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Abstract

Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease
and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe,
neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme,
sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction.
Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature
death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has
approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously
reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we
have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male
and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and
horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female
MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile
than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open
field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular
strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow
more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.
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Introduction

Mucopolysaccharidosis IIIA (MPS IIIA, OMIM #252900), or

Sanfilippo Type A, is an autosomal recessive lysosomal storage

disorder that affects 0.82 in 100,000 live births in the United

Kingdom [1]. The disease is characterised by severe and

progressive loss of cognitive and motor functions, behavioural

difficulties and eventually death in the second decade of life,

although the severity and progression of the disease varies widely

[1,2,3]. MPS IIIA is caused by mutations in the SGSH gene that

result in deficiency of the N-sulfoglucosamine sulfohydrolase

enzyme (sulfamidase, EC 3.10.1.1) and subsequent accumulation

of undegraded heparan sulphate, lysosomal enlargement and

cellular and organ dysfunction [4,5,6,7]. Patients exhibit progres-

sive neurodegeneration and behavioural problems including

hyperactivity, a reduced sense of danger, aggression and sleep

disturbances [7,8,9,10,11,12].

Although there are no current therapies, several strategies are

in development for MPS IIIA or the phenotypically indistin-

guishable MPS IIIB disease, including substrate reduction

therapy [13,14,15], intrathecal enzyme replacement therapy

[16,17,18,19,20] and gene therapy with lentiviral [21], adenoviral

[22] or adeno-associated-viral [23] vectors. Most strategies make

use of the ability of exogenous enzyme to complement affected

cells, however the presence of the blood brain barrier limits

efficient enzyme distribution. Biomarkers for MPS IIIA or related

diseases are still in development [24,25], thus the accurate

evaluation of neurodegeneration using behavioural phenotyping

in the mouse model of disease is paramount. A spontaneously

occurring mouse model of MPS IIIA on a mixed 129SvJ,

C57BL/6, SJL, and CD1 background has been previously

described with around 3% of normal enzyme activity and

exhibiting many of the features observed in patients [26]. The

MPS IIIA mice exhibit severe neuropathology characterised by

enlarged lysosomes, primary storage of HS, secondary storage of

GM2 and GM3 gangliosides and cholesterol and chronic

neuroinflammation [19,23,26,27,28]. The MPS IIIA mice are

euthanized between 9 and 12 months of age due to urine
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retention, a phenotype not seen in the patients but also seen in

MPS IIIB mice [29]. The MPS IIIA mouse model has been

backcrossed to the C57BL/6 background by Professor John

Hopwood’s Lysosomal Diseases Research Unit [30] and to the

C57BL/6J background by Jackson laboratories [31].

Although the behaviour of the MPS IIIA mouse model has been

evaluated in the open field test at several ages, using different

sexes, by several groups and on different strain backgrounds, there

is a remarkable amount of variability in the outcome of the test as

outlined in Table 1.

Using the mixed background mouse, at many of the time points

measured, no differences are observed between either male or

female WT and MPS IIIA mice, with initial findings of

hyperactivity and later hypoactivity in males [18,32]. After back

crossing the MPS IIIA mice on to a C57BL/6 background, the

behaviour was extensively studied by Crawley et al. at different

time points. Hyperactivity in males was observed at 12 weeks of

age, and females at 22 and 32 weeks of age, although these mice

were not naively tested [30]. At most time points, no differences

were seen. However male, but not female, MPS IIIA mice were

shown to be hypoactive at some time points in the work of Lau et al

[33] and male MPS IIIA mice were hypoactive at 15 weeks of age

in a more recent paper by Lau et al. [34]. Hypoactivity in male

mice was also observed at some time points in McIntyre et al. [21].

In columns 7, 8, 9 and 10 of Table 1 (marked as bold) we have also

presented markedly variable outcomes of observations of locomo-

tor behaviour of MPS IIIA and WT mice that received control

intracranial injections [18,21,23,35].

Patients with MPS IIIA are believed to have a reduced sense of

danger, which can be inferred in mice by the amount of time spent

in the centre of the open field test or by use of the elevated plus

maze test, both of which can be used to measure their tendency to

avoid open spaces and remain close to cover (thigmotaxis). No

difference in the time in centre of the open field was detected by

Lau et al. [33], however this could be due to the small size of the

open field used. In the elevated plus maze, male MPS IIIA mice

were reported to display reduced anxiety with a greater proportion

of their path length (distance travelled) spent in the open arms at

some time points but not others [33,34].

Overall, there are discrepancies in behaviour of this mouse

model that could be due to gender differences, the age of testing

and the methodology used to perform the tests. Therefore we have

attempted to perform a standardised analysis of MPS IIIA mice by

first backcrossing them to the C57BL/6J background for over 10

generations and subsequently testing a cohort of MPS IIIA and

WT mice at the same circadian time point at 4, 6 and 8 months

(16, 24 and 32 weeks) of age in the 60 minute open field test, the

elevated plus maze, as well as several other neuromuscular

evaluations that we have previously shown to be effective for

phenotyping MPS IIIB mice [36]. The female MPS IIIA mice

were hyperactivity, had a recued sense of danger and no

neuromuscular differences. The open field test performed at the

same point in the circadian rhythm was a consistent, sensitive and

reliable behavioural test for the evaluation of novel therapeutic

strategies in MPS IIIA mice.

