instead supported it as sister to G. igata/G. modesta

(Figure 2). Interestingly, our mtDNA dataset includes G. ruficollis as

sister to a clade containing both of these other sister species pairs.

Also weakly resolved was the phylogenetic placement of the Pacific

Island G. flavolateralis as sister to the Australian mangrove endemic

G. tenebrosa in the concatenated and combined analyses; in

contrast, the species tree reconstruction did not recover a direct

sister species relationship.

Figure 2. Phylogenetic analyses of the combined 13-locus dataset. All topologies are rooted with the Fernwren Oreoscopus gutturalis (not
shown for brevity). Support values in form of Bayesian posterior probabilities (BPP) and Maximum Likelihood bootstrap (MLBV) are given above and
below each node, respectively, with dark circles and bold font emphasizing strong support (.95% BPP and .80 MLBV). Regular font and open circle
halves depict support values below these thresholds. A double dash depicts support values below 50% BPP and 50 MLBV. The concatenated
phylogenetic hypothesis in the left panel is based on analyses of the entire dataset under a single, concatenated partition. The center panel
represents the topology derived from an analysis of the entire dataset partitioned by locus and codon position for the two mitochondrial protein
coding genes. The topology in the right panel illustrates the species tree obtained under the BEST algorithm. Mangrove specialists are highlighted in
bold. Geographic range is given alongside taxa of the species tree.
doi:10.1371/journal.pone.0031840.g002
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Biogeographic patterns and the evolution of mangrove-
restricted gerygones

Complex evolutionary and biogeographic scenarios in the

history of Gerygone are clearly apparent from our results. They

identified G. chrysogaster and G. mouki as a sister clade to the rest of

Gerygone, consistent with an Australo-Papuan center of diversity for

the group. The geographic distributions of these two taxa

correspond to Australo-Papuan tropical lowland (Irian) and

subtropical-montane rainforest (Tumbunan) avifaunas [3,5,49].

The clade formed by G. chloronota as sister to G. inornata and G.

albogularis includes species from northwest Australia and New

Guinea, the Lesser Sundas, northeast Australia and southeast New

Guinea, respectively. The sister relationship between insular G.

inornata and continental G. albogularis likely reflects either

vicariance, probably by rising sea-level across Torres Strait and

the Arafura Platform, or dispersal across the same region in the

history of speciation within this clade between Australian and New

Guinean landmasses [5,50]. The only Gerygone species that extends

beyond Wallace’s Line, G. sulphurea, has radiated into the Malay

Peninsula, Greater Sundas, and the Philippines, where it occupies

forests as well as coastal mangroves. The lone position of this

geographically wide-ranging species in the phylogeny on a long

branch amidst different subclades of gerygones is notable (Figure 2

and 3). Given that the Acanthizidae generally are sedentary, we

suggest that an ecological study of this species and another wide-

ranging species such as Australian G. fusca in conjunction with

refined knowledge of their phylogenetic position based on more

extensive population sampling of each would be rewarding.

The remaining species of Gerygone are from continental

Australia, New Guinea, and islands of the Pacific Ocean

(Figure 2). Prominent in this group are the three mangrove-

inhabiting species G. magnirostris, G. tenebrosa, and G. levigaster.

Despite some residual phylogenetic uncertainty, particularly

concerning the north-west Australian endemic G. tenebrosa, our

Figure 3. Phylogenetic hypothesis of relationships within the broader family Acanthizidae. Results are based on a three gene dataset
(RAG1, RAG2, ND2) with extended taxon sampling derived from the study of Gardner et al. (2010). Nodal support in form of Bayesian posterior
probabilities (BPP, above) and Maximum Likelihood bootstrap values (MLBV, below) are given at each node. Bold values are attributed to BPP .95%
and MLBV .80, while regular font is used for values below this threshold. A double dash indicates support values below 50% BPP and 50 MLBV. Also
illustrated are 95% confidence intervals around node heights as derived from the ultrametric tree generated in the program BEAST and calibrated
using a normally distributed prior on ND2 mutation rates. The lower scale represents time in million years before present, and vertical dashed lines
correspond to the onset of the Pliocene and Pleistocene epochs. Mangrove specialists are highlighted in bold. Placement of Gerygone cinera within
Acanthiza is emphasized by a black bar.
doi:10.1371/journal.pone.0031840.g003
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data do show that these three species do not represent a single

radiation in mangrove ecosystems. Rather, they appear to

represent two if not three independent events of adaptive

colonization of mangroves, whether derived from continental or

island sister species. Further, our analysis indicates that for these

three species mangroves were first colonized by the lineage that

evolved into G. magnirostris, then by that which evolved into G.

