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Abstract

Background and Objective: Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled
receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic
intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities
of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of
mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational
changes in real-time by changes in Förster resonance energy transfer (FRET).

Methods: Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the
mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells.

Results: The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and
displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact
with Gaq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent
internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was
prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric
agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive
decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked
by methacholine.

Conclusion: The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar
conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular
reagent for pharmacological and structural investigations of M1 mAChR activation.
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Introduction

Muscarinic acetylcholine receptors (mAChRs) are 7-transmem-

brane domain proteins that belong to the rhodopsin family of G

protein-coupled receptors (GPCRs). mAChRs are widely distrib-

uted and are responsible for the metabotropic effects of

acetylcholine. mAChR subtypes are encoded by 5 distinct genes

in mammals, referred to as M1–M5. M2 and M4 mAChR subtypes

couple predominantly through pertussis toxin-sensitive Gi/o

proteins to inhibit adenylyl cyclase, whereas M1, M3 and M5

mAChR subtypes preferentially couple via pertussis toxin-

insensitive Gq/11 proteins to activate phospholipase C-b, mobilize

intracellular Ca2+, regulate protein kinase C, and modulate a

variety of Ca2+ and K+-channels [1,2].

mAChRs have been implicated in both the aetiology and

potential treatment of a number of psychiatric and neurological

conditions, including schizophrenia and Alzheimer’s disease [3,4].

Despite substantial efforts over a period of 50 years to develop

chemicals that can pharmacologically target specific mAChR

subtypes, it is only very recently that truly subtype-selective ligands

have been reported [5,6]. The majority of the newly reported

compounds appear to interact with the receptor at sites distinct

from the orthosteric binding pocket, which has been shown to be

highly conserved across the M1–M5 mAChRs [7,8]. Thus, binding
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and activation of M1–M5 mAChRs by orthosteric ligands is

mediated largely though interactions with a small number of key

residues (e.g. Y381 and Q382 in TM6 (numbering refers to M1

receptor) [9]), leading to a relative change in the orientation of

TM3 and TM6 of the receptor and a consequent change in the

distance between the C-terminus and third intracellular (i3) loop

[10].

That mAChRs can bind ligands at a variety of non-orthosteric

sites is now well documented [5,6]. Of particular interest is a

structurally diverse group of compounds that achieve functionally

selective agonism at M1 mAChRs though interactions at receptor

binding sites topologically distinct from the acetylcholine binding

pocket [11–13]. With respect to AC-42 [14] and 77-LH-28-1 [12],

Lebon and colleagues have proposed a novel ‘‘conformational

trapping’’ mechanism for activation of the M1 mAChR by these

ligands [15]; in contrast, N-desmethylclozapine, another allosteri-

cally-acting agonist, and the natural ligand acetylcholine do not

employ the same conformational trapping mechanisms to activate

the receptor.

In the present study we have investigated ligand-induced

conformational changes of M1 mAChRs using Förster resonance

energy transfer (FRET). The binding of an agonist to a GPCR

results in conformational changes to the protein, including changes

in the relative distance between the third intracellular loop and the

C-terminus of the receptor. This movement can be monitored in

real-time in live cells using FRET between CFP and YFP,

genetically modified variants of green fluorescent protein (GFP) as

introduced by Lohse and colleagues [16,17]. While the CFP/YFP-

GPCR chimera is believed to report wild-type GPCR conforma-

tional change upon agonist binding, its ability to link to G proteins

is often abolished. Here, we have developed a M1-FRET biosensor

that retains an ability to signal through its Gq/11-coupled pathway,

and have used this to report conformational change on binding of

allosteric and orthosteric agonists.

Materials and Methods

Materials
Dulbecco’s modified Eagle’s medium with GlutaMAX

(DMEM), penicillin-streptomycin (pen/strep), G418, fetal bovine

serum (FBS), LipofectamineTM 2000, restriction enzyme, pcDNA3

and competent E.coli (top tens) were purchased from Invitrogen

(Paisley, UK). The source of EYFP and ECFP was pEYFP-C1 and

pECFP-C1, respectively (Clontech, California, USA). PCR

chemicals were obtained from Promega (Southampton, UK). 77-

LH-28-1 and AC-42 were kind gifts from GlaxoSmithKline

(Harlow, UK). All other chemicals were purchased from Sigma-

Aldrich unless otherwise stated.

Modification of pECFP-C1 and pEYFP-C1
M1 mAChRs were tagged with the cerulean mutant of ECFP

(ECFPc) [18], which required three point mutations (S72A/

Y145A/H148D) and an improved version of EYFP, with a single

point mutation (F46L) that greatly enhances its fluorescence

(referred to as EYFPF46L) [19]. Mutagenesis was performed using

the QuikChange point-directed mutagenesis kit (Stratagene,

California, USA). The vectors generated are referred to as

pECFPc-C1 and pEYFPF46L-C1, respectively.