Methods

Mouse maintenance
The MPS IIIA mouse colony was maintained through

heterozygous breeding at the University of Manchester, all

procedures were ethically approved by the University of

Manchester Ethical Review Process Committee and in accordance

with the UK Home Office regulations under project licence PPL

40/3117. Mice were housed in individually ventilated cages, had

access ad libitum to food and water and were in a 12 hour light and

dark cycle. Male mice were singly housed at 14 weeks of age due to

aggressive tendencies but female mice remained housed in groups

of 4–6. The MPS IIIA mice (B6.Cg-Sgshmps3a) have been

backcrossed from the original mixed 129SvJ, C57BL/6, SJL,

and CD1 background [26] onto the C57BL/6J background by

more than 10 generations of backcrossing with C57BL/6J mice

(Harlan, UK) and were maintained by heterozygous breeding.

WT and MPS IIIA littermates have been used in all behavioural

experiments.

Genotyping MPS IIIA mice
MPS IIIA mice have a G to A mutation in the SGSH gene which

removes a Msp1I restriction enzyme digestion site. Genotyping is

performed by PCR amplification of DNA followed by Msp1I

digestion and observation of the size of DNA fragments produced.

Genomic DNA was extracted from ear punches using the GenElute

Mammalian Genomic DNA Miniprep Kit (Sigma Aldrich) following

the manufacturer’s instructions and SGSH was amplified by PCR

using the forward primer 59 GTGTTCCCTGCCTGCTCAC 39

and reverse primer 59 CCAGTCCCCTCATCCCACTA 39. The

DNA was digested with Msp1I (New England Biolabs, UK) and the

DNA fragments were separated by 2% agarose gel electrophoresis.

The genotype was determined from the pattern of DNA fragments;

wild type (WT) reveals 199 bp, 118 bp and 78 bp fragments, mutant

(MUT) 317 bp and 78 bp fragments and heterozygous (HET)

317 bp, 199 bp, 118 bp and 78 bp.

Behavioural testing
At 4, 6 and 8 months (16, 24 and 32 weeks) of age, the same

cohorts of 10 male WT and 10 male MPS IIIA mice and 10

female WT and 11 MPS IIIA mice were analysed with the

following behavioural tests. 1.5 hours into the 12 hour light phase

the mice were dropped into the centre of an open field arena

(width 450 mm, depth 450 mm, height 500 mm) made of matt

white acrylic. The behaviour was recorded for 60 minutes using a

digital camcorder (Sony) and analysed using Top Scan software

(Clever Sys. Inc., USA). The path length, frequency (number of

times) and duration of rapid exploratory behaviour (speed

.100 mm/s), frequency and duration of immobility (speed

,5 mm/s) and frequency of entering the centre and duration in

the centre (75 mm from each edge) was analysed. Rearing in the

open field was analysed by counting the number of unsupported

rears (front paws off the floor) and supported rears (front paws on

the wall) in the first 10 minutes. The same researcher performed

all experiments and was blinded to genotype.

After a 30 minute rest, the mice were placed onto the end of an

open arm of an elevated plus maze. The maze was constructed of

matt white acrylic, comprised of four 500 mm long by 100 mm

wide arms, two of which were enclosed by 500 mm high walls, and

was raised on a stand 500 mm off the floor. Mice were placed so

they faced towards the centre of the maze and were given

10 minutes to explore the maze before returning to a cage. The

maze was cleaned using 70% ethanol. 30 minutes later the mice

were tested for a second time, in the same manner. The results

were analysed using Top Scan software (Clever Sys) to examine

the amount of time spent on the open arm, the percentage of path

length in the open arm, and the percentage of open arm entries.

30 minutes later the inverted screen test was performed, as

described previously [36]. In brief, at 4, 6 and 8 months of age the

mouse was placed on a 470 mm square with a 13 mm square wire

mesh. The screen was then rotated through 180u over 1–

2 seconds. The mouse was then suspended upside down over a
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padded surface; the rear leg moves were counted and the duration

suspended was recorded up to 2 minutes.

One hour later the horizontal bar test was performed as

described previously [14,36]. In brief, a 2 mm diameter, 300 mm

long metal wire was secured between 2 posts, 320 mm above a

padded surface. The mouse was allowed to grip the centre of the

wire and the time taken to fall or to reach the side was recorded up

to 2 minutes. The test was repeated three times as a training run

followed by a 10 minute rest before three test runs. The results

were scored as follows: crossing the bar in x seconds was scored as

240-x, remaining on the bar was scored as 120 and falling off the

bar after y seconds was recorded as y.

Urine retention
Upon sacrifice 9 male WT, 8 male MPS IIIA, 7 female WT and

8 female MPS IIIA mice at 8 months (32 weeks) of age were

dissected and the urine was removed from the bladder and volume

measured using an insulin syringe (BD).

Statistical analysis
Statistical analysis was performed using JMP software (SAS

Institute Inc, Cary, NC, USA) and analysed by MANOVA with

repeated measures for overall significances and by one or two way

ANOVA, as appropriate, with Tukey post hoc tests at individual

time points. Significance was set at p#0.05. For the MANOVA

analysis the Genotype significance determines if there is a

difference between WT and MPS IIIA mice irrespective of the

age of the mice, the Time significance determines if there is a

change in the behaviour of the mice at different ages irrespective of

the genotype and the Genotype*Time significance determines if

MPS IIIA mouse behaviour changes over time in a different

manner to WT mice.

