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Abstract

Background: Estrogen receptor a (ERa) has been shown to protect against atherosclerosis. Methylation of the ERa gene can
reduce ERa expression leading to a higher risk for cardiovascular disease. Recently, microRNAs have been found to regulate
DNA methyltransferases (DNMTs) and thus control methylation status in several genes. We first searched for microRNAs
involved in DNMT-associated DNA methylation in the ERa gene. We also tested whether statin and a traditional Chinese
medicine (San-Huang-Xie-Xin-Tang, SHXXT) could exert a therapeutic effect on microRNA, DNMT and ERa methylation.

Methodology/Principal Findings: The ERa expression was decreased and ERa methylation was increased in LPS-treated
human aortic smooth muscle cells (HASMCs) and the aorta from rats under a high-fat diet. microRNA-152 was found to be
down regulated in the LPS-treated HASMCs. We validated that microRNA-152 can knock down DNMT1 in HASMCs leading
to hypermethylation of the ERa gene. Statin had no effect on microRNA-152, DNMT1 or ERa expression. On the contrary,
SHXXT could restore microRNA-152, decrease DNMT1 and increase ERa expression in both cellular and animal studies.

Conclusions/Significance: The present study showed that microRNA-152 decreases under the pro-atherosclerotic
conditions. The reduced microRNA-152 can lose an inhibitory effect on DNA methyltransferase, which leads to
hypermethylation of the ERa gene and a decrease of ERa level. Although statin can not reverse these cascade
proatherosclerotic changes, the SHXXT shows a promising effect to inhibit this unwanted signaling pathway.
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Introduction

Atherosclerosis is the major pathogenesis of cardiovascular disease

that causes morbidity and mortality in industrialized countries [1]. This

progressive multi-factorial process involves cellular signaling pathways

[2–4], inflammatory mediators, growth factors, and adhesion

molecules [5], [6]. Risk factors such as unhealthy dietary habits, aging

and smoking contribute to the development of cardiovascular disease

through increasing blood lipid levels and inflammation in the arterial

wall. Eventually, arterial smooth muscle cells migrate and proliferate

leading to atherosclerotic plaque formation and atherosclerosis

development [7], [8]. Recently, DNA methylation has been implicated

as a novel risk factor for atherosclerosis [9], [10].

DNA methylation is an important epigenetic modification on

chromosomes that plays a significant role in the regulation of gene

transcription [11]. When the cytosine and guanine contents are

greater than 50% in the DNA sequence of humans, the high CG

content regions can be hypermethylated causing transcriptional

silencing [12]. Increasing evidence shows that global DNA

hypomethylation is associated with gene transcriptional activity

in the pathogenesis of cardiovascular diseases, including athero-

sclerosis [13–16]. Hiltunen et al. reported global DNA hypo-

methylation in the proliferating vascular smooth muscle cells

(VSMCs) of human atherosclerotic plaque [9].

Estrogen receptor a (ERa) has been reported to protect against

atherosclerosis and aging in the cardiovascular system [17], [18].

Increased expression of the ERa gene can reduce the proliferation

of VSMCs [19], [20]. DNA methylation in the promoter region of

the ERa gene can reduce transcription of ERa leading to a higher

risk for several cardiovascular diseases [18].

It is known that DNA methylation is catalyzed by DNA

methyltransferases (DNMTs), namely DNMT1, DNMT3a and

DNMT3b. Methytransferases use a reactive methyl group bound

to sulfur in S-adenosyl methionine as the methyl donor. DNMT1 is

the most abundant DNA methyltransferase in mammalian cells and

the key maintenance enzyme for hemimethylated DNA during DNA

replication of various cancer cells [21]. DNMT3a and DNMT3b are

responsible for establishing de novo methylation and both enzymes
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exist in diverse cancer cells and cell lines [12], [22]. Both recent

evidence and our previous study showed that microRNAs (miRs),

which are noncoding RNAs, can be involved in the promoter

methylation of CpG islands by targeting DNMTs 39UTR [23–27].

Thus, we first aimed to search for miRNAs involved in DNMT-

associated DNA methylation in the ERa gene.