Isolation of murine M1 mAChR and labelling at the C-
terminus with EYFPF46L

The care and use of animals in this study was in accordance

with the UK Animals (Scientific Procedures) Act 1986 and

authorised by the University of Cambridge certificate of

designation (reference no. PCD 80/2802). The investigation also

conforms to the Guide for Care and Use of Laboratory Animals

US (NIH Publication No. 85-23, revised 1996). Male mice aged

between 10 and 24 weeks old were killed by cervical dislocation.

The brain was removed and immediately frozen with liquid

nitrogen and ground to a fine powder in a mortar and pestle under

liquid nitrogen. Total RNA extraction was carried out using a

Qiagen RNeasy mini-kit following the manufacturer’s instructions.

The required amount of tissue was re-suspended in the

accompanying lysis buffer, containing b-mercaptoethanol (final

concentration 143 mM) and was homogenized using a glass hand-

held homogenizer. The lysate was then passed 10 times through a

21G syringe needle. cDNA was generated from total RNA using a

reverse transcription kit, Omniscript (Qiagen, Crawley, UK). The

50 mL reaction contained: 16RT buffer, 0.5 mM dNTPs, 25 ng/

mL Oligo-dT and random hexamer primers, 0.5 U/mL Rnasin,

0.2 U/mL Omniscript reverse transcriptase, 2.5 mg total RNA,

Rnase free water to final volume. The mixture was incubated at

37uC for 1 h. PCR from a mouse cDNA template was used to

generate the full-length M1 mAChR DNA minus the stop codon

for insertion into a plasmid. The 50 mL PCR reaction included:

16 Thermopol buffer, 0.2 mM dNTPs (Bioline Ltd, London,

UK), 0.5 mM forward primer 59ATGAACACCTCAGTGC-

CCCCTGC39, 0.5 mM reverse primer 59TTAGCATTGGCGG-

GAGGGGGTGC39, 0.5 U Vent polymerase and UV-treated

milliQ water to 50 mL. Amplification was carried out using a

Mastercycle gradient thermocycler (Eppendorf UK Ltd., Cambs,

UK). The PCR employed an initial denaturation step of 95uC for

3 min followed by 35 cycles of 95uC for 30 sec denaturation, 69uC
for 30 sec annealing, 72uC for 2 min extension, and a final single

72uC for 10 min extension then held at 4uC. The product from

this PCR was cleaned and used as a PCR template to which Bam

HI and EcoR I sticky ends were added. The PCR mixture was as

above but with forward primer 59ATACGGATCCATGAA-

CACCTCAGTGCCC39 and reverse primer 59GTATGAATT-

CAAGCATTGGCGGGAGGGGG39. The product was cleaned,

digested sequentially with BamHI and EcoRI and ligated into

pEYFPF46L-N1. This gave a construct that would express as a

murine M1 mAChR to which EYFPF46L was attached via a 6

residue linker (LNSADI) after the terminal C460. This construct

was named M1-YFPCT.

Addition of ECFPc to the third intracellular loop of the M1

mAChR
Using point directed mutagenesis, an Age I restriction site

(ACCGGT) was added to the third intracellular loop of M1-

YFPCT in 5 different positions (see Table 1). The modified vectors

produced by mutagenesis were digested overnight with Age I. The

digested plasmids were run on a 1% agarose gel to remove uncut

vector cleaned. Using PCR with peCFPc-N1 as a template and

primers forward 59ATACACCGGTATGGTGAGCAAGGGC-

GAGG39 and reverse 59GTATACCGGTCTTGTACAGCTC-

GTCCATGC39, Age I restriction sites were added to the ends of

eCFPc. The PCR product was cleaned, digested overnight with

Age I and ligated into the cut vector with Quick Ligase (NEB,

Herts, UK) by incubation for 20 min at room temperature (molar

ratio of insert to vector of 5:1). The ligated material was used to

directly transform competent E.coli (top tens) according to the

manufacturer’s protocol. The resultant plasmids were checked for

insert and sequenced. The summary of created constructs is

presented in Table 1. For control purposes, constructs equivalent

to M1-cam5, but containing only C-terminal EYFPF46L or ECFPc

in the third intracellular loop, were also created. These constructs

FRET-Based Detection of M1 Receptor Activation
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are referred to as M1-cterm-EYFPF46L and M1-ic3-ECFPc,

respectively.

HEK293 cell culture and transfection with M1 mAChR
constructs

Complementary DNA of chimeric receptors were transiently

expressed in Human embryonic kidney 293 (HEK293) cells

(ECACC Cat no. 85120602) using the LipofectamineTM 2000

(Invitrogen) according to manufacturer’s instructions. For gener-

ation of HEK293 cell-line stably expressing M1-cam5 mAChR,

the plasmid was transfected using LipofectamineTM 2000 reagent

(Invitrogen). The cells were grown in DMEM in the presence of

500 mg/mL G418 and those that survived were sub-cultured. The

newly established cell-line was termed HEK293-M1-cam5.

