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Abstract

We model an N-player repeated prisoner’s dilemma in which players are given traits (e.g., height, age, wealth) which, we
assume, affect their behavior. The relationship between traits and behavior is unknown to other players. We then analyze
the performance of ‘‘prejudiced’’ strategies—strategies that draw inferences based on the observation of some or all of
these traits, and extrapolate the inferred behavior to other carriers of these traits. Such prejudiced strategies have the
advantage of learning rapidly, and hence of being well adapted to rapidly changing conditions that might result, for
example, from high migration or birth rates. We find that they perform remarkably well, and even systematically outperform
both Tit-For-Tat and ALLD when the population changes rapidly.
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Introduction

People frequently judge and discriminate each other on the

basis of their skin color, gender, or clothing style. Beyond the

ethical issues they raise, such prejudices seem inefficient. They

often lead to erroneous judgements, missed opportunities and

resentment and, at the aggregate level, to segregation, riots, or

religious conflicts [1]. Why, then, are they so ubiquitous?

In this paper, we argue that prejudices strive because strategies

that rely on them can be very successful in competitive

environments. Prejudices are heuristics based on accumulated

experiences, expressed as simple cognitive relationships between

specific traits (e.g., height) and behavior (e.g., aggressiveness).

These associations, acquired through evolution or experience,

enable people to reach judgments about complex situations or

competitors in a ‘‘blink’’ [2–7]. In this sense, they are closely

related to people’s ability to process large amounts of information

rapidly and often unconsciously, and to reach quick decisions

[8–10].

One explanation for these ‘‘heuristics that make us smart’’ [9] is

evolutionary. When our ancestors interacted with strangers, those

who could rapidly and accurately discriminate between dangerous

and trustworthy partners were more likely to survive and

reproduce. However, this explanation does not inform us about

the conditions under which relying on these cognitive shortcuts is

rational or optimal [11]. The fact that, empirically, people do rely

on rules of thumb certainly implies that these rules can be useful

and efficient, but not that they always are. In fact, even though our

intuitive judgments are often accurate, they also frequently lead to

errors and inaccuracies [12], so that the opposite argument could

be made equally well: evolutionarily, those most likely to survive

are those able to assess situations calmly and to derive rational

conclusions–not hasty responses based on emotions or ‘‘gut-

feelings’’ [13,14].

In summary, we know little about the fitness of strategies that

use only a limited subset of the available information to reach

conclusions about their social partners. Can prejudices–the

extrapolation onto others of the behavior of people characterized

by similar attributes–form the basis of a successful strategy in a

competitive environment? In this paper, we investigate the

performance of these rules of thumb by putting them in

competition with well-known strategies such as Tit-For-Tat or

defection. We derive conditions under which prejudiced strategies

outperform these other strategies and when, on the contrary, they

are suboptimal.

Prejudices have the advantage of providing pre-defined

guidelines for interactions, without the need to learn the other’s

specificities. As such, they enable rapid reactions to unknown

circumstances–for example those involving a significant portion of

interactions with foreigners. We will show that they can

successfully avoid exploitation, while still taking advantage of

cooperation with populations that have been found to be

cooperative. Of course, such learning speed comes at a cost.

Because prejudices are coarse-grained inferences based on a

limited number of attributes, they are particularly prone to error

(e.g., not all green people are uneducated) and hence lead to some

level of exploitation (e.g., wrongly assuming that all blue people

are cooperators) or missed opportunities.

Despite this inaccuracy, we find that strategies based on

prejudices perform well for a large range of parameters. They

are particularly well suited for situations in which the population

renews itself relatively rapidly–for example because of high

migration or birth rates. In these situations, they even outperform

the most successful strategies that have previously been proposed

in the literature [15]: those based on reciprocity (Tit-For-Tat, a

strategy in which a player starts cooperating, and then copies the

interaction partner’s decisions), and those based on exploitation

(ALLD, in which an individual always defects).

Methods

To model prejudices, we assume that individuals are diverse

[16,17]. They are defined by observable attributes (e.g., age,

gender, or wealth) which affect–albeit to different degrees–their
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propensity to follow one strategy or another. For example, blue,

short and young people might be more likely to cooperate,

whereas green, tall and old ones are more likely to defect. These

relations are unknown to individuals in the beginning. Instead,

players must rely on their experience–previous interactions with

other people exhibiting these traits–in order to extrapolate the

effect of certain traits on behavior–the more traits, the more

difficult inferences are.

