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Abstract

Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features
whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called ‘‘Dots’’),
for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local
contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys
progressively more information about the target object. Stimuli generated with the presented method enable a precise
control of object-related information content while preserving low-level image statistics, globally, and affecting them only
little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free
visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced
stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence
perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual
hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects.
Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down
processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge
about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the
actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the
novelty and difficulty of the stimulus, likely reflecting cognitive demand.
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Introduction

The investigation of object recognition in the human visual

system is a challenging problem and often requires visual

paradigms able to manipulate various features of the stimulus in

order to increase or decrease the ability of human subjects to

detect, categorize, or precisely identify a target object. Most

present methods do not allow for a precise control over the

information that is provided to the visual system because they

allow multiple features to be present in the image, thereby making

it very hard to manipulate how much a given feature contributes

to the recognition process. Ideally, one would have a single feature

present in the target image and devise a method to manipulate – in

a precise quantitative fashion – how much information that feature

conveys about the identity of the object. Based on their ability to

isolate visual features, techniques to manipulate object perception

can be divided into two major categories: transformative and

generative.

We call transformative techniques methods where the stimulus is the

original image or is created directly from the original image of the

object via some image transformation (adding noise, phase

spectrum or contrast manipulation, and so on). The fully visible

stimulus always consists of the original image of the object.

Example techniques include image degradation [1], degradation

based on Gaussian filters [2], morphing [3], manipulation of

contrast either directly [4] or using controlled agglomerations of

pixels [5]. Many of these methods however do not preserve low-

level features of the stimulus such as contrast, global luminance, or

distribution of spatial frequencies. It has been suggested that high-

level object perception must be isolated from low-level processes

dependent on image properties because the latter can create

confounds in the investigation of object recognition [6,7].

Therefore, ideally, transformations of the original image need to

preserve low-level image properties as much as possible. Methods

that achieve this also exist. For example, Tjan et al. [8]

manipulated signal-to-noise ratio (SNR) by mixing the image with

pink-noise but keeping the mean luminance and the root mean

squared (RMS) contrast constant. Another powerful technique is

random image structure evolution (RISE), which manipulates the

phase spectrum (via a continuous transformation from original to
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some other phase spectrum of choice, such as a random phase

spectrum) in such a way that the global luminance, the contrast

and the distribution of spatial frequencies are preserved [7,9–11].

Generative techniques create the stimulus indirectly, i.e., informa-

tion from the original image is used to generate a novel stimulus

image from various sets of basic elements (dots, color patches, line

segments, Gabors). As a result, the original image or transformed

versions of it are not present in the stimulus directly but only some

features (e.g., patterns or contour) are conveyed by the basic

elements used to render the stimulus. For example, a ‘‘Dalmatian

Dog’’ can be represented embedded into a set of distractors [12]

by using only patterns of black and white color patches. However,

in this case it is difficult to smoothly manipulate the visibility of the

object across a given scale. For this reason, other techniques rely

on Gestalt principles, such as good continuation or grouping,

which can be continuously manipulated. Popular methods use a

field of oriented Gabors where the identity of an object can be

revealed by forming a more or less coherent contour. The

coherency of the contour, and thereby the detectability/identifia-

bility of the object, can be manipulated by progressive alignment

of randomly oriented Gabors to the contour of the target object

[13–15]. Another possibility is to use a field of randomly oriented

Gabors and to progressively align the orientation of a local group

of Gabors such that it represents a solid shape rather than its

contour [16]. In this latter case the representation of the shape

relies on the Gestalt principle of grouping by similarity.

Importantly, for many transformative techniques local contrast

or luminance may change dramatically by manipulating image

structure (e.g. via the phase spectrum) even if global properties are

kept constant. Also, these methods do not generally allow for a

precise control over the type of information that is provided to the

visual system because, by their nature, they allow multiple features

(local contours of various spatial frequencies, texture, shading, etc)

to be present in the image. Some of the transformative techniques

can be improved to solve part of these problems (for example it is

straightforward to control spatial frequency information in the

RISE method). By contrast, generative techniques suffer less from

these problems albeit with the tradeoff of being able to convey only

a limited type of visual information. As an example, manipulation

of contour by local Gabor orientations keeps both global and local

image properties constant, such as luminance and contrast, but the

method is able to convey only contour information. The limitation

of visual features is desirable for gaining good control over the

information conveyed to subjects but may prove overly restrictive

for some tasks, such as subordinate-level categorization. In

addition, generative techniques are relatively scarce and some-

times require extensive preprocessing of source images. For

example, contour manipulation via oriented Gabors needs source

images where relevant contours of objects have already been

isolated, i.e. sketch images.