Statin is a widely used lipid-lowering drug with multiple effects on

the cardiovascular system [28]. Statin has been shown to have

multiple mechanisms to reduce the cardiovascular risk including the

anti-inflammation effects [29] and the inhibition of neointimal

proliferation [30], [31]. We previously also found San-Huang-Xie-

Xin-Tang (SHXXT), a traditional Chinese medicine, has several

beneficial anti-atherosclerotic and anti-inflammatory effects [32]. In

the present study, we also tested whether statin and SHXXT can

regulate DNA methylation in the ERa gene as our second aim.

Results

ERa expression in LPS-treated HASMCs and HF feeding in
rats

In our previous study, LPS (100 mg/ml) significantly induced

the cell proliferation, migration and inflammation. In this study,

we first found that LPS treatment significantly decreased ERa
mRNA level and protein level at 48 h and 72 h (Fig. 1A and 1B).

Furthermore, ERa expression can also be restored by SHXXT in

a dose-dependent manner (Fig. 1A and 1B). However, simvastatin

(1 mM) treatment had no effect on the decreased ERa at 48 h or

72 h (Fig. 1C). In order to confirm that the SHXXT effect on

increasing ERa expression, we compared the mRNA and protein

expression of the ERa gene in the aorta between the HF diet-fed

SD rats with and without treatment of SHXXT. After 12 weeks,

the ERa mRNA and protein levels were decreased in the HF diet-

fed group as compared with the normal diet group (Fig. 2A and

2B).

DNMT1 expression in LPS-treated HASMCs
For the global methylation pattern, we found that the

proportion of methylation in the Alu elements maintained at

,16% in HASMCs (measured at 48 h and 72 h) prior to LPS

treatment. The proportion of methylation was substantially

decreased to 5% at 72 h, although it was only decreased from

16% to 13% at 48 h after LPS treatment.

Since DNMT1 is the major enzyme for DNA methylation in

mammals, we focused on this DNMT and tried to elucidate the

Figure 1. mRNA and protein expression of ERa in the HASMCs treated with LPS, and the change of promoter methylation in
HASMCs. (A) HASMCs were treated with LPS (100 ng/mL) and SHXXT (0.2–0.6 mg/ml) for 48 h and 72 h. The mRNA expression of ERa after LPS and
SHXXT treatment was detected by real time PCR and normalized to the housekeeping gene GAPDH, and (B) the protein level of ERa after LPS and
SHXXT treatment was detected by Western blot and normalized to the housekeeping gene GAPDH. (C) ERa mRNA and protein level after simvastatin
(1 mM) treatment were detected by real-time PCR and Western blot at 48 h and 72 h. ** P,0.01 versus the control group. Data represents mean 6 SD
from 3 independent experiments performed in triplicates.
doi:10.1371/journal.pone.0030635.g001

miR-152 on ERa Expression
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regulation mechanism. As shown in Fig. 3A and 3B, the increases

of DNMT1 mRNA expression and protein levels in HASMCs

were found at 48 h and 72 h after the treatment of LPS. When

adding SHXXT (dose between 0.2 to 0.6 mg/ml), the mRNA and

protein expression of DNMT1 were substantially reduced after

incubation for 48 h and 72 h. On the contrary, neither mRNA

nor protein level changed by treating simvastatin (Fig. 3C), which

suggests simvastatin does not influence DNMT1-associated DNA

methylation. Similar to the results from the cellular studies,

DNMT1 expression in the aorta of SD rats was significantly

increased in the HF-diet group and decreased by SHXXT (Fig. 3D

and 3E). Therefore, we demonstrated a consistent change between

ERa and DNMT1, and found a potential therapeutic effect of

SHXXT.

Gain of ERa by DNMT1 knockdown
To further confirm that DNMT1 can influence ERa expression,

we used shRNA to knock down the DNMT1 gene. The RNA

inference caused a decrease of DNMT1 mRNA expression and

protein expression by 57.3% and 58.2% respectively (Fig. 4A and

4B). When DNMT1 was inhibited, the mRNA and protein levels

of ERa were simultaneously increased by 4.33- and 2.32-fold,

respectively (Fig. 4A and 4B). These results clearly show that ERa
gene can be silenced by DNMT1.