The idea that behavior and certain visible traits are correlated

may not always be accurate. Still, we believe that many observable

cues (e.g., age, displays of wealth) can provide at least some

information about people’s capabilities and probable behavior. A

person’s height, for example, appears to be correlated with her

ability and job market performance [18]. We are not arguing here

that observable traits are sufficient to determine behavior, but

rather that there exists a correlation that can be uncovered. We

explore later the impact of watering down that correlation by

adding noise in the mapping from attributes to strategies.

In our model, players draw inferences differently depending on

their level of prejudice. Highly prejudiced individuals focus on

only one attribute (e.g., height), and base their behavior on this

trait alone (e.g., tall people tend to be aggressive, hence I should

defect). Less prejudiced individuals, on the other hand, will be

more nuanced and base their decisions on additional attributes

(e.g., I know that tall, blue and poor people tend to be cooperative,

but I cannot judge on the basis of height alone). In this sense, Tit-

For-Tat–responding in kind to the opponent’s previous actions–is

the most unprejudiced strategy, in that it treats every individual as

unique and does not make any assumption about others, even if

they carry the same traits as those of previously encountered

individuals.

More formally, individuals denoted by i are assigned a ran-

dom vector of N traits (analogous to a ‘‘DNA sequence’’)
~AAi:½ai

1,ai
2, . . . ,ai

N �, where ai
n [f0,1g is a binary attribute that

can be interpreted as, for example, player i’s color (red/blue),

gender (male/female), or clothing (rich/poor).

Players can have one of three possible strategies: Tit-for-tat

(TFT), whereby the player cooperates in the first round, after

which she copies what her partner did in the previous round;

Always Defect (ALLD), whereby the player always defects,

regardless of the history of play; and Prejudiced, whereby a player

bases its response on the traits of her opponent.

Prejudiced players, denoted by P(n), observe the first n[N of

their interaction partners’ attributes and, on that basis, decide

whether to cooperate. We call those with a small n highly

prejudiced players, and those with a large n little prejudiced

players. For example, a highly prejudiced player, P(1), would

observe only the first attribute (ai
1) of its partners’ DNA sequence

~AAi, whereas a less prejudiced one, P(N), would observe all N
traits.

To illustrate the idea, consider a sample population of I~5
individuals with N~4 traits, and how they would be categorized

by prejudiced players (Fig. 1). P(1) only observes and bases its

response strategy on attribute ai
1, and hence forms very coarse

groups (e.g., green vs. blue people). On the contrary, P(4) draws

no inference, since no two individuals share the same sequence of

traits. In other words, it treats each individual as unique in this

example. Clearly, observing more attributes before reaching an

opinion contributes to a finer-grained view of the population,

because it splits it into smaller and smaller subsets. However, it has

the disadvantage of requiring the observation of a larger

population before inferences can be drawn.

Based on these observations, P(n) forms beliefs b about specific

sequences of traits. A belief is a mapping b : a1,a2, . . . ,an, . . .½ �?½0,1�.

That is, b( a1,a2, . . . ,an, . . .½ �) denotes P(n)’s belief about the

propensity of players with attributes a1,a2, . . . ,an, . . .½ � to cooperate.

We assume that P(n) initially believes that all players are cooper-

ators with probability one. This belief is updated after every

interaction as a function of the other player’s behavior: the belief is

simply the average of the actions of those individuals of a specific

group that P(n) has met. If, for example, P(1) has met three players

with ai
1~1, of which two have defected and one has cooperated,

then P(n)’s belief about individuals with ai
1~1 is that they defect

with probability 2/3, and hence b(1)~2=3. P(1) then cooperates

with the next individual exhibiting ai
1~1 with probability

1{b(1)~1=3, and updates its beliefs again as a function of what

that new opponent does. In a sense, then, all individuals with the

same first n traits are treated as if they were the same person (we

investigate later the consequences of potential misperceptions–e.g.,

seeing a blue person as red). More complex learning strategies (e.g.,

Bayesian updating) could easily be implemented, but our point here

is that even the most basic learning algorithm is sufficient for our

results.

At the beginning of the game, each player’s strategy Si is

defined as follows:

Si~

ALLD if ~AAi~BB0 [ ½0,a)

TFT if ~AAi~BB0 [ ½a,b)

Prejudiced if ~AAi~BB0§b,

8><
>:

where a and b are simple parameters that affect the proportion of

each strategy in the population, and ~BB~½b1,b2, . . . ,bN � (bn [ ½0,1�
and

PN
n~1 bn~1) is a random vector of weights. Note that we

assume that ~BB is a random vector, but that it is common to all

players. This assumption is crucial, because it implies that

strategies are, to some extent, determined by the players’

attributes. In other words, a correlation between attributes and

behavior is assumed to exist, although it is initially unknown to the

players. We investigate below the effect of loosening that

correlation by incorporating various types of ‘‘noise.’’