N-methyl-[3H]scopolamine binding
N-methyl-[3H]scopolamine ([3H]NMS) inhibition binding as-

says were carried out as described previously [20]. Briefly,

HEK293-M1-cam5 cells were seeded at a density of 75,000

cells/well in 24-well plates. After 24 h cells were washed three

times with warmed KHB (composition: 118 mM NaCl, 8.5 mM

HEPES, 4.7 mM KCl, 4 mM NaHCO3, 1.3 mM CaCl2, 1.2 mM

MgSO4, 1.2 mM KH2PO4, 11.7 mM glucose, pH 7.4) followed

by an incubation on ice in a total assay volume of 1 mL of ice-cold

KHB containing various concentrations of agonists and approx.

0.2 nM [3H]NMS. After a 5 h incubation at 4uC cells were

washed three times with ice-cold KHB before the addition of

0.1 M NaOH (500 mL). After cell solubilization, SafeFluor

scintillation fluid was added, and samples were counted on a

scintillation counter.

Total [3H]inositol phosphate accumulation
HEK293-M1-cam5 and HEK293 cells were seeded at 100,000

cells/well in 24-well plates and incubated in fresh medium

containing 2.5 mCi/mL [3H]inositol for 48 h. The assay was

performed as previously described [20].

Table 1. Overview of M1 AChR chimeric constructs.

Construct Position of ECFPc Primers

M1-cam1 Between G340 and Q341 Forward: CGAGGCGGCAAAGGCACCGGTCAAAAACCCCGAGGG
Reverse: CCCTCGGGGTTTTTGACCGGTGCCTTTGCCGCCTCG

M1-cam2 Between P323 and N324 Forward: CCCAAAAGCTCCCCAACCGGTAATACAGTCAAGAGGCC
Reverse: GGCCTCTTGACTGTATTACCGGTTGGGGAGCTTTTGGG

M1-cam3 Between P252 and N324 Forward: GCTGAAGGCTCACCCACCGGTAATACAGTCAAGAGG
Reverse: CCTCTTGACTGTATTACCGGTGGGTGAGCCTTCAGC

M1-cam4 Between E242 and K362 Forward: AGCAGCAGCTCTGAGACCGGTAAGGCAGCTCGGACC
Reverse: GGTCCGAGCTGCCTTACCGGCTCTTGAGCTGCTGCT

M1-cam5 Between K361 and K362 Forward: CTGGTCAAGGAGAGACCGGTAAGGCAGCTCGGACC
Reverse: GGTCCGAGCTGCCTTACCGGTCTTCTCCTTGACCAG

M1-ic3-ECFPc Between K361 and K362 Forward: CTGGTCAAGGAGAGACCGGTAAGGCAGCTCGGACC
Reverse: GGTCCGAGCTGCCTTACCGGTCTTCTCCTTGACCAG

Primers used for introducing AgeI site into the i3 loop are shown where applicable.
doi:10.1371/journal.pone.0029946.t001

Figure 1. Cellular localization of M1-cameleons transiently expressed in HEK293 cells. HEK293 cells were transiently transfected with M1-
cam1 (A), M1-cam2 (B), M1-cam3 (C), M1-cam4 (D) or M1-cam5 (E). Images were acquired by confocal microscopy and show fluorescence emission at
.530 nm following excitation at 514 nm. Scale bar, 15 mm.
doi:10.1371/journal.pone.0029946.g001
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ERK1/2 phosphorylation and western blotting
To determine ERK1/2 phosphorylation, the HEK293-M1-

cam5 and HEK293 cells were grown in 12-well plates. The

experiments and western blotting were performed as previously

described [21]. Proteins were visualized using ECL reagent from

GE Healthcare (Chalfont St. Giles, UK). Equal protein loading

was confirmed using GAPDH-HPR antibody (1:20,000) (Abcam,

Cambridge, UK).

Immunofluorescence confocal microscopy of receptor
internalization

Cells were seeded on coverslips coated with 100 mg/mL poly-D-

lysine in PBS. When 70–80% confluency was reached, in some

instances the cells were treated with various concentrations of

agonists at 37uC and fixed with 4% paraformaldehyde. After a

5 min wash with PBS, the slides were mounted with Slowfade

Gold/DAPI (Invitrogen, UK). The slides were examined using an

Olympus FV500 confocal microscope, ECFPc and EYFPF46L were

excited via the 458 nm and 515 nm line of the argon laser and

emissions were then collected at 480–495 nm and 535–565 nm,

respectively. Optical sections (0.5 mm) were taken, and represen-

tative sections corresponding to the middle of the cells are

presented. For each treatment, between 20 and 30 individual cells

in three random fields of view were selected and examined.

Fluorescence intensity of specific regions of interest (longitudinal

axis) was quantified by using the Measure function of Image J

software developed at the National Institutes of Health (http://rsb.

info.nih.gov/ij/), as previously described [21]. Briefly, relative

quantification of intracellular (internalized) M1-cam5 was deter-

mined by measuring the amount of total fluorescence along the

longitudinal axis corresponding to the intracellular space (average

Figure 2. Acceptor photobleaching of the three M1 mAChR cameleons showing primarily plasma membrane localization. HEK293
cells were transiently transfected with M1-cam1, M1-cam2 or M1-cam5 and imaged by confocal microscopy (458 nm excitation, 470–500 nm
emission). Areas of the plasma membrane (delineated by red lines in each image) were bleached using repeated brief exposures to high intensity
514 nm illumination. The graphs show the signal at 458 nm excitation for 470–500 nm emission (ECFPc, cyan line) and .530 nm (EYFPF46L emission,
yellow line), with acceptor photobleach initiated at the arrow. The fluorescence signals from a non-photobleached region were also assessed as a
control, which was comparable for all constructs, but only shown for M1-cam1 (area outlined in cyan within the image and fluorescence within the
graph for ECFPc (dark blue) and EYFP46L (red)). These findings are representative of photobleaching experiments from at least 3 separate
transfections for each construct.
doi:10.1371/journal.pone.0029946.g002