ERa methylation in LPS-treated HASMCs and HF fed rats
To determine if ERa locus undergoes promoter hypermethyla-

tion in LPS-treated HASMCs, we checked the methylation status

of the CpG island located in the first exon of ERa gene (Fig. 5A)

by the bisulfite specific PCR and sequencing (BSP) as well as

methylation-specific PCR (MSP). We first measured the methyl-

ation degree of 24 CpG sites in exon 1 (nucleotides 146–354) by

the BSP assay [33]. At 48 h and 72 h after LPS treatment, the

methylation percentage was increased (57% and 77%, respective-

ly) as compared with the control group (40% and 49%,

respectively; Fig. 5B) in overall 24 CpG sites. Although we also

found that the DNA methylation status of ERa can be reversed by

SHXXT treatment, but the drug effect mainly occurred at 72 h

(55%). In the MSP assay, we found that DNA methylation status

in the ERa exon 1 was also increased by LPS, and SHXXT

partially reversed LPS-induced DNA hypermethylation at 48 h

and 72 h (Fig. 5C). These data suggested that ERa exon 1

hypermethylation does occur in LPS-induced HASMCs and affect

ERa expression. In order to confirm that the SHXXT effect on

reducing ERa hypermethylation, we compared the methylation

status of the ERa gene in of the aorta between the HF diet-fed SD

rats with and without treatment of SHXXT. After 12 weeks,

SHXXT could significantly reverse HF diet-induced DNA

hypermethylation of the ERa gene (Fig. 5D).

miR-152 expression in LPS-treated HASMCs
To identify the atherosclerosis-related miRNAs, we used the

miRNA arrays (OneArray microRNA expression profiling micro-

arrays based on the latest miRBase release-version 17; Phalanx

Biotech Group, Taiwan) to survey the miRNA expression levels

between HASMCs treated and untreated with LPS (100 ng/mL).

This commercial array used spotted probes to interrogate 1087

human miRNAs. Among 1,087 surveyed miRNAs, the expression

level of miR-152 was decreased by 2.3-fold when HASMCs were

treated with LPS for 24 h (data not shown). Subsequent real-time

PCR experiment confirmed that LPS can decrease miR-152

expression at 48 h and 72 h (P = 0.0015 and 0.006; Fig. 6A).

Figure 2. The expression of ERa in the aorta of the Sprague-Dawley rats under a high fat diet. In addition to a normal diet, rats under a
high fat diet were treated with SHXXT (30 mg/kg/day) or placebo (water) for 12 weeks. (A) The ERa mRNA expression of each group (n = 6) was
detected by real time PCR and normalized to GAPDH. Data represents mean 6 SD. (B) The protein level of ERa of each group was detected and
normalized to GAPDH. The number of SD rat in each group is 6. Data represents mean 6 SD.
doi:10.1371/journal.pone.0030635.g002

miR-152 on ERa Expression
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Previous studies on cancers [23], [24] reported that miR-152 can

bind to the 39 untranslated region (UTR) of DNMT1. Accord-

ingly, we speculated that miR-152 may be involved in DNMT1-

associated DNA methylation in the cardiovascular system.

Furthermore, our cellular studies showed that miR-152 levels

can be induced by SHXXT in a dose-dependent manner, but

cannot be induced by simvastatin for 48 h or 72 h (Fig. 6B). In the

aorta of the SD rats, we confirmed that the miR-152 expression

was down-regulated in the HF-diet group, and it can be up-

regulated after 12-week treatment of SHXXT (n = 6; Fig. 6C).

Gain and loss functions of ERa by miR-152
To prove that miR-152 can regulate ERa gene expression via

the suppression of DNMT1, we transfected the miR-152

precursor or inhibitor into the LPS-treated HASMCs. The

results showed that the DNMT1 protein levels were reduced and

consequently ERa protein levels were up-regulated by miR-152

precursor at 72 h (100 nM; Fig. 7A). On the contrary, DNMT1

protein levels were increased and consequently ERa protein

levels were down-regulated by miR-152 inhibitor at 72 h

(100 nM). These findings indicate that miR-152 indirectly up-

regulated ERa expression through its binding to DNMT1. MSP

analysis also showed that DNA methylation at ERa was reduced

by miR-152 precursor in the LPS-treated cells (Fig. 7B).