The game proceeds in T steps. In each of them, players are

randomly paired to play a prisoner’s dilemma with another player.

The payoffs are simply the ones used in Axelrod’s original

tournament [15]:

C D

C

D

3 5

0 1

 !

Figure 1. Illustration of the classifications made by a preju-
diced individual as a function of her level of prejudices. On the
left, we show the DNA sequence of five players, and on the right, the
way these players would be categorized by a prejudiced individual
according to its level of prejudice. A very prejudiced player, P(1), only
observes the first attribute, and hence forms coarse groups. P(4), on the
other hand, observes all four attributes and, since no two individuals
share the same DNA, treats each individual as unique.
doi:10.1371/journal.pone.0030902.g001
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At the end of the game, each player’s average payoff is calculated

and used as measure of its ‘‘fitness’’ or success. Note that, to keep

things simple and to ensure that no other mechanism is causing

our result, we assume that there is no imitation involved: players

follow one strategy and never deviate from it (however, we

investigate the role of noise below).

To sum up, we model an n-player repeated prisoner’s dilemma

game in which players are randomly assigned a vector of

attributes. These attributes determine their strategy (TFT, ALLD

or prejudiced) according to a function unknown to the players, but

common to all of them. Prejudiced players observe one or more of

their partners’ attributes (P(1) observes the first one, P(3) the first

three, etc.), and draw inferences on the basis of their interactions.

These inferences then form the basis of the prejudiced player’s

probability to cooperate or defect with future partners.

Results

We find that the performance of various strategies depends

fundamentally on the shadow of the future [15]–the expected

number of interactions that a player has with a given individual

over the course of the entire game. More specifically, the shadow

of the future is defined as SF~
T

I
, where T is the duration of the

game and I is the total number of players. Note that SF refers to

an expected number of interactions, since partners are chosen

randomly in each time step. A long shadow of the future does not

guarantee that two players will meet several times over the course

of a game, but simply that there is a high probability that they will.

For most of our results, we consider a simulation in which each

player has a total of five attributes (we also study below the impact

of varying the total number of attributes). In line with [19], we find

that ALLD does best for a short shadow of the future (a low

duration combined with many players), because defection is then

clearly the dominant strategy (Fig. 2 A). TFT, on the other hand,

does not draw inferences, and hence exposes itself to exploitation

every time it encounters a new partner. This risk of exploitation

pays off in the long run because it allows TFT players to accurately

learn the other players’ strategies, but not if the shadow of the

future is short (Fig. 2 B). As an example, consider a situation with

N players and duration T~N. In such a situation, the shadow of

the future is 1, i.e., each player expects to meet every other

individual only once over the course of the game. Assume

moreover that all players follow the strategy ALLD. In such a

Figure 2. Performance of prejudiced and non-prejudiced strategies. Average score of different strategies as a function of the two
components of the ‘‘shadow of the future’’ SF (game duration|number of players). The five ‘‘heat’’ plots illustrate the average payoff of various
strategies in a population split equally between TFT and ALLD players (A and B). In simulations C–E, one single prejudiced player is added to each
simulation. Each individual is given five random binary traits, and prejudiced players extrapolate based on one (P(1)), three (P(3)) or all of these traits
(P(5)). TFT performs well when the shadow of the future is long (small population and long duration). In contrast, ALLD performs best for a short
shadow of the future. Prejudiced strategies perform best for intermediate shadows of the future. Each data point on the 100|300 grid is an average
over five hundred simulations, for a total of 15 million simulations.
doi:10.1371/journal.pone.0030902.g002
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world, a TFT player would clearly do poorly, since it would

cooperate with–and be exploited by–every player. By the end of

the game, it would know precisely who is a defector (everyone)

with certainty, but this knowledge would be useless at this point,

since the short shadow of the future implies that it most likely will

never meet them again. This is what we mean when we say that

TFT learns precisely, but slowly.

On the contrary, a prejudiced player would perform quite

well in such a world. It would start by cooperating in its first few

interactions, but quickly draw inferences about the rest of the

population, and hence avoid exploitation even against partners

it has not yet met. However, while extrapolation allows

prejudiced players to be fast at identifying patterns (e.g., ‘‘blue

people tend to defect’’) and, as a result, to avoid exploitation on

a large scale, it also implies a potentially high error rate: missed

opportunities to cooperate, or defection against cooperators. In

contrast, less prejudiced strategies (TFT being an extreme case)

reach a very accurate picture of each individual’s behavior, but

obtaining this picture is slow and hence subject to initial

exploitation.