Both transformative and generative techniques have been used

to study the role of top-down modulation in object recognition

because they are able to manipulate object-related information

content of the stimulus in order to control the ability of subjects to

recognize objects. A popular design to study top-down modulation

of recognition involves perceptual hysteresis [5], i.e., a drop in

detection or recognition threshold when subjects have been

previously exposed to targets as compared to the situation where

subjects are naive. Perceptual hysteresis can be studied by

progressively manipulating recognizability of the target, first in

an ascending fashion (from difficult to easy), where the subject is

naive, and subsequently in a reversed, descending fashion (from

easy to difficult), where the subject has already been exposed to

clear targets and therefore possesses prior knowledge about them

[5,17]. As a result of this priming, detection or recognition

accuracy is increased during the descending presentation of

targets, presumably because top-down influences facilitate object

perception [5,17]. For obvious reasons, the above mentioned

techniques to produce stimuli are useful to study perceptual

hysteresis because they can manipulate stimulus recognizability in

a parameterized way. Another technique frequently used in the

study of perceptual hysteresis is masking where the stimulus is

flashed for a limited duration and followed by a mask [18,19].

Unlike transformative and generative techniques, masking does

not require that the stimulus is changed to modulate its

recognizability but renders recognition difficult because of the

limited access to the stimulus. This makes it suitable to use

original, unprocessed images, although masking is frequently used

also in combination with stimuli produced via transformative [7]

or generative methods [15]. We consider that masking is a less

natural way of studying object perception and perceptual

hysteresis because it prevents free visual exploration. Since most

studies have used stimuli in combination with masking, little is

known about how perceptual hysteresis is manifested under

naturalistic, free viewing conditions.

Here we set out to develop a novel generative technique, called

the ‘‘Dots’’ method that facilitates the study of free visual

exploration during object recognition. We applied the ‘‘Dots’’

method to study integration of visual information by human

subjects and to investigate how perceptual hysteresis is manifested

during free visual exploration.

Results

The ‘‘Dots’’ method
The ‘‘Dots’’ method was designed to enable the experimenter to

precisely control the amount and type of object-related informa-

tion provided to the subject. The method exploits several Gestalt

principles such as grouping by proximity and good continuation.

Visual stimuli are generated by the controlled deformation of a

lattice of dots that is driven by a single feature of the original

image: local contour density. The method creates a map of points

of interest (POI) to compute local information content (local

contour density) around each pixel in the source image. This

computation is similar to assigning a ‘‘saliency’’ value to each pixel

in the source image [20]. To generate the stimulus, a lattice of dots

with square structure [21] is then progressively deformed based on

the POI map such that dots converge towards corresponding

salient regions in the source image. Local contour density

information from the source image is therefore progressively

represented by the lattice. By adjusting the amount of deforma-

tion, the stimulus from the source image can be more or less visible

in the deformed lattice.

The POI map computes the local information around pixels in

the original image (first converted to grayscale) by applying a local

Gabor Wavelet (Gabor Jet) decomposition (Figure 1A) around

each pixel [22]. We used Gabor Jets composed of a set of zero-

mean Gabor filters spanning a range of spatial frequencies (0.1,

0.25, and 0.5 cycles/pixel implemented as convolution kernels

with Gabor sigma of 1.16, 2.16, and 4.83 pixels, respectively, and

spanning 7, 13, and 29 pixels, respectively) and different

orientations (0u, 30u, 60u, 90u, 120u, and 150u). Each Gabor filter

in the jet is convolved with the local image around the pixel and

yields a local response. The sum of responses across the jet reveals

the importance of the respective pixel in the source image. The

POI map can be interpreted as a map describing the contour

information content of the original image estimated locally around

each pixel. Points located close to contours with higher local
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contrast or at the intersection of multiple contours will have a

stronger response in the summed responses of local filters than

points located close to surfaces with smooth luminance changes.