Table 2. Apparent binding affinities (expressed as 2log KB

values) for various mAChR agonists and antagonists at the M1-
cam5 AChR, determined by [3H]NMS competition binding.

pKB n

MCh 5.7660.04 4

oxo-M 5.9460.10 3

arecoline 5.0360.03 3

AC-42 5.1160.11 3

77-LH-28-1 6.1760.12 3

atropine 8.6760.09 5

pirenzepine 7.2660.13 5

Data are shown as means 6 s.e.m. for duplicate determinations in the number
of separate experiments (n) indicated.
doi:10.1371/journal.pone.0029946.t002
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4–18 ı̀m) excluding nucleus. Intracellular fluorescence in cells not

treated with the agonist was considered to be basal fluorescence

(assigned the value of 1). All other data are normalized to this basal

fluorescence level.

Acceptor photobleaching assessment of FRET
Photobleaching of the acceptor fluorophore to assess the level of

FRET was performed using a Zeiss LSM 510 attached to an

Axiovert 100 (Carl Zeiss, Welwyn Garden City, UK). Photo-

bleaching was performed by repeated scanning of a selected area

of the cell membrane with the 514 nm laser line at maximum

intensity. ECFPc was excited at 458 nm and its emission selected

using a 470–500 nm filter, while the EYFPF46L emission was

selected using a long pass 530 nm filter. The acquired data was

analysed using either Zeiss LSM510 or LSM C4 Toolbox software

(written by Dr C.J.Schwiening, University of Cambridge, UK).

FRET measurements
FRET measurements were performed as described previously

[22]. Briefly, HEK293 cells grown on coverslips were mounted

on a Nikon Eclipse TE2000-S inverted microscope (Nikon) using

an ‘‘Attofluor’’ cell chamber (Molecular Probes, Leiden, The

Netherlands) and continuously superfused with HBS (150 mM

NaCl, 10 mM HEPES, 10 mM glucose, 2.5 mM KCl, 4 mM

CaCl2, 2 mM MgCl2, pH 7.4). Cells were observed using an oil

immersion 636 lens, a polychrome V (Till Photonics, Gräfelfing,

Germany) for excitation, and a dual emission photometric

system. In order to minimize photobleaching, illumination time

was set to 10–40 ms, applied with a frequency of 10 Hz.

Fluorescence was measured at 535615 nm (F535) and 4806

20 nm (F480) (beam splitter DCLP 505 nm, Chroma Technol-

ogy, Rockingham, VT, USA) on excitation at 436610 nm (beam

splitter DCLP 460 nm, Chroma Technology). The signals were

detected by avalanche photodiodes and digitized using an

analog/digital converter (Digidata 1322A, Axon Instruments,

Union City, CA, USA) and stored on a PC using Axoscope

software (Axon Instruments). The experiments were performed

at room temperature.

Data analysis
All data are expressed as mean 6 SEM of at least three

independent experiments. Radioligand binding data, FRET

responses and agonist concentration-response curves were ana-

lyzed using Prism 5.0 (GraphPad Software Inc., San Diego, CA). A

trace representative of at least three independent experiments is

generally shown for FRET data.

Figure 3. Signal transduction characteristics of M1-cam5 mAChR. A. Concentration-dependent [3H]IPx accumulation in wild-type HEK293 (%)
or HEK293-M1-cam5 (N) cells stimulated by oxo-M in the presence of 10 mM LiCl. B. Changes in phosphoinositide turnover (phosphatidylinositol 4,5-
bisphosphate hydrolysis/Ins(1,4,5)P3 accumulation) in response to MCh in single HEK293-M1-cam5 cells using confocal fluorescence imaging. HEK293-
M1-cam5 cells were transfected with the fluorescent biosensor eGFP-PH (see Methods section). Phosphoinositide turnover was assessed by
monitoring the translocation of the eGFP-PH probe from the plasma membrane to the cytoplasm on addition of MCh (10 mM) for 60 s, followed by
washout. The trace (B, lower panel) shows a representative time-course of change in cytoplasmic fluorescence intensity for 3–5 cells analyzed per
coverslip over three separate experiments. C. MCh-induced activation of the ERK1/2 signalling cascade in HEK293-M1-cam5 cells. Cells were serum-
starved for 24 h and then treated with MCh for 5 min in absence or presence of the mAChR antagonist atropine. A representative western blot is
shown for phospho-ERK1/2 and GAPDH (loading control run in parallel) that was repeated independently two more times with similar results.
doi:10.1371/journal.pone.0029946.g003
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Results

Design of M1-cam mAChR FRET conformational sensors
An overview of the M1-cameleon receptor constructs is given in

Table 1. In all constructs EYFPF46L is attached at the C-terminus.