However, DNA methylation at ERa was increased by miR-152

inhibitor. Therefore, we demonstrated a consistent change

between DNMT1 and ERa methylation by the change of miR-

152 levels.

Figure 3. DNMT1 expression in LPS-induced HASMCs and the aorta of the rats under a high fat diet. (A) HASMCs were treated with LPS
(100 ng/mL) and SHXXT (0.2–0.6 mg/ml) for 48 h. DNMT1 mRNA expression were examined by real-time quantitative PCR and normalized to RU6B.
(B) DNMT1 protein in LPS-treated HASMCs measured by Western blot at 48 h and 72 h. (C) DNMT1 mRNA and protein level after the treatment of
simvastatin for 48 h and 72 h. ** P,0.01 versus the control group. Data represents mean 6 SD from 3 independent experiments performed in
triplicates. (D and E) The mRNA expression and protein level of DNMT1 of the rat aorta under a normal diet and a high-fat diet with or without SHXXT
(30 mg/kg/day) for 12 weeks. The upper panel of Figure 3E shows the western blotting data and lower panel shows the quantification of western
blotting. The number of SD rat in each group is 6. # P,0.05 versus control, ** P,0.01 versus LPS group. Data represents mean 6 SD.
doi:10.1371/journal.pone.0030635.g003

miR-152 on ERa Expression
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The effect of miR-152 on HASMC proliferation and
migration

To further examine whether miR-152 influences HASMC

phenotypes through the change of ERa expression, the cell

proliferation and migration were assessed at 48 h and 72 h after

transfecting miR-152 precursor or inhibitor into the cells. The

results demonstrated that the transfected miR-152 precursor

resulted in a concentration-dependent reduction of cell prolifer-

ation in the LPS-treated HASMCs at 48 h and 72 h (Fig. 7C;

P,0.01). However, miR-152 did not influence HASMC migration

at 48 or 72 h (data not shown). These results also suggested that

miR-152 has an anti-atherosclerotic effect by decreasing cell

proliferation.

Discussion

Increasing evidence has revealed that the ERa protein has an

atheroprotective effect and methylation in the ERa gene can cause

atherosclerosis [17], [18]. However, the role of microRNAs in the

regulation of ERa expression has not been extensively explored.

The present study showed that miR-152 can down regulate

DNMT1 which in turn inhibits methylation in the promoter of the

ERa gene leading to higher ERa expression. Therefore, we

identified that miR-152 has an anti-atherosclerotic effect via its

effect on the increase of ERa expression. We also used LPS to

induce hypermethylation of the ERa gene in HASMCs. Although

statin failed to reverse the hypermethylation status in the ERa
gene, the traditional Chinese medicine (SHXXT) partially

recovered LPS-induced DNA hypermethylation. Furthermore,

our animal studies confirmed the therapeutic effect of this Chinese

medicine. Again, statin did not have any effect on increasing miR-

152 but SHXXT could enhance miR-152 expression. Unfortu-

nately, we did have available human samples to compare miR-152

concentrations between atherosclerotic and non-atherosclerotic

tissues. Taken together, the present study not only identified a

novel mechanism to regulate ERa expression but also provided

data for the Chinese medicine SHXXT in the context of

epigenetic therapy in the context of atherosclerosis and cardio-

vascular disease.

It is well known that estrogen has directly protective effect on

the cardiovascular system [17], [34], [35]. Two types of ER (a
and b subtypes) have been identified in VSMCs and endothelial

cells. Several studies have shown that estrogen inhibits the

proliferation and migration of VSMCs via ERa binding [17],

[35], [36]. Furthermore, the anti-atherosclerotic effects of ERa
also can be influenced by the methylation status in its promoter

Figure 4. Expression of ERa after knocking down DNMT1. LPS-treated HASMCs were transfected with shRNAs (6 mg DNA per 105 cells)
specifically targeting DNMT1. The data were obtained at 48 h post-transfection of shRNAs. (A) The mRNA levels of DNMT1 and ERa were examined
with real-time quantitative PCR. Data represents mean 6 SD. (B) Protein levels of DNMT1 and ERa were examined by specific antibody.
doi:10.1371/journal.pone.0030635.g004
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region [18], [19]. Our data provided more insight to how the

ERa gene is regulated by epigenomic mechanism and micro-

RNA.