Thus, the POI map uncovers the most important points required

to identify an object by its representative local contours.

The method employs two parallel plane surfaces (xy coordinates)

located at a distance h (Figure 1B). One plane consists of the POI

map, normalized to contain values between 0 and 255. The other

plane is a regular lattice of dots. Each pixel in the POI map exerts

a gravitational attractive force upon lattice elements proportional

to its information content; lattice elements resist movement with

an elastic force. Consider one pixel from the POI map and a

lattice element situated apart at distance, r, (Eq. 1). A gravitational

force, G, (Eq. 2) attracts the lattice element towards the position of

the pixel in 3D space (Figure 1B). Each lattice element has a

generic mass, mL, and each pixel in the POI map has a mass, mP,

directly proportional to its local information content (sum of filter

responses across the Gabor Jet). The movement of lattice elements

is restricted to the lattice plane and thus only the projection of G

on the lattice plane, Fg, acts on lattice elements (Eq. 3). Assume

that the lattice element has already been pulled by gravitational

forces and lies at distance, d, (Eq. 6) from its original position. At

this position, an elastic force, Fk, proportional to the displacement

(Eq. 7) acts like a spring that pulls the lattice element back towards

its initial position.

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xzr2
yzh2

q
ð1Þ

G~g:
mP
:mL

r2
ð2Þ

Figure 1. Stimulus creation. (A) The source image is filtered with Gabor wavelets to yield a map of points of interest (POI) estimating the local
information in the source image (dark points are most informative). (B) Dots of an elastic lattice are attracted towards points in the POI plane by the
projection Fg of a gravitational force G; an elastic force, Fk, limits their displacement. Dot movement is confined to the ‘‘Lattice’’ plane. (C) Progressive
deformation of a lattice of dots as g is increased. (D) Set of objects used to test the method on human subjects.
doi:10.1371/journal.pone.0022831.g001
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Fg~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

gxzF2
gy

q
ð3Þ

Fgx~G
rx

r
ð4Þ

Fgy~G
ry

r
ð5Þ

where, h is the distance between the POI plane and the lattice

plane, r is the distance between the POI and the lattice element; rx

and ry are projections of the vector distance r onto the x and y axes

of the lattice plane; G is the gravitational force that pulls one lattice

element towards a POI; g is the gravitational constant; mP is the

mass of the pixel in the POI map (proportional to the energy of the

corresponding Gabor jet); mL is a constant value for the mass of

lattice elements (we fixed it to a value of 1); Fg is the projection of

the gravitational force G on the lattice plane, Fgx and Fgx are

projections of Fg on the x and y axes.

d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

xzd2
y

q
ð6Þ

Fk~K :d ð7Þ

Fkx~Fk
: dx

d
~K :dx ð8Þ

Fky~Fk
: dy

d
~K :dy ð9Þ

where, d is the distance of the lattice element from its original

position, dx and dy are its projections on the x and y axes; Fk is the

elastic force, Fkx and Fky are its components on x and y axes; K is an

elastic constant.

The deformation of the lattice is solved by an iterative algorithm.

At each step, for each lattice element the resultant force is computed

as the superposition of gravitational forces from all POI pixels and

the corresponding elastic pull. The movement on both xy directions

is then directly proportional to the resultant forces (Eqs. 10, 11). The

iterative process stops either when lattice elements have stabilized,

or when a certain number of iterations have been performed.

Dx~S:
X

i

Fgxi{Fkx

 !
ð10Þ

Dy~S:
X

i

Fgyi{Fky

 !
ð11Þ

where, i indexes all POI pixels; Dx and Dy are the movements of one

lattice element on the x and y directions respectively; S is a scaling

constant (here a value of 5) that converts the forces into

displacement.

The entire process is controlled by three parameters. First, the

elastic constant, K, (Eq. 7) restricts the movement of lattice

elements. Second, the gravitational constant, g, (Eq. 2) controls the

strength of the gravitational forces and determines how much the

grid is deformed to represent the information in the original image

(Figure 1C). Third, the distance, h, between the two planes

controls how diffuse are the gravitational forces (Eqs 1, 2) and

ensures a minimum distance between POIs and lattice elements

thereby limiting gravitational forces and ensuring convergence of

the iterations (Eqs 1, 2). In practice, K and h are fixed to some

satisfactory values and only g is then varied to manipulate visibility.