In the M1-cam1 mAChR construct, ECFPc is inserted into the i3

loop 25 residues from the predicted cytoplasmic start of the sixth

transmembrane (TM6) helix. This design provides a comparable

number of residues between the plasma membrane and the

fluorophore for both CFP and YFP after accounting for ,12

residues in the C-terminal that are predicted to generate a

membrane-aligned helical (H8) region [23]. In the M1-cam2

mAChR, ECFPc is placed a further 17 residues distal to TM6 and

most of the third intracellular loop, apart from twenty-two i3

residues immediately proximal to TM5, removed. M1-cam3 is

similar to M1-cam2, but retains forty-two i3 residues below TM5.

In the M1-cam4 construct ECFPc is positioned just 6 residues

below TM6 and the majority of the i3 loop on the N-terminal side

of ECFPc removed with 32 residues remaining proximal to TM5.

This position was chosen to mimic the successful a2A-adrenoceptor

cameleon (a receptor, like M1, with a relatively large (157 amino

acid) i3 loop) generated by Lohse and colleagues [16,17]. The M1-

cam5 mAChR cameleon is similar to M1-cam4, but the i3 loop is

retained intact, as this domain has been reported to be involved in

a number of aspects of mAChR regulation, including receptor

trafficking [24–26].

Cellular localization of the constructs
In order to assess the cellular localization of the cameleon

receptors, HEK293 cells were transiently transfected with the

appropriate cDNA. Confocal microscopy revealed that addition of

the EYFPF46L to the C-terminus of full length M1 mAChR did not

affect plasma membrane receptor expression (data not shown).

Similar results were obtained when ECFPc was inserted on its own

into the i3 loop between K361 and K362 of full length M1

mAChR (data not shown). M1-cam1, -cam2, and -cam5 mAChR

constructs showed good plasma membrane fluorescence with little

fluorescence associated with intracellular membranes (Fig. 1A, B,

E). The remaining two constructs, M1-cam3 and -cam4 mAChRs

showed little or no plasma membrane expression (Fig. 1C, D).

Removal of a large proportion of the M1-i3 loop in both -cam3

and -cam4 chimeras therefore compromises plasma membrane

expression.

Assessment of FRET configuration by acceptor
photobleaching

In order to determine whether the two fluorophores are close

enough to each other and in a correct orientation to generate a

detectable FRET signal, we performed acceptor photobleach

experiments. Only the three constructs that showed predominantly

plasma membrane expression (M1-cam1, -cam2, and -cam5) were

investigated in these experiments. All three chimeras showed an

increase in donor fluorescence on photobleach of the acceptor

(Fig. 2), suggesting that they all exhibit some degree of FRET under

basal (ligand-free) conditions. As a control, we showed that for all

three constructs a non-bleached area showed no change in either

emission channel observed with illumination at 458 nm (Fig. 2,

shown only for M1-cam1). The M1-cam5 receptor showed the

greatest signal changes on bleaching of EYFPF46L, thus this construct

was chosen for creation of a stable cell-line, HEK293-M1-cam5.

[3H]NMS radioligand binding
M1 mAChR binding affinities for methacholine (MCh),

oxotremorine-M (oxo-M), AC-42, 77-LH-28-1, arecoline, atropine

and pirenzepine were determined by [3H]NMS competition

binding in intact HEK293-M1-cam5 cell monolayers. [3H]NMS

saturation binding analysis determined a maximal binding (Bmax)

value of 2.6960.24 pmol mg21 protein and a dissociation

constant (KD) of 0.2560.03 nM in HEK293-M1-cam5 cells

(n = 4 independent experiments). HEK293-M1-cam5 cell mono-

layers were incubated with an approximate KD value of [3H]NMS

Figure 4. Internalization characteristics of the M1-cam5 mAChR stably expressed in HEK293 cells. HEK293-M1-cam5 cells were treated
with various concentration of MCh for 45 min (to assess the concentration-dependency of receptor internalization), or with MCh (300 mM) for 0–
60 min (to assess the time-dependency of receptor internalization). Cellular distributions of M1-cam5 mAChR were monitored by confocal
microscopy. For quantification of intracellular fluorescence at least 10 individual cells in five random fields of view were examined as described in the
Methods section. Data represent means 6 s.e.m. from three independent experiments.
doi:10.1371/journal.pone.0029946.g004
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Figure 5. MCh-induced changes in FRET in HEK293 M1-cam5 cells. HEK293 cells stably expressing M1-cam5 were observed using
fluorescence imaging with single wavelength excitation (436 nm) and dual wavelength emission (436 nm to detect ECFPc and 535 nm to detect
EYFP46L. A. Representative images showing plasma membrane distribution of ECFPc (480 nm, left panel) and EYFP46L (535 nm, middle panel), which
overlap (right panel) as expected for signals from the same population of receptors. B–D, right panels: blue and yellow traces represent signals from
ECFP and EYFP, respectively; left panels: red traces represent the FRET signal (ratio of FEYFP/FECFP). Addition of MCh (100 mM) induced decreases in
FRET, which remained constant throughout the application period (30–40 s; B); this effect was reversed on addition of atropine (1 mM; C); and the
MCh-induced change in FRET ratio could be completely prevented by pre-addition of atropine (D). FRET data have been normalized so that the initial
FRET signal is 100%. Emission traces are expressed as the change in fluorescence intensity from the basal fluorescence level (F/F0). Representative
traces of at least three independent experiments are shown.
doi:10.1371/journal.pone.0029946.g005
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(,0.3 nM) in the presence of varying agonist concentrations at