tenebrosa and, finally, that for G. levigaster (Figure 2 and 3). This

provides a historical framework within which to pursue the

evolution of their different habitat preferences and bill morphol-

ogies, and the extent and patterns of their geographical range

overlaps, especially in north-western Australia. These patterns and

overlaps have been detailed extensively for that region [2,51,52].

For example, G. magnirostris and G. levigaster overlap more

extensively than do G. levigaster and G. tenebrosa, whereas G.

magnirostris and G. tenebrosa barely overlap. G. levigaster, which is

more closely related to a species widespread in inland Australia (G.

fusca) than to G. magnirostris and G. tenebrosa, inhabits mangroves

almost exclusively dominated by Avicennia and Ceriops species and

Melaleuca thickets. G. tenebrosa inhabits mangrove forests, wood-

lands and thickets of Avicennia, Bruguiera, Camptostemon and Ceriops,

and G. magnirostris prefers taller Rhizophora and Bruguiera stilt-rooted

mangroves. G. magnirostris also inhabits swamplands and riparian

forests adjacent to its main, mangrove-preferred habitat [2,51,52].

Sequence divergences and timing estimates based on ND2

mutation rates suggest a more recent evolution of Gerygone with

respect to other members of the acanthizid clade (Figure 3). Some

degree of past or present hybridization between taxa such as G.

magnirostris and G. tenebrosa [53,54], which can complicate species

tree inferences, may also be involved. Concerning the temporal

framework of speciation in Gerygone, it is clear that it was relatively

quick, and originated in the late Miocene, with most cladogenetic

events within Gerygone occurring in the Pliocene and Pleistocene

(Figure 3). This is supported by the lack of consensus in

phylogenetic resolution of most relevant taxa (Figure 2 and 3).

Thus, all three methods we have used had difficulties recovering a

well supported evolutionary pattern for the most recent clades.

Variable placements of the Pacific Islands endemic G. flavolateralis

and the New Guinean montane endemic G. ruficollis all illustrate

this. Multilocus phylogenetic analysis has seen a surge of attention

in recent years, although difficulties associated with obtaining well-

supported phylogenetic topologies from such a large and diverse

array of loci can lead to a sense of low return given the

considerable effort required for generating such datasets. Differ-

ences in topologies and support can derive from difficulties in

proper parameterization of models applied to such large datasets,

further complicated by rapid rates of speciation over broad

geographic scales and ecological niches. We are, however, certain

that such repeated efforts in generating well-sampled datasets for

non-model organisms will lead to an increased understanding of

their complex evolutionary histories. We should be prepared to

recognize that sometimes different facets of one biological question

may be answered by different elements of a data set as

mitochondrial and nuclear DNA data have done here. Conversely,

understanding when to build or not build more complex datasets

should always remain an important element that guides how one

answers a particular question.

Thus, gerygones colonized mangroves on several occasions and

those that occur in mangroves are not each other’s closest relatives

within the genus Gerygone. This lends further support for case-by-

case exploration of the rich Australo-Papuan mangrove avifauna.

Phylogeographic analysis of diversity within and among the three

gerygones adapted to mangroves and their closest relatives

especially G. fusca, will bring additional insights to levels of

intraspecific genetic diversity, influence of geographic barriers, and

the history of any hybridization events. Contrasting these

molecular findings with data based on morphology, plumage,

song and ecological niche will broaden our understanding of

historical biogeography within this group. In particular, it should

clarify the importance of the mangroves of Australia and New

Guinea in the evolution of the region’s avifauna and its ecological

diversity.
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