Results

Cohorts of male and female, WT and MPS IIIA mice (n = 10–

11 per group) were monitored in a 60 minute open field test as

outlined in Figure 1A. The path length minute by minute over

60 minutes is shown at 4 months (16 weeks) in Figure 1B, 6

months (24 weeks) in Figure 1C and at 8 months (32 weeks) in

Figure 1D. The behaviour in the first 3 minutes, 10 minutes and

60 minutes is presented to allow comparison against published

data and to identify the minimum amount of time required for

statistically significant analyses. At 4 months of age, female MPS

IIIA mice were significantly hyperactive and travel almost twice as

far as the WT mice over 60 minutes (p = 0.037; Figure 1B).

Examining the behaviour over the first 3 minutes showed no

difference and no trend in female behaviour, but over 10 minutes

there was a non-significant trend towards hyperactivity. No

difference was found in the path length of male WT or MPS

IIIA mice at 4 months.

At 6 months of age the same female MPS IIIA mice

demonstrated increased path length with significant differences

after 10 minutes (p = 0.030) and greater differences after 60 min-

utes (p = 0.005; Figure 1C). No difference was detected between

male WT and MPS IIIA mice (Figure 1C).

At 8 months of age there was a trend for the female mice to be

hyperactive but no significant differences were found after 3

(p = 0.73), 10 (p = 0.15) or 60 minutes (p = 0.18; Figure 1D).

Similarly, no significant differences were found with male mice

after 3, 10 or 60 minutes. Overall, using MANOVA repeated

measure analysis, a significant genotype difference (p = 0.011),

time difference (p = 1.261027) and a time*genotype difference

(p = 0.021) were found. This indicates that overall, MPS IIIA mice

are significantly more hyperactive than WT mice, that this

changes with time and that MPS IIIA and WT mice change their

behaviour in a different manner over time.

The number of unsupported rears (front paws off the floor),

supported rears (front paws on a wall) and total rears were counted

manually in the first 10 minutes of the open field test. The only

significant change observed was a decrease in the number of

unsupported rears by female MPS IIIA mice at 6 months of age

(Figure 1F). However, given that there were no other significant

genotype effects, this may be just a chance occurrence (Figure 1E

and G). MANOVA repeated measure analysis of the data showed

no significant genotype effect in the three rearing measures, but

there was a significant decline in all measures with time

(unsupported; p = 0.004, supported and total p = 0.00003) irre-

spective of genotype.

Rapid exploratory motion was analysed by measuring the

frequency and duration of speed over 100 mm/s (Figure 2A–F). At

4 months of age, female MPS IIIA mice show significant increases

in both the frequency (p = 0.048; Figure 2A) and duration

(p = 0.05; Figure 2D) of rapid exploration over 60 minutes.

However, no significant differences were observed after 3 or

10 minutes, although a trend was detected after 10 minutes

(Figure 2A). No significant differences were found between male

MPS IIIA or WT mice at 4 months of age.

At 6 months of age, there was a trend towards increased

frequency (Figure 2B) and duration (Figure 2E) of rapid

exploratory motion after 3 minutes in the female MPS IIIA mice

(p = 0.23, p = 0.10). After 10 (p = 0.021, p = 0.034) and 60 minutes

(p = 0.0003, p = 0.0057), female MPS IIIA mice had significantly

increased frequency (Figure 2B) and duration (Figure 2E) of rapid

exploratory motion over 100 mm/s. No significant differences

were observed between male WT and MPS IIIA mice. This rapid

exploratory behaviour is visible in Video S1 which shows the

median female WT and MPS IIIA mouse at 6 months of age at 4

times normal speed.

At 8 months of age, female MPS IIIA mice show a trend

towards increased frequency of rapid exploratory motion over

60 minutes (p = 0.18) (Figure 2C), with a trend to increase in

duration after 10 minutes (p = 0.083) and a significant increase

after 60 minutes (p = 0.02) (Figure 2F). Male MPS IIIA and WT

mice were indistinguishable. Using MANOVA repeated measure

analysis, there was a significant difference between WT and MPS

IIIA mice over all three time points for frequency (Genotype;

p = 0.004) and duration (Genotype; p = 0.013) of rapid exploratory

motion. There was a significant decline in frequency (Time;

p = 9.7610215) and duration (Time, p = 4.561028) of rapid

exploratory motion with time and also between genotypes over

Figure 1. Open field path length and rearing. At 4, 6 and 8 months (16, 24 and 32 weeks) of age, 10 WT male (light grey squares), 10 MPS IIIA
male (dark grey squares), 10 WT female (white squares) and 11 MPS IIIA female (black squares) were placed in the open field and the behaviour was
recorded for 60 minutes (A). The results of the open field behaviour are presented as a 60 minute period with the average of every minute presented
and as a bar chart of the first 3 minutes, first 10 minutes and the whole hour. Error bars represent the standard error of the mean (SEM). p values were
calculated by 2 Way ANOVA. The mean average path length in Metres at 4 (B), 6 (C) and 8 (D) months have been presented. The number of
unsupported, supported and total rears in the first 10 minutes at 4 (E), 6 (F) and 8 (G) months of age have also been presented.
doi:10.1371/journal.pone.0025717.g001
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time for frequency (Time*Genotype p = 0.00005) and duration

(Time*Genotype, p = 0.036).