4uC for 4 h, or varying antagonist concentrations at 37uC for

45 min. The apparent binding affinities (pKB) for agonists and

antagonists are summarized in Table 2. These data are

comparable to affinity values obtained previously for the wild-

type M1 mAChR receptor, e.g. see [27].

Signalling and internalization properties of the M1-cam5
chimeric receptor

In order to determine if the chimeric receptor retained

functional responses, accumulation of [3H]-inositol phosphates

([3H]IPx), ERK1/2 phosphorylation and receptor internalization

have been monitored.

As an index of PLC activation, agonist-stimulated accumulation

of total [3H]IPx was assessed in the presence of Li+ (10 mM).

Maximal stimulation with MCh caused an 11-fold increase in

[3H]IPx accumulation (41,95461,030 d.p.m. mg21 protein over a

basal value of 3,78161,792 d.p.m. mg21 protein) with an EC50 of

0.8 mM (Fig. 3A). Wild-type HEK293 cells express M3 mAChRs

(at approx. 50 fmol mg21 protein) and MCh caused a smaller

[3H]IPx accumulation in these cells with an EC50.10 fold right-

shifted relative to HEK293-M1-cam5 cells (Fig. 3A). Additionally,

using confocal fluorescence imaging, we demonstrated that MCh

(10 mM) was able to evoke a detectable translocation of the eGFP-

PH biosensor from the plasma membrane to the cytoplasm in

HEK293-M1-cam5 cells (but not wild-type HEK293 cells; data

not shown), indicating the hydrolysis of phosphatidylinositol 4,5-

bisphosphate and generation of IP3 by M1-cam5 (Fig. 3B). On

removal of agonist, the eGFP-PH biosensor translocated back to

the plasma membrane.

MCh treatment (1–300 mM for 5 min) of HEK293-M1-cam5

cells resulted in a rapid increase in ERK1/2 phosphorylation; an

effect of agonist abolished in cell pre-incubated with atropine

(1 mM; Fig. 3C). At relatively, low concentrations of MCh (1 mM;

Fig. 3C) a robust increase in phospho-ERK1/2 was observed in

HEK293-M1-cam5, but not wild-type HEK293 cells. Further-

more, the M1-cam5 mAChR internalized in response to MCh in a

concentration- and time-dependent manner (Fig. 4), and recycled

back to the plasma membrane on agonist removal (data not

shown). Activation of the receptor with another full agonist, oxo-

M, or the allosteric agonist AC-42 also resulted in receptor

endocytosis (data not shown).

Changes in FRET induced on ligand binding
FRET was assessed using the ratio of normalized EYFPF46L/

ECFPc fluorescence intensities. Addition of MCh (100 mM) leads

to a rapid increase in ECFPc emission and decrease in EYFPF46L

emission, resulting in a reduction of FRET signal (Fig. 5B). Either

washout of MCh or addition of atropine (1 mM) reversed the

agonist-induced FRET change (Fig. 5C). The FRET change

induced by MCh was completely prevented by pre-incubation

with atropine (Fig. 5C). Control experiments with coexpression of

M1-3ic-ECFPc and M1-cterm-EYFPF46L in HEK293 cells showed

no FRET response to MCh (300 mM; see Figure S1, Supporting

Information). This indicates that the FRET signal detected from

M1-cam5 mAChR results from intra-monomer conformational

changes and not from intermolecular FRET in receptor dimers.

Stimulation of HEK293-M1-cam5 cells with increasing concen-

trations of MCh (0.3–300 mM; Fig. 6A) resulted in concentration-

dependent changes in FRET, with a maximal FRET decrease of

9.860.4% induced at 300 mM MCh. We also assessed the kinetics

of MCh-mediated receptor conformational change with time-

resolved determinations of the FRET signal recorded from single

cells on activation of M1-cam5 mAChR with various concentra-

tions of MCh. Under all experimental conditions, the decrease in

FRET signal followed a monophasic decay time-course, as

described previously for the parathyroid hormone receptor and

a2A-adrenoceptors [16]. As the concentration of MCh was

increased, a faster time-course of FRET decrease was observed

(Fig. 6B). The measured rate constant (Kobs) increased across the

MCh concentration range, reaching a maximum value at higher

MCh concentrations (Fig. 6B).