This trade-off between expediency and precision is visible even

between different levels of prejudices. Thus, the strategy P(1),
which only observes one of the five attributes, learns very rapidly,

and hence does well when the shadow of the future is relatively

short (Fig. 2 C). However, because it misjudges its opponents too

frequently, it also has a high error rate, and therefore performs

poorly when the shadow of the future is long. P(3), a strategy in

which 3 of the 5 traits are observed, is an intermediate case

between P(1) and P(5): it is slower to learn than P(1), but also

makes fewer mistakes (see Fig. 2 D). Finally, P(5) observes all 5

attributes and is quite slow to learn–however, it is still much faster

than TFT because it extrapolates–and hence performs relatively

poorly when the shadow of the future is short, but well when it is

long (Fig. 2 E). Note in particular the similarity with TFT, for

which every player is treated as unique.

Comparing the relative performances of these different

strategies confirms this finding, and also demonstrates the

superiority of prejudiced strategies for intermediate values of the

shadow of the future (Fig. 3). In particular, both P(3) and P(5)
manage to outperform both ALLD and TFT for shadows of the

future between 2 and 6 (a range that includes a large portion of

real-world interactions).

We have shown that prejudiced strategies perform well against

both TFT and ALLD. But how do they perform against

themselves, i.e., against other prejudiced players? To answer this

question, we varied the proportion of the population that relies on

prejudiced strategies, and found that the more prejudiced players

are added to the simulation, the lower their performance becomes.

In other words, prejudiced players perform best in isolation (Fig. 4).

There are at least two reasons for this result. First, a large

proportion of prejudiced players imply a higher number of missed

opportunities. This is because prejudiced players rely on crude

approximations, and hence two of them interacting is likely to

multiply the probability with which at least one misestimates the

other. Second, and most important, prejudiced strategies are

inconstant because prejudiced players cooperate or defect based

on their (evolving) prejudices–not on their genetic encoding.

Prejudiced strategies strive among players whose strategies are

relatively stable over time, but are error-prone against inconstant

ones. As a result, inferences drawn about their strategy at time t
are unlikely to be correct at time tz1. Prejudiced players are good

at simplifying the world, but fail when the world is too complex.

In addition, we investigated the performance of these various

strategies in the presence of different types of noise [20]. We

Figure 3. Prejudiced strategies outperform TFT and ALLD for
intermediate shadows of the future. Average score of various
strategies as a function of the shadow of the future. TFT performs best
when the horizon is long. ALLD, on the other hand, performs best when
the horizon is short. For any intermediate shadow of the future,
prejudiced strategies (such as P(5)) obtain higher average scores than
either ALLD or TFT. The results are based on 100 simulations with 50%
TFT, 50% ALLD and one prejudiced player.
doi:10.1371/journal.pone.0030902.g003

Figure 4. Strategies with the highest average score, as a
function of the proportion of prejudiced players. Each individual
is given five traits; the proportion of prejudiced (P(5)) players added to
the simulation is ‘‘% P(5)’’, with the remaining population equally split
between ALLD and TFT players. For short shadows of the future, ALLD
defeats all other strategies. For longer shadows of the future,
prejudiced players can beat TFT, but only if the total proportion of
prejudiced players in the population remains sufficiently low. In other
words, prejudiced strategies perform well against TFT and ALLD, but
not against themselves.
doi:10.1371/journal.pone.0030902.g004
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expect noise to be particularly problematic for prejudiced

strategies, because it makes learning far more difficult. First, we

assumed that the mapping from traits to strategy can be imperfect,

in the sense that ‘‘DNA’’ might not determine behavior. More

specifically, we assumed that a proportion of players are assigned a

random strategy (ALLD or TFT), regardless of their traits. This

makes inferences from traits to strategies far more difficult. As

expected, we find that prejudiced strategies are particularly

sensitive to this type of noise (Fig. 5). Prejudiced strategies are

successful when the inferences drawn have at least some validity.

For example, prejudiced players are good at learning that blue

people tend to defect more frequently than yellow people. If,

however, there exists no connection whatsoever between color and

behavior, prejudiced players will nonetheless draw inferences–

wrong ones–and apply them with equal confidence, with

potentially disastrous results. As a result, higher levels of noise in

the mapping from traits to strategies significantly lower the fitness

of prejudiced strategies.

A second type of noise we investigated is the possibility that

players play in discordance with their strategy. They might do so

by mistake or strategically, but the result is that the strategy of

these players becomes more difficult to determine for observers.