Newman [37] first proposed that DNA hypomethylation is

involved in the development of cardiovascular disease. Increased

plasma homocysteine and S-adenosylhomocysteine (SAH) are

associated with the inhibition of methyltransferases, which causes

global DNA hypomethylation in VSMCs [38], [39], peripheral

white blood cells [39] and atherosclerotic lesions [40]. More solid

evidence from animal studies suggests that cellular proliferation is

associated with global DNA hypomethylation and DNMT1

overexpression in atherosclerotic lesions [39]. Theoretically,

over-expressed DNMT1 should cause DNA hypermethylation,

but the paradoxical finding of increased global DNA hypomethy-

lation and DNMT1 overexpression was reported in previous

studies [39]. Therefore, there must be other mechanisms

regulating DNA methylation, and in the present study we cannot

rule out the involvement of these undiscovered mechanisms in

ERa hypermethylation. Indeed, co-existence of global hypo-

methylation and hypermethylation in particular genes have been

reported in the atherosclerosis [13]. The DNMT family can be

regulated by several miRs such as miR-29b, miR-148a and miR-

152 [23–25,27]. Given that epigenetic therapy has been

advertised, our finding of SHXXT’s effect on influencing

microRNA and DNA methylation may offer a different approach

in conjunction with statin for a better treatment for cardiovascular

diseases.

In conclusion, the present study showed that the level of miR-

152 decreases under the pro-atherosclerotic stimulations. The

reduced miR-152 can lose an inhibitory effect on DNA

methyltransferase, which contributes to hypermethylation of the

ERa gene. Once hypermethylation takes place in the promoter of

the ERa gene, atherosclerosis can be promoted. Although statin

cannot reverse these cascade proatherosclerotic changes, the

Chinese medicine, SHXXT, shows a potential effect to inhibit

such an unwanted signaling pathway.

Figure 5. Methylation of the ERa gene in HASMCs induced by LPS with or without SHXXT treatment. (A) Schematic diagram of the
distribution of ERa exon I CpG islands in HASMCs (GenBank accession no. X03635.1 G1:31233) are shown. Black and white arrows indicated the PCR
primer pair of methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP), respectively. (B) Exon 1 of the ERa methylation status was analyzed
by MSP at 48 h and 72 h. Electrophoresis showed methylation-specific PCR products from three conditions (Control, LPS treatment and LPS plus
SHXXT treatment).UM: unmethylated; M: methylated ERa. (C) PCR primers specific to unmethylated and methylated bisulfite-modified DNA were
used to amplify exon 1 of the ERa gene in LPS-induced HASMCs and SHXXT treatment. Amplified PCR products were cloned, and six individual clones
were sequenced to determine the methylation state of the 24 CpGs within the amplified region. Open and filled circles indicate that the CpG site is
unmethylated or methylated, respectively. Each row represents one clone. (D) Exon 1 of the ERa methylation status of the rat aortas were analyzed by
MSP. UM: unmethylated; M: methylated ERa.
doi:10.1371/journal.pone.0030635.g005
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Materials and Methods

HASMC culture and treatment
Human aortic smooth muscle cells (HASMCs, cryopreserved

tertiary cultures; Cascade Biologics, Inc.,OR, USA) were grown in

culture flasks in smooth muscle cell growth media (Medium 231,

Cascade Biologics, Inc., OR, USA). The smooth muscle cell

growth medium consisted of fetal bovine serum (FBS, 5%), human

epidermal growth factor (10 ng/ml), human basic fibroblast

growth factor (3 ng/ml), insulin (10 mg/ml), penicillin (100

units/ml), streptomycin (100 pg/ml), and Fungizone (1.25 mg/

ml). The cells were incubated at 37uC in a humidified 5% CO2

atmosphere. HASMCs were subcultured when the cells were

about 70–80% confluence. Passages 4 to 9 were used for

experiments. Lipopolysaccharide (LPS; 100 ng/mL) was used to

induce an atherogenic change in HASMCs. Before LPS treatment,

cells were grown under HASMC medium without FBS for 24 h.