The frequency and duration the mice spent immobile was also

recorded (Figure 3A–F). There were no significant differences in

frequency of immobility between either male or female MPS IIIA

and WT mice at any time point. However, female WT mice had

significantly increased duration of immobility over 60 minutes at 4

(p = 0.005) and 6 months (p = 0.004) but not at 8 months

(p = 0.70). Male MPS IIIA or WT mice had indistinguishable

duration of immobility at all time points measured. Using

MANOVA repeated measures there was an overall increase in

the frequency of WT immobility over MPS IIIA mice over the

three time points (Genotype; p = 0.027), but no change with time

(Time; p = 0.543), or genotype with time interaction (Genotype*-

Time; p = 0.636). MANOVA repeated measures analysis of

duration of immobility demonstrated a significant genotype effect

over the three time points (Genotype; p = 0.05), that changes

significantly with time (Time; p = 1.561029) and changes

differently with time between the two genotypes (Genotype*Time;

p = 0.030).

Mice being a prey species tend to display thigmotaxis,

remaining close to the sides of an open field arena. Increased

frequency and duration of time spent in the centre of the open

field test therefore demonstrates reduced thigmotaxis and this is

commonly considered to be a measure of reduced anxiety or

reduced sense of danger that the animal experiences [37]. Male

MPS IIIA and WT mice showed no significant differences in

frequency of centre entries at any age (Figure 4A, B and C). At 4

months of age, female MPS IIIA mice showed significantly

increased centre entries at 60 minutes (p = 0.0045). At 6 months

female MPS IIIA mice entered the centre significantly more at 3,

10 and 60 minutes (p = 0.057, p = 0.023, p = 0.0005; Figure 4B).

At 8 months of age female MPS IIIA showed no significant

increases in centre entries (p = 0.37)(Figure 4C). Using MANOVA

MPS IIIA mice showed significantly increased centre entries

(Genotype; p = 0.003), which changed significantly over time

(Time; p = 2.3610211) and between genotypes over time (Geno-

type*Time; p = 0.0013).

The duration spent in the centre has also been analysed. At 4

months of age, female MPS IIIA mice spent significantly more

time in the centre than WT, after 60 minutes (p = 0.012;

Figure 4D). Males were not significantly different. At 6 months

of age female MPS IIIA mice had increase duration in the centre

after 60 minutes (p = 0.012) and showed an almost significant

trend in male mice (p = 0.055; Figure 4E). At 8 months of age

there are no significant differences between genotypes (Figure 4F).

By MANOVA repeated measure analysis MPS IIIA mice spend

significantly increased duration in the centre area (Genotype;

p = 0.001), this changes significantly over time (Time;

p = 2.561026) and between genotypes over time (Time*Genotype;

p = 0.005).

Thirty minutes after behavioural analysis in the open field, the

same cohort of mice were tested on an elevated plus maze

(Figure 5A) for ten minutes, followed by a 30 minute rest and

another 10 minute trial. Several parameters were measured

(frequency of entering open arm, percentage of entries into the

open arm, path length in open arm, percentage of path length in

open arm and time in open arm) but none reached significance.

Here we have presented the percentage of entries to the open

arms, percentage of path length in the open arms and duration in

the open arms as measure of anxiety (Figure 5B, C, D), which is

representative of many of the other measures. At 4, 6 and 8

months of age there was no significant difference in male or female

WT or MPS IIIA open arm entries (Figure 5B, C, D). At 4, 6 and

8 months there was no difference between WT and MPS IIIA

mice in the repeat elevated plus maze and no difference between

first and second elevated plus maze tests except that in the second

test, all the mice performed fewer entries and had a shorter path

length (Figure S1A–C). Statistical analysis by MANOVA showed

no significant difference in genotype, or time but there was a

significant difference in how the genotypes behaved over time in

the percentage of path length in the open arm (p = 0.019) as the

MPS IIIA mouse path length decreased at 8 months but the WT

increased.

The inverted screen test (Figure 6A) and horizontal bar crossing

test (Figure 6B) were also performed. The inverted screen test

measures neuromuscular strength and the bar crossing test

measures both neuromuscular strength and motor coordination.

The bar crossing test showed no significant differences between

WT and MPS IIIA of either sex at 4, 6 or 8 months of age

(Figure 6C–E). Over time, there was a significant decrease in the

number of moves and time spent on the inverted screen

(p = 1.761026, p = 1.261025), and a significant sex difference in

the number of moves with females moving more (p = 0.004). Bar

crossing showed no genotype effect and no time effect but there

was a significant Time*Sex effect (p = 0.044), as the female score

decreased over time but the male score increased at 6 months and

then decreased at 8 months.