Next, we investigated the effects of various othosteric partial

agonists (arecoline and pilocarpine) and allosteric agonists (AC-42

and 77-LH-28-1) on M1-cam5 mAChR FRET signals. As was

found for MCh, all orthosteric/allosteric agonists caused reduc-

tions in intramolecular FRET, which were reversed on addition of

atropine (1 mM; Fig. 7). Furthermore, pre-addition with either

atropine (1 mM) or pirenzepine (10 mM) prior to agonist

application prevented the FRET changes in all cases (data not

shown). The full agonist, MCh, was however more effective in

reducing FRET (9.860.4%) than arecoline (7.260.5%), pilocar-

Figure 6. Concentration-dependency and dynamics of MCh-
induced FRET changes in HEK293-M1-cam5 cells. A. HEK293 cells
stably expressing M1-cam5 were stimulated with various concentration
of MCh (0.3–300 mM) as above, and change in FRET ratio recorded. Data
represent the means 6 SEM from at least three independent
experiments. B. Correlation between the rate constant (Kobs) and MCh
concentration was analysed as described in the Methods section. Kobs

values were obtained by fitting the FRET data to a single-phase
exponential decay. Data represent the means 6 s.e.m. from at least
three independent experiments.
doi:10.1371/journal.pone.0029946.g006
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pine (5.960.5%), 77-LH-28-1 (6.460.4%) and AC-42 (5.160.3%)

(Fig. 8A). In addition, the rate constant (Kobs) by which MCh

induced a FRET decrease was more than two-fold greater than for

any of other agonists tested (Fig. 8B).

Discussion

In this study we report on a mouse M1 mAChR tagged with two

genetically-encoded fluorescent proteins that allow real-time

conformational changes in the receptor to be observed following

activation by a number of ligands. The two fluorescent proteins,

improved variants of CFP and YFP, were introduced into the i3

loop and the C-terminus, at positions in sufficient apposition for

the unliganded receptor to generate a stable FRET signal. On

binding of agonist, a decrease in FRET was observed, presumably

generated through movement of the i3 domain relative to the C-

terminus [10].

Both mouse and human M1 mAChRs have recently been

modified by other groups to incorporate either ECFPc/EYFP

[28,29], or CFP/FlAsH (fluorescein arsenical hairpin) [30] pairs

into i3/C-terminal domains. In the former example, ECFPc was

introduced at the C-terminal and EYFP was inserted into the i3

loop replacing Ala223-Val358 of the wild-type receptor [29]. In

the CFP/FlAsH chimeric M1 mAChR ECFP was introduced at

the C-terminal, while the FlAsH motif (CCPGCC) was introduced

into the i3 loop together with the amino acid sequence between

Gly228 and Lys350 being deleted [30]. Thus, in contrast to our

M1-cam5 construct, these other chimeras lack the flexible C-

terminal linker sequence (LNSADI) and have differently located

sequence insertions into the i3 domain together with substantial

deletions from the wild-type M1 mAChR.

The location and/or full retention of the i3 domain in M1-cam5

resulted in the receptor exhibiting a full repertoire of cellular

responses when stably expressed in HEK293 cells. Thus, on

agonist addition phosphoinositide turnover, phosphorylation of

ERK1/2 and receptor internalization could all be detected in

HEK293-M1-cam5 cells suggesting that this chimeric receptor

retains many of the signalling properties of the wild-type receptor.

At present we do not know if, or to what extent, addition of ECFPc

and/or EYFPF46L compromises receptor function since we did not

quantify the relative ability of M1-cam5 to couple to downstream

signals compared to the untagged receptor. Nevertheless, our

observations with M1-cam5 contrast with the findings of Jensen et

al. [28] who reported that the ECFPc/EYFP mouse M1 mAChR

was severely compromised with respect to downstream signalling,

a commonly reported deficiency of CFP/YFP-GPCR chimeras

[16,31].

The maximum change in FRET observed in HEK293-M1-

cam5 cells following addition of a full agonist was approximately

10%, which is similar or larger in size than the changes observed

for CFP/YFP-based detectors incorporated into other family A

GPCRs, including the A2A adenosine (<9%), B2 bradykinin (11%)

a2A adrenoceptor (<6%), and M2 mAChR (<6%) [31–34], but

smaller than observed for the family B parathyroid hormone

receptor (<20%) [16]. The recently reported CFP/FlAsH

chimeric M1 mAChR also exhibited a modest dynamic range of

<7% [30], consistent with other reported CFP/FlAsH-GPCR

chimeras [31].

An important application of GPCR intramolecular FRET has

been to increase our understanding of the conformational changes

that can occur following receptor binding of different classes of

pharmacological ligand. For example, studies focusing on the a2A

Figure 7. FRET changes induced by mAChR orthosteric and allosteric agonists in HEK293-M1-cam5 cells. Addition of arecoline
(A; 300 mM), pilocarpine (B; 300 mM), 77-LH-28-1 (C; 10 mM) and AC-42 (D; 30 mM) induced decreases in FRET, which remained constant until reversal
by addition of atropine (1 mM). FRET data have been normalized so that the initial FRET signal is 100%.
doi:10.1371/journal.pone.0029946.g007
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adrenoceptor have provided evidence for conformational and

kinetic differences when receptors are occupied by agonists, partial

agonists and inverse agonists [16,33,35,36]. We have shown that

an M1 mAChR chimera (M1-cam5) can be activated by full (MCh)

and partial orthosteric (pilocarpine and arecoline) and allosteric

(AC-42 and 77-LH-28-1) agonists. Recent work from the Challiss

laboratory investigated the intrinsic efficacies of this set of

compounds using multiple readouts, including receptor-G pro-

tein-coupling, activation of phospholipase C and receptor

desensitization/internalization [20,27]. This work demonstrated

that the allosteric agonists can stimulate M1-Gq/11- and M1-Gs-

dependent signalling; but are less able to promote M1-Gi1/2-

coupling than otherwise equi-efficacious orthosteric agonists [20].