Cells were then incubated at 37uC for 24 h in the presence of LPS.

SHXXT contains three components: Coptidis rhizome (rhizomes of

Coptis chinesis Franch; CR), Scutellariae radix (roots of Scutellaria

baicalensis Georgi; SR), and Rhei rhizome (rhizomes of Rheum officinale

Baill; RR). SHXXT was prepared by as follows: powdered crude

extracts of RR, SR and CR were weighed in a ratio of 2: 1: 1.

Each extract was added to 10-fold volume of water and then

boiled in different conditions individually. After finishing the

extraction, the materials were filtered to yield three extraction

solutions. Three hot solutions were combined and then condensed

to 1/20 in volume of the total original water. The new formed

condensed solution was spray-dried to get the final dry SHXXT.

SHXXT was dissolved in deionized distilled water along with LPS

for a 24 h incubation period. Simvastatin (1 mM; Sigma-Aldrich,

MO, USA) was dissolved in ETOH and was subsequently diluted

in saline. Both SHXXT and simvastatin were tested for the effect

on DNA methylation of the ERa gene in the HASMCs.

Animal Preparation
Eight-week-old Sprague-Dawley male rats were divided to three

groups (normal diet, high fat (HF) and HF plus SHXXT).

SHXXT (30 mg/kg/day) or placebo (water) was orally fed using

the ball-tipped feeding needle for 12 weeks. Rats were raised in a

Figure 6. Expression of miR-152 in LPS-treated HASMCs and the aorta of the Sprague-Dawley rats. (A) The miR-152 levels in the LPS -
treated HASMCs were examined by real-time quantitative PCR and normalized to RU6B after 48 h and 72 h treatment with/without SHXXT. (B) miR-
152 expression were detected by real-time quantitative PCR after treatment with simvastatin (1 mM). * P,0.05 versus the control group. Data
represents mean 6 SD from 3 independent experiments performed in triplicates. (C) miR-152 expression of the rat aorta evaluated by real-time
quantitative PCR. Rats under a high fat diet were treated with SHXXT (30 mg/kg/day) or placebo (water) for 12 weeks. The SD rat number of each
group is 6. Data represents mean 6 SD.
doi:10.1371/journal.pone.0030635.g006

miR-152 on ERa Expression

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e30635



controlled environment at 2062uC, with 40–70% relative

humidity and an artificial 12-h light-dark cycle. All animal

experiments were carried out in compliance with the ‘‘Guide for

the Care and Use of Laboratory Animals’’ published by the

National Academy of Sciences. The protocol was approved by the

Kaohsiung Medical University Animal Research Committee

(IACUC approval No.98018). After acclimatization for 1 week,

eighteen rats were randomly divided into 3 groups. The

composition of the HF diet was enriched with 30% fat. Access

to food and water was unrestricted for either group. The body

weight, food and water consumption of the animals were

measured daily. Rats were killed at the end of 12th week. Their

aortas were removed and immediately frozen in liquid nitrogen

until assayed.

PCR of Alu repetitive elements
Methylation analysis of Alu repetitive elements was performed

by the COBRA assay as described previously [41]. Methylation

quantification was performed with a molecular Dynamics

PhosphorImager.

Methylation specific PCR and sequencing
DNA was extracted from HASMCs and rat aortas by the DNA

extraction kit (Qiagen, CA, USA). Next, bisulfite conversion was

performed using the EZ DNA methylation Gold kit (Zymo

research, CA, USA) according to the manufacturer’s instructions.

Methylation specific PCR was then carried out to determine the

methylation status of ERa. Bisulphite-modified DNA was used for

PCR with primers specifically designed for methylated or

unmethylated sequences (Table 1). The PCR conditions were as

follows: 95uC for 5 min followed by 40 cycles of 95uC for 1 min,

56uC for 1 min and 72uC for 2 min, and then a final extension at

72uC for 7 min. PCR products were analyzed by electrophoresis

in a 2.0% agarose gel containing ethidium bromide.