Discussion

We have backcrossed the mixed background MPS IIIA mouse

model onto the C57BL/6J background and characterised a

behavioural phenotype that can be used to accurately distinguish

female MPS IIIA mice from WT littermates. Our findings clearly

show that male mice show no significant difference to WT

littermates in the open field test or elevated plus maze, whilst

female MPS IIIA mice demonstrate characteristic hyperactive

behaviour initially at 4 months (16 weeks) and more strongly at 6

months (24 weeks), which declines again at 8 months (32 weeks) of

age. We also show that these mice have a reduced thigmotaxis at 4

and 6 months of age which would indicate a reduced sense of

danger. Hyperactivity and a reduced sense of danger are observed

in the behavioural phenotype of the MPS IIIA patients

[1,7,10,11].

In this study we observed no significant behavioural differences

between WT and MPS IIIA male mice. This is in contrast to

Hemsley et al. 2005 where hyperactivity was initially observed at 3

weeks, hypoactivity at 6 and 15 weeks and no changes at 10, 20

and 40 weeks in male mixed background mice [32]. Lau et al. 2008

used male MPS IIIA mice that had been back crossed onto the

C57BL/6 background and observed no differences at 3, 5 and 15

Figure 2. Open field rapid exploratory behaviour. At 4, 6 and 8 months of age 10 WT male (light grey squares), 10 MPS IIIA male (dark grey
squares), 10 WT female (white squares) and 11 MPS IIIA female (black squares) were placed in the open field and the behaviour was recorded for
60 minutes. The results of this test are presented as a 60 minute period with the average of every minute presented and as a bar chart of the first
3 minutes, first 10 minutes and the whole hour. Error bars represent the SEM. p values were calculated by 2 Way ANOVA. The frequency of moving
faster than 100 mm/s at 4 (A), 6 (B) and 8 (C) months and the duration spent moving faster than 100 mm/s at 4 (D), 6 (E) and 8 (F) months of age have
been presented.
doi:10.1371/journal.pone.0025717.g002
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weeks, with significant hypoactivity at 10, 18 and 22 weeks [33]

but subsequently observed hypoactivity in 15 week old male mice

[22]. Crawley et al., using male MPS IIIA mice on the same

C57BL/6 background, found no changes at 4, 6, 8, 10, 15, 18, 22,

25, 32 and 40 weeks and only observed hyperactivity at 12 weeks

[30]. Finally, using male mice independently crossed onto the

C57BL/6J background by Jackson laboratories, hypoactivity was

observed in MPS IIIA mice at 20 weeks of age by McIntyre et al.

but no difference was found at 24 or 32 weeks [38]. Clearly, it is

hard to obtain consistent behavioural readouts from male mice in

this context and it is always difficult to know if hypoactivity could

be confounded by any parameter affecting the mouse’s physical

ability to move. We find male MPS IIIA mice to be very aggressive

and are unable to keep them group housed, which is likely to

change their behaviour. Singly housing male C57BL/6 mice has

been shown to increase locomotor activity and reduce anxiety [39]

or alternatively in other researchers hands to have no effect [40].

At the very least, it certainly leads to weight gains, which will

restrict movement, and this may confound reliable open field

measures. Additionally we find that all MPS IIIA mice retain urine

over time, with male mice retaining significantly more urine at 8

months of age and urine retention is the humane endpoint (Figure

S2). Clearly urinary retention could be restricting movement

which would confound behavioural measures. Lastly, it is worth

pointing out that many male mouse studies are on mixed, C57BL/

6 or C57BL/6J backgrounds, some of which have been performed

in different laboratories, which could lead to inconsistencies in

outcomes. Overall, we would argue that comparisons of male MPS

IIIA mice with WT are not appropriate (or easy to perform) for

determination of treatment responses.

Several studies analysed behaviour of male MPS IIIA mice

following control intracranial injections. Fraldi et al. tested male

mice and found that the MPS IIIA mice were hyperactive at 21

weeks of age but not prior to this, but these mice had received

intracranial injections and this may have adversely affected the

mouse’s behaviour [23]. Other studies where intracranial

injections have been given to MPS IIIA mice all used male mice

and generally observed either no changes or hypoactivity

[18,21,35]. It is worth considering that intracranial injections

could have altered the natural behaviour of the mouse and this

may be why hypoactivity is observed.

We found female MPS IIIA mice to be hyperactive, having a

significantly increased path length, frequency and duration of

rapid exploratory behaviour and reduced duration of immobility

at 4 and 6 months of age, (16 and 24 weeks) whilst duration of

rapid exploratory behaviour was significantly increased at 8

months (32 weeks). At 4 months of age differences are only

significant after 60 minutes, but at 6 months they are all significant

after both 10 and 60 minutes. This indicates that the 60 minute

test is a more sensitive test to identify hyperactivity than the 10 or

3 minutes tests. No significant differences were observed over the

first 3 minutes at any time point, thus we would suggest that

studies such as that of Crawley et al. 2006 where this short test has

been used are not likely to yield significant differences [30].

Our hyperactivity findings in females are supported by Crawley

et al, where hyperactivity was observed at 22 and 32 weeks of age

in a 3 minute test with female MPS IIIA C57BL/6 mice, however

no difference was observed at any point prior to 18 weeks or at 25

or 40 weeks of age [30]. They also observed hypoactivity in

females at 4 weeks of age but we do not have comparative data to

comment on this. The longer testing time utilised in our study may

have meant that we were better able to detect behavioural changes

in the mice that were not detectable with the 3 minute test.