The present study complements this previous work by directly

assessing drug-induced real-time conformational change in the

M1-cam5 chimera. Orthosteric and allosteric partial agonists all

caused significantly lower maximal changes in M1-cam5 FRET,

which correlated well with previous rankings of these compounds

based on efficacy readouts [20]. These data indicate that despite

AC42 and 77-LH-28-1 binding at a site on the M1 mAChR

distinct from the orthosterically-acting ligands [12,14,15], the

kinetics and extent of conformational changes observed are

indistinguishable from those evoked by equi-effective orthosteric

partial agonists.

In addition, the rate of conformational change on agonist

addition was significantly reduced (by .2-fold) for all partial

agonists compared to the full orthosteric agonist, MCh (see

Fig. 8). It should be noted that rate of conformational change

(Kobs) reported here on M1-cam5 binding to a full agonist is lower

than values recently reported for other M1 mAChR chimeras

[28,30], and indeed other family A GPCRs, including the M2

mAChR [16,34]. The precise reason for this difference is

unclear, although it is known that the kinetics of agonist-induced

conformational change is influenced by the location of the YFP/

CFP reporter within the i3 loop [36] and by other factors

including membrane fluidity and microenvironment [37]. In the

case of M1-cam5, the chimera is stably expressed in HEK293

cells and does not contain the i3 deletions seen in other GPCR

FRET constructs. Therefore, M1-cam5 is more likely to be

trafficked to specific plasma membrane microenvironments (e.g.

lipid rafts) than transiently expressed GPCRs and the rate of

conformational change may be constrained by receptor-lipid

and/or receptor protein interactions.

In addition to exploring the effects of orthosteric and allosteric

agonist interactions with the M1-cam5 chimera, the effects of

atropine and pirenzepine were also assessed. These compounds

have been reported to possess inverse agonist activity at a number

of mAChR subtypes [38–40]. A previous study clearly demon-

strated FRET changes in a CFP/YFP-a2A adrenoceptor chimera

on addition of inverse agonists, such as yohimbine and

rauwolscine. These changes were not only in the opposite

direction to that caused by noradrenaline, and also displayed

distinct kinetics [35]. While atropine and pirenzepine were able to

both prevent and rapidly reverse orthosteric and allosteric agonist-

stimulated FRET changes, addition of either agent alone had no

effect on the basal M1-cam5 FRET signal. These data can be

interpreted as atropine and pirenzepine lacking sufficient negative

efficacy to cause a detectable change in basal M1-cam5 FRET, or

more likely, the M1-cam5 lacks significant constitutive activity and

resides in a ‘locked’, inactive state requiring agonist binding to

undergo conformational change.

In conclusion, our data provide evidence that potency and

efficacy differences among M1 mAChR orthosteric and allosteric

agonists can be quantitatively assessed at the level of the receptor

using the M1-cam5 chimeric receptor reported here. Despite the

intramolecular incorporation of two ,30 KDa proteins into the

M1 mAChR structure the M1-cam5 chimera retains an ability to

link to downstream signal transduction pathways and to traffic into

intracellular compartments. This latter property may allow the

construct to be used to observe receptor conformational changes

that occur within organellar compartments of the cell during

Figure 8. Comparisons of maximal FRET changes and rate
constants for a variety of orthosteric and allosteric ligands in
HEK293-M1-cam5 cells. Cells were stimulated with a maximally
effective concentration of each agonist and FRET changes (A) and Kobs

values (B) were determined as described above. Data are presented as
means 6 s.e.m. from at least three independent experiments. One-way
AVOVA (*p,0.05; **p,0.005; ***p,0.0001).
doi:10.1371/journal.pone.0029946.g008
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ongoing signalling and receptor processing towards either receptor

resensitization or down-regulation.

Supporting Information

Figure S1 The agonist-evoked FRET responses of M1-
cam5 do not result from movement of receptors within
multimeric assemblies. HEK-293 cells were transiently

transfected with either (A) M1-cam5 or (B) two separate plasmids,

one encoding M1 with a C-terminal YFPF46L tag and the other

encoding M1 with an ECFPc tag at the same third intracellular

loop location as M1-cam5. ECFPc and EYFPF46L fluorescence

and percentage FRET changes were measured as described in the

main methods section. MCh, methacholine. The traces are the

average responses from 8 individual cells. In B, all cells used for

analysis displayed robust ECFPc and EYFPF46L fluorescence, thus

indicating that both individually tagged M1 receptors were

expressed. The traces are representative of responses from two

separate transfections.

(TIF)
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