Bisulfite sequencing of HASMC DNA samples was performed

as described previously [33]. The bisulfite-modified DNA was used

to amplify a 208-bp product of ERa exon 1 gene with primer sets

mentioned at Table 1. Two stage PCR were used to amplify a

region with in the ERa CpG island (GenBank accession

no. X03635.1 G1:31233). PCR products were cloned using

pGEM-T Vector System according the manufacturer’s instruc-

tions (Promega). The sequenced DNA region for ERa was

confirmed by using the automated sequencer (ABI automated

DNA sequencer).

RNA interference
We used shRNA to perform RNA interference. The lenti-viral

plasmids expressing 21-mer shRNAs against DNMT1 (clone ID:

TRCN0000021890) was obtained from the National RNAi Core

Facility in the Academia Sinica (Taipei, Taiwan). HASMCs were

transfected with the empty vector (pLKO.1 puro) or plasmids

expressing shRNA (6 mg DNA per 105 cells for 48 h) using

Lipofectamine 2000 (Invitrogen, CA, USA).

MicroRNA transfection
A negative control miRNA (#17110), hsa-miR-152 precursor

(Product ID: PM12269) and hsa-miR-152 inhibitor (Product ID:

AM12269) were purchased from the Ambion Inc. (TX, USA).

Figure 7. miR-152 regulates DNMT1 and ERa at the protein levels. LPS-treated HASMCs were transfected with miR-152 precursor/inhibitor
(25 nM and 100 nM) and a negative control miR (NC miR, 100 nM). (A) DNMT1 and ERaprotein levels were measured by Western blot at 72 h post-
transfection. (B) Exon 1 of the ERa methylation status was analyzed by MSP at 72 h post-transfection. UM: unmethylated; M: methylated ERa. (C)
HASMCs were incubated with LPS with the miR-152 precursor or inhibitor for 48 h and 72 h and the cell proliferation was assessed using the MTT
assay to measure mitochondrial enzyme activity. # P,0.01 versus control, **P,0.01 versus the LPS group. Data represents mean 6 SD from 3
independent experiments performed in triplicates.
doi:10.1371/journal.pone.0030635.g007
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HASMCs were transfected with miRNA precursor using Lipo-

fectamine 2000.

RNA isolation, cDNA synthesis, and quantitative real-time
PCR

Total RNA was isolated from HASMCs and rat aortas using

Trizol reagent (Invitrogen, CA, USA). cDNA was synthesized by

reverse transcription with 1 mg RNA using the SuperScriptTM kit

(Invitrogen, CA, USA). The 20 ml reverse transcription products

were diluted to 100 ml and 2 to 3 ml was used for real-time PCR.

Real-time PCR reactions were performed in a volume of 25 ml

containing 140 ng specific primers (Table 1) and 12.5 ml SYBR

green Master Mix (ABI, CA, USA) using the following condition:

Initial denaturing: 95uC for 10 min, followed by 40 cycles of

denaturing at 95uC for 30 s, annealing at 56uC for 40 s, and

extension at 72uC for 30 s. The threshold cycle number (CT) value

for the target gene (DNMT1 and ERa) was normalized against

GAPDH and calculated as DCT = CTTarget2CTGAPDH. Expres-

sion levels of mRNA were quantified by employing the 22DDCt

relative quantification method. Real-time PCR was performed for

Hsa-miR-152 (UCAGUGCAUGACAGAACUUGGG; Assay ID:

000438) using the specific TaqMan MiRNA Reverse Transcrip-

tion kit (Applied Biosystems). All the reactions were amplified on a

7900 HT Fast Real Time PCR system (Applied Biosystems).

Expression levels of miRNA were quantified employing the

22DDCt relative quantification method. The threshold cycle

number (CT) value for miR-152 was normalized against RU6B

and calculated as DCT = CTmiR-1522CTRU6B. Expression levels

of miRNA were quantified by employing the 22DDCt relative

quantification method.

Western blot for DNMT1 and ERa
HASMCs were homogenized in 100 ml of protein extraction

reagent (Thermo Scientific, MA, USA) and protease inhibitor

(Panomics, CA, USA). Protein concentration was determined by

Pierce BCA Protein Assay Kit (Thermo Scientific, MA, USA).