On the mixed background, female MPS IIIA mice were

hyperactive at 3 weeks of age but at subsequent ages no differences

were observed at 6, 10, 15, 20, 30 or 40 weeks of age [32]. In the

work of Lau et al., using the C57BL/6 backcross, no differences

were observed between female WT and MPS IIIA C57BL/6 mice

between 3–22 weeks of age [33].

MPS IIIB is a phenotypically indistinguishable disease to MPS

IIIA. In the mouse model of MPS IIIB, hyperactivity has been

observed in a 10 minute open field test [41] but hypoactivity in an

8 minute open field test performed half in the light half in the dark

[42]. A 60 minute open field test did not report differences in path

length in male or female mice [43], but a 60 minute open field test

that we performed on female mice at the same circadian time as

this study observed hyperactivity at 8 months of age [36], which is

consistent with our findings here. We also observed significant

increases in hyperactivity in male MPS IIIB mice at 8 months of

age, although they were less significant differences than those

observed in females [14]. The MPS IIIB mouse is a complete

knockout and thus may be slightly more severe than the MPS IIIA

mouse with ,3% residual enzyme activity. This may explain why

we were able to detect significant genotype differences at 8 months

of age in MPS IIIB in all parameters but only some in MPS IIIA.

We believe that the 60 minute open field test is still measuring

habituation behaviour due to the profiles of activity observed in

both MPSIIIA mice in this paper and in MPSIIIB mice [36] over

time. We found that differences in behaviour between MPS IIIB

and WT mice [36] and MPS IIIA and WT mice (Figure 1B and C)

became more pronounced from 3 to 10 to 60 minutes and

diverged in the first few minutes from a similar initial response.

When we compared MPS IIIB and WT mice over a 24 hour

period following 24 hours of habituation [36] the differences were

significantly muted and over 14 days there was no significant

difference [44]. This suggests that a 60 minute open field test does

not reflect home cage behaviour but instead probably measures

extended habituation to a novel environment.

A significant decrease in the number of unsupported rears by

female MPS IIIA mice was observed at 6 months of age, however,

there was no difference in the overall number of rears, or

supported rears, at this or any other time point. No consistent

trend in the number of rears with female mice is apparent in the

literature, Crawley et al. reported that female MPS IIIA mice

reared less at 15 and 25 weeks of age but there were no significant

differences at 9 other time points [30]. No significant differences in

rearing were observed in Lau et al. who also used backcrossed mice

[33], or Hemsley et al who used mixed background mice [32]. A

more consistent trend is observed in male mice with MPS IIIA

rearing less [18,30,32,33,35], but increased rearing has been

observed at 3 weeks [32]. However, at most time points no

significant difference is observed. Manual measurement of rears

Figure 3. Open field immobile behaviour. At 4, 6 and 8 months of age 10 WT male (light grey squares), 10 MPS IIIA male (dark grey squares), 10
WT female (white squares) and 11 MPS IIIA female (black squares) were placed in the open field and the behaviour was recorded for 60 minutes. The
results of this test are presented as a 60 minute period with the average of every minute presented and as a bar chart of the first 3 minutes, first
10 minutes and the whole hour. Error bars represent the SEM. p values were calculated by 2 Way ANOVA. The frequency of not moving at 4 (A), 6 (B)
and 8 (C) months and the duration spent not moving at 4 (D), 6 (E) and 8 (F) months of age have been presented.
doi:10.1371/journal.pone.0025717.g003
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can be subjective and there may be variations in the rearing

behaviour, such as amount of time per rear that cannot be

measured by simply counting the number of rears. This is why we

examined the number of supported and unsupported rears

[36,45]. In the MPS IIIB mouse model, no difference in rearing

was observed in the first 10 minutes of an open field test with

female mice at 8 months of age [36] and no difference in the first

30 minutes but a significant decrease in the number of rears by

4.5–5 month old male MPS IIIB mice in the second 30 minutes of

a 60 minute open field test [43]. Our conclusion is that rearing is

too variable an outcome in MPS IIIA and IIIB mice and is

therefore not a valuable informative test.

At 4 and 6 months of age the MPS IIIA female mice had a

reduced sense of danger and spent a greater proportion of time in

Figure 4. Open field sense of danger behaviour. At 4, 6 and 8 months of age 10 WT male (light grey squares), 10 MPS IIIA male (dark grey
squares), 10 WT female (white squares) and 11 MPS IIIA female (black squares) were placed in the open field and the behaviour was recorded for
60 minutes. The results of this test are presented as a 60 minute period with the average of every minute presented and as a bar chart of the first
3 minutes, first 10 minutes and the whole hour. Error bars represent the SEM. p values were calculated by 2 Way ANOVA. The frequency of entering
the centre at 4 (A), 6 (B) and 8 (C) months and the duration spent in the centre at 4 (D), 6 (E) and 8 (F) months of age have been presented.
doi:10.1371/journal.pone.0025717.g004