More practically, we assume that in every time step of the game, a

player plays a random move (cooperate or defect) with some

probability, instead of the one she is programmed to play. For

example, a TFT player might defect when she is meant to

cooperate. Again, we find in this case that the larger the rate of

mistake, the less competitive prejudiced strategies become (Fig. 6).

Note that this type of noise also affects the efficiency of TFT for

the same reasons: noise leads to wrong inferences about an

individual’s strategy, and hence to an ill-suited response in the next

period [21].
A third type of noise involves perceptions. Suppose that

prejudiced players might misperceive the traits of their opponents.

For example, they might perceive them as rich when they are

really poor, or as blue when they are red. We implemented this

concept by assuming that, with some probability, a prejudiced

player will misperceive one of his opponent’s traits. For example, a

true DNA sequence ½0,0,1� might instead be recorded by the

prejudiced player as ½0,0,0�. Again, we find that the results are

damaging for prejudiced strategies, although not as much as for

the other types of noise analyzed above (Fig. 7).

Discussion

The outbreak of cooperation in a hostile environment such as

the prisoner’s dilemma has been the object of a large amount of

research in numerous fields ranging from social sciences

[15,22,23] to biology [24] and physics [25,26]. Probably the

most important finding in this literature is that TFT defeats most

other strategies in a wide range of environments [15,27].

However, we showed here that TFT suffers from one major

drawback, which limits its applicability in the real world: it is

relatively slow to learn [28]. Considering for example Axelrod’s

original setup, TFT players need to meet at least once with

another player before they form an ‘‘opinion’’of her. This

strategy is well-suited if the population is relatively small and

stable (no births or migration) because the initial risk of

exploitation pays off, given the large expected number of

interactions with the same players. However, when populations

renew themselves rapidly, as is the case (to varying degrees) in

bacterial, animal, or human populations, TFT can incur high

initial costs because it cooperates in the first round against

numerous defectors, yet without reaping the long-term benefits of

this learning process. In fact, these costs are very high if the

Figure 5. Strategies with the highest average score, as a
function of the level of noise. Noise refers to the probability that a
player’s strategy does not correspond to its DNA. In other words, it
weakens the correlation between specific traits and strategy. The higher
the level of noise, the more players’ strategies are defined indepen-
dently of their traits. Prejudiced strategies perform well for low levels of
noise and intermediate values of the shadow of the future. For high
levels of noise, however, inferences drawn by prejudiced strategies
become less and less reliable. The results are based on one hundred
simulations with 50% TFT, 50% ALLD and one prejudiced player.
doi:10.1371/journal.pone.0030902.g005

Figure 6. Strategies with the highest average score, as a
function of the rate of mistake. The rate of mistake refers to the
probability that a player will play randomly instead of following its
strategy. The higher the mistake rate, the more the population plays
cooperate or defect at random. Prejudiced strategies perform well for
low levels of mistake and intermediate values of the shadow of the
future. When more randomness is added, however, inferences drawn by
prejudiced strategies become less and less reliable. The results are
based on one hundred simulations with 50% TFT, 50% ALLD and one
prejudiced player.
doi:10.1371/journal.pone.0030902.g006
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population is composed mostly of defectors. This can be

particularly problematic when initial losses are difficult to make

up for, as is the case for example when the rich get richer [29].

In other words, the problem with TFT is that it does not draw

any inferences about the population. It treats every individual as

unique. We showed here that this is often inefficient, and that

strategies that extrapolate from a small number of attributes

(prejudiced strategies) often perform better than both TFT or

defect, because they allow for faster (though less accurate)

learning.

These findings have clear empirical implications, in that they

relate a population’s speed of renewal–a function of, among other,

a country’s size, its openness, migration, birth and death rate–to

the prevalence of prejudices in that population. One prediction in

particular would be that people in societies traditionally charac-

terized by low rates of migration (e.g., islands) would judge their

peers on the basis of subtler cues that those in societies with high

levels of migration. When the population evolves slowly, the

expected number of interactions with a given person (the shadow

of the future) is high, and hence investing in finer discrimination

procedures pays off in the long run.
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Figure 7. Strategies with the highest average score, as a
function of the rate of misperception. The rate of misperception
refers to the probability that a prejudiced player will record its
opponent’s attributes with some mistake. For example, a true sequence
of traits ½1,1,1� might be recorded as ½1,0,1�. The higher the
misperception rate, the more often a prejudiced player will wrongly
record one of her opponent’s traits. Here, the rate of misperception
affects the range of shadow of the future for which prejudiced players
(here P(5)) perform better than any other strategies. The results are
based on one hundred simulations with 50% TFT, 50% ALLD and one
prejudiced player.
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