20 mg of protein was loaded per lane and separated by NuPAGE

Novex Bis-Tris 4–12% mini gel electrophoresis (Invitrogen, CA,

USA) in the Novex Xcell-II apparatus for 120 min at 100 V, and

transferred to Immbilon-PVDF transfer membranes (Millipore,

MA, USA) for immunoblotting. Nonspecific binding was blocked

with 5% nonfat milk for 1 h at the room temperature. Bands were

visualized by reacting with specific antibodies for DNMT1 (Santa

Cruz biotechnology, CA, USA) and ERa (Millipore, MA, USA)

overnight at 4uC. Sequentially, the anti-mouse (for DNMT1) or

anti-rabbit (for ERa) secondary antibodies were conjugated to

horseradish peroxidase and enhanced chemiluminescence was

determined using Fuji medical X-ray film (Fujifilm, Tokyo, Japan).

Cell proliferation and migration assay
To examine the effect of miR-152 on cell proliferation,

HASMCs were transfected with the miR-152 precursor or

inhibitor and then were incubated in microplates at 37uC with

5% CO2 for 48 h and 72 h. After that 0.5 mg/ml of dimethyl-

thiazol- diphenyltetrazoliumbromide (MTT; Sigma-Aldrich, MO,

USA) was added into each well. Spectrophotometric readings were

performed by X340 spectrophotometer at 595 nm (Bio-TEK

Instruments, Inc., VT, USA). Migration assays were performed

following a standard protocol-wound repair assay. The mechanical

injury of confluent HASMCs and lesion repair assay were

performed as described elsewhere [42]. HASMCs were cultured

in 6-well plates at 26105 cells/well as confluent monolayers. The

monolayers were incubated and wounded in a line across the well

with a 200-ml standard pipette tip. The wounded monolayers were

washed twice with phosphate-buffered saline (PBS) and incubated

with serum-containing medium supplemented with LPS. The rate

of wound closure was measured and photographed over 24 h.

Statistics
All values in the text and figures are expressed as mean 6 SD.

Statistical differences were evaluated by Student’s t-test. A p

value,0.05 was considered statistically significant.
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Table 1. Primer sets.

Species Gene Primer Sequence

Human MSP for ERa Unmethylated-specific pair

F: 59-TGTTGTGTATAATTATTTTGAGGGT-39

R: 59-CTCACACACCATATAACCACTAAAC-39

Methylated-specific pair

F: 59-CGTCGTGTATAATTATTTCGAGGGC-39

R: 59-CTCGCGCACCGTATAACCGCTAAAC-39

BSP for ERa First round pair

F: 59-ATGGTTTTATTGTATTAGATTTAAGGGAAT-39

R: 59-TATTACICTAAACTCITTCTCCAAATAATA-39

Second round pair

F: 59-AGTGTATTTGGATAGTAGTAAG-39

R: 59-CTAACCITAAAACTACAAAAAAAA-39

PCR for

DNMT1 F: 59-GCACAAACTGACCTGCTTCA-39

R: 59-GCCTTTTCACCTCCATCAAA-39

ERa F: 59-TTCGGCTCCAACGGCCTGGGGGGTTT-39

R: 59-GGTACTGGCCAATCTTTCTCTGCCACCCT-39

GAPDH F: 59-GAAGGTGAAGGTCGGAGTC-39

R: 59-GAAGATGGTGATGGGATTTC-39

SD rat MSP for ERa Unmethylated-specific pair

F: 59-TGTTGTTGTTGTGTGGTTGTTGG-39

R: 59-TCAACAAACTAAACAACACAC-39

Methylated-specific pair

F: 59-TTAATTATTTCGAGGGCGTC-39

R: 59-AAAACGACGACACGTACGAC-39

PCR for

DNMT1 F: 59-ACCTACCACGCCGACAT-39

R: 59-AGGTCCTCTCCGTACTCCA-39

ERa F: 59-GGCTGCGCAAGTGTTACGAA-39

R: 59-CATTTCGGCCTTCCAAGTCAT-39

GAPDH F: 59-CCTTCATTGACCTCAACTAC-39

R: 59-GGAAGGCCATGCCAGTGAGC-39

doi:10.1371/journal.pone.0030635.t001
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