Figure 5. Elevated plus maze behaviour. At 4, 6 and 8 months of age 7–11 WT male (light grey bars), MPS IIIA male (dark grey bars), WT female
(white bars) and MPS IIIA female (black bars) were placed on the elevated plus maze (A) and the behaviour was recorded for 10 minutes. After a
30 minute rest, the test was repeated. The results of the first test are presented as the mean of each measure with error bars representing the SEM. p
values were calculated by 2 Way ANOVA. The following measures have been presented; the percentage of total entries that were into the open arm,
the percentage of the path length in the open arm and the duration spent on the open arm at 4 (B), 6 (C) and 8 (D) months of age.
doi:10.1371/journal.pone.0025717.g005
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the centre of the open field, this measure was significant after

60 minutes but not after 3 or 10 minutes. This is supported by the

patients with MPS IIIA which are believed to have a reduced sense

of danger [1]. No difference in the time in centre was detected by

Lau et al. in both male and female mice [33], however this could be

because the open field was larger in our study and therefore more

sensitive to thigmotaxis [45,46]. In the MPS IIIB mouse model no

differences were observed in the duration spent in the centre of the

open field [36] but the open field used in that study was also

smaller than the one used in this study.

The elevated plus maze did not demonstrate a decrease in

anxiety or sense of danger in the MPS IIIA mice. There were also

no differences between repeat tests, and both WT and MPS IIIA

mice appeared to habituate equally. Lau et al. 2010, observed no

significant differences with male mice at 6.5 months (26 weeks) of

age with a 5 minute elevated plus maze test, but there was a trend

towards reduced anxiety [34]. However in Lau et al. 2008 a

significant increase in the time the male MPS IIIA mice spent in

the open arms at 18 weeks of age, the percentage of the path

length on the open arms at 15 and 18 weeks and the percentage of

entries into the open arms at 20 weeks was observed [33].

Additionally they observed significant differences between repeats

of the elevated plus maze, male MPS IIIA mice had a significantly

longer path length in the repeat elevated plus maze test while WT

mice remained unchanged [33]. We did not observe decreased

anxiety or a change in behaviour between repeat elevated plus

maze tests. The width of the arms could be affecting this test as this

study used 10 cm wide arms and Lau et al., used 7 cm wide arms.

It has been demonstrated that when using 5, 7 or 9 cm wide arms,

NMRI mice spent more time in the wider open arms compared to

C57BL/10J mice that showed no difference [47]. Ten minutes on

the elevated plus maze may also be too short a time to detect the

sense of danger differences in the MPS IIIA mice as the only

centre measure on open field that is significant after 10 minutes is

Figure 6. Neuromuscular behaviour. At 4, 6 and 8 months of age 8–11 WT male (light grey bars), MPS IIIA male (dark grey bars), WT female (white
bars) and MPS IIIA female (black bars) were placed on the inverted screen test (A) and horizontal bar crossing test (B). The number of rear leg moves,
the time spent on the inverted screen and the bar crossing score are presented at 4 (C), 6 (D) and 8 (E) moths of age. Error bars represent the SEM and
p values were calculated by 2 Way ANOVA.
doi:10.1371/journal.pone.0025717.g006
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the number of centre entries in female mice at 6 months of age

(p = 0.023). A lack of difference in the elevated plus maze

performed in daylight is supported by MPS IIIB mice which

showed no difference in the light but were less anxious in the dark

[41]. The increased number of centre entries and duration in the

open field could perhaps reflect increased but undirected anxiety

whereby mice are actually more agitated but have lost the ability

to determine what is dangerous. A more pragmatic explanation

could be due to the mice not being naively tested as they only

received a 30 minute break after the open field test before starting

the elevated plus maze test. Prior behavioural tests can affect the

result of elevated plus maze tests with C57BL/6J mice that have

previously been tested in an open field test [48].

No significant differences were observed in the inverted screen

or bar crossing tests which is consistent with the work of Crawley et

al. who observed no difference in neuromuscular strength with

back crossed MPS IIIA mice [30]. However on the mixed

background strain, there was a significant decrease in neuromus-

cular strength with MPS IIIA mice being unable to grip the

inverted screen for as long as the WT mice from 20 weeks of age

[32]. The work in our study is supported by work with the MPS

IIIB mouse model that does not show a decline in motor function

at 5 months of age by accelerating rotarod [43,49] but does by a

rocking rotarod test from 9 months onwards [50,51]. The decline

in motor function could relate to the presence of increasing urine

retention in the MPS IIIA and B mouse models [14,26,29]. Our

own tests in the MPS IIIB mouse model found that neuromuscular

decline only occurred at 10 months of age (40 weeks) [14,36].

Given that the MPS IIIA mouse has residual enzyme activity, it is

possible that progression of MPS IIIA disease is slightly less rapid

than in MPS IIIB which would explain why we did not see a trend

to changes in motor function at 8 months in MPS IIIA mice.

Standardisation of tests is a very important aspect of

behavioural test design that may have affected comparison of

our tests to those of other laboratories. In this study the size of the

open field was larger than that described in many studies and the

behaviour was observed for much longer (60 minutes compared to

3 minutes). The increased size and time of the test allows better

spatial and temporal resolution of the mouse behaviour and so

makes the test more sensitive [45]. Video analysis software was

used which has been shown to be more sensitive than line crossing

determined by an observer or beam breaks [52]. In this study, the

mouse was placed in the centre of the open field rather than in the

corner and the test was carried out at the same time point of

circadian rhythm for all mice as there is a known peak in activity

in the similar MPS IIIB mouse model [44]. The mice in this study

were also housed differently; females were group housed and male

mice were singly housed from 14 weeks of age. The background of

the mice can affect the behavioural phenotype, therefore we

backcrossed the MPS IIIA mice in this study onto the C57BL/6J

background for more than 10 generations. Other groups have

used MPS IIIA mice on a mixed background [18,32], or on a

C57BL/6 [23,30,33,34] or C57BL/6J [21] background. Strain

specific differences can also significantly affect behavioural

outcomes [53].

Conclusion
We have demonstrated that we can reliably detect differences in

the behaviour of female but not male MPS IIIA mice at 4 and 6

months (16 and 24 weeks) of age and these differences match the

patient phenotype. Male mice were singly housed due to their

aggression which may change comparative behavioural responses.

Female MPS IIIA mice are hyperactive, with a longer path length,

increased frequency and duration of rapid exploratory behaviour,

and spend less time immobile. They also show a trend to this

behaviour at 8 months of age with significantly increased duration

of rapid exploratory behaviour. Female MPS IIIA mice demon-

strate a reduced sense of danger with a greater proportion of the

time spent in the centre of the open field with a greater number of

centre entries. These two time points and multiple measures are

ideal to evaluate novel therapies for MPS IIIA as the effect of a

therapy can be sensitively determined using multiple measures.

This behavioural phenotype is supported by both the phenotype of

the patients and our recent similar observations in the MPS IIIB

mouse model [14,36]. The increased size of the open field, the

increased length of the test, the use of video analysis software and

performing the test at consistent point in the circadian rhythm

have produced a sensitive and robust test to evaluate the effect of

therapies on female MPS IIIA mice.

Supporting Information

Figure S1 Repeat elevated plus maze behaviour. At 4, 6

and 8 months of age 7–11 WT male (light grey bars), MPS IIIA

male (dark grey bars), WT female (white bars) and MPS IIIA

female (black bars) were placed on the elevated plus maze (A) and

the behaviour was recorded for 10 minutes. After a 30 minute

rest, the test was repeated. The results of the repeat test are

presented as the mean of each measure with error bars

representing the SEM. p values were calculated by 2 Way

ANOVA. The following measures have been presented; the

percentage of total entries that were into the open arm, the

percentage of the path length in the open arm and the duration

spent on the open arm at 4 (A), 6 (B) and 8 (C) months of age.

(TIF)

Figure S2 Urine retention at 8 months. At 8 months of age

9 WT male (light grey bars), 8 MPS IIIA male (dark grey bars), 7

WT female (white bars) and 8 MPS IIIA female (black bars) were

sacrificed and the urine volume in the bladder measured. The

results are presented as the mean with error bars representing the

SEM. p values were calculated by 2 Way ANOVA.

(TIF)

Video S1 Open field behaviour video. A video running at 4

times the normal speed showing the median female WT and MPS

IIIA mouse at 6 months of age. The MPS IIIA mouse is on the left

and the WT mouse is on the right.

(WMV)

Acknowledgments

The authors gratefully acknowledge the help and assistance of the staff of

the Manchester BSU, Dr Richard Preziosi for statistical advice and the

Manchester Biomedical Research Centre.

Author Contributions

Conceived and designed the experiments: AL-S KJL-S FLW BWB.

Performed the experiments: AL-S KJL-S. Analyzed the data: AL-S KJL-S

FLW BWB. Wrote the paper: AL-S KJL-S SAJ RFW JEW FLW BWB.

References

1. Heron B, Mikaeloff Y, Froissart R, Caridade G, Maire I, et al. (2011) Incidence

and natural history of mucopolysaccharidosis type III in France and comparison

with United Kingdom and Greece. American journal of medical genetics Part A

155A: 58–68.

Hyperactivity in Mucopolysaccharidosis IIIA Mice

PLoS ONE | www.plosone.org 13 October 2011 | Volume 6 | Issue 10 | e25717



2. Meyer A, Kossow K, Gal A, Muhlhausen C, Ullrich K, et al. (2007) Scoring

evaluation of the natural course of mucopolysaccharidosis type IIIA (Sanfilippo
syndrome type A). Pediatrics 120: e1255–1261.

3. Valstar MJ, Neijs S, Bruggenwirth HT, Olmer R, Ruijter GJG, et al. (2010)
Mucopolysaccharidosis type IIIA: Clinical spectrum and genotype-phenotype

correlations. Annals of Neurology 68: 876–887.

4. Kresse H (1973) Mucopolysaccharidosis 3 A (Sanfilippo A disease): deficiency of

a heparin sulfamidase in skin fibroblasts and leucocytes. Biochem Biophys Res
Commun 54: 1111–1118.

5. Kresse H, Neufeld EF (1972) The Sanfilippo A corrective factor. Purification

and mode of action. J Biol Chem 247: 2164–2170.

6. Scott HS, Blanch L, Guo XH, Freeman C, Orsborn A, et al. (1995) Cloning of

the sulphamidase gene and identification of mutations in Sanfilippo A syndrome.
Nat Genet 11: 465–467.

7. Valstar M, Ruijter G, van Diggelen O, Poorthuis B, Wijburg F (2008) Sanfilippo
syndrome: A mini-review. Journal of Inherited Metabolic Disease 31: 240–252.
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