Thus, the ‘‘Dots’’ method enables relevant visual information

about objects in the source image to be transferred into the

stimulus in a controlled fashion.

Behavioral data
To study object detection and explicit object recognition during

free visual exploration, we used stimuli generated with the ‘‘Dots’’

method in psychophysical experiments. Images of 50 objects

without background (Figure 1D) were used to create 7 stimuli for

each object, with visibility level ranging from no visibility (g = 0; no

information from the source image was transferred into the dot

lattice) to easily visible (g = 0.3; where subjects could easily identify

the object from the source image) (see Materials and Methods,

Stimuli). Depending on whether reaction times were stressed as

being important or not, two different experiments were carried out

(see Materials and Methods, Experiments). In the first experiment,

instructions given to subjects emphasized accuracy but mentioned

that speed was important as well, while in the second experiment

subjects were given no instructions regarding response speed.

Twenty six subjects participated, 14 in the first experiment and 12

in the second experiment (see Materials and Methods, Subjects).

Subjects were allowed to visually explore each stimulus for as long

as they wanted. They were instructed to decide whether the dot

pattern represented something meaningful by indicating with a

separate keypress whether they perceived ‘‘Nothing’’, they saw

something but were ‘‘Uncertain’’ what it was, or they have ‘‘Seen’’

a clear object (see Materials and Methods, Procedure). After the

button press, participants were required to verbalize their response

and also the name of the object, when this was the case.

The psychophysical experiments relied on the ability of the

‘‘Dots’’ method to precisely control recognition at threshold, such

that the middle ground between detection (signaling the presence

of an object without the ability to identify it) and explicit

recognition could be thoroughly investigated. Importantly,

detection and explicit recognition were not disentangled by

limiting exposure duration [19] but by limiting the amount of

available object-related information while allowing the subjects to

freely explore stimuli, for unlimited duration. This strategy enables

the brain to explore visual solutions and to incrementally integrate

visual information to reach a decision. In addition, previous

research has shown that recognition can be affected not only by

the visibility of a stimulus, but also by previous exposure to it (i.e.,

perceptual priming [5]; see also [23,24] for reviews), and that such

effects have measurable fMRI/EEG correlates [17,25,26]. There-

fore, in addition to manipulating stimulus visibility, we also

attempted to determine how recognition-related aspects (perfor-

mance, visual exploration of the stimulus) are affected by the

stimulus presentation strategy (order of presentation of stimuli with

different visibility levels) and thus the ensuing effect of top-down

processes. Using a between-subjects design, two versions of the

task (conditions) were run for each of the two experiments (see

Materials and Methods, Experimental design). Stimuli obtained

from the 50 source images and with the same visibility level (same g

value) were grouped in blocks, each block corresponding to a

different visibility level. In one condition, blocks were presented in

The Dots Method
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an ascending order of visibility (from g = 0 to g = 0.3), correspond-

ing to a naive subject that had no prior information about the

identity of the objects before reaching recognition threshold. In the

second condition, blocks were presented in reverse order of g value

(from g = 0.3 to g = 0), such that when approaching recognition

threshold from above, subjects were already primed by previous

exposure to the fully visible objects.

Dependent variables of interest were (1) percentage of subjects’

button-press responses for each response type (‘‘Nothing’’,

‘‘Uncertain’’, ‘‘Seen’’), (2) verbal response accuracy (percentage

incorrect, ‘‘Uncertain’’, correct), and (3) reaction time (RT). A

verbal response was considered correct if the subject correctly

identified the object at a basic or subordinate level, or if the subject

responded ‘‘Nothing’’ to a stimulus with g = 0. Since dot stimuli do

not allow for fine details to be discriminated, in one case we also

considered a response correct if the subject-given label was of a

structurally similar object (e.g., ‘‘hand mirror’’ instead of ‘‘tennis

racket’’). A verbal response was considered incorrect if the subject

assigned the wrong label to a stimulus, or if he/she responded

‘‘Nothing’’ at g.0. ‘‘Uncertain’’ responses were not considered as

either correct or incorrect, but were treated as a separate category.

Because all psychometric curves, except for reaction times, were

very similar in the two experiments we collapsed the former across

experiments.

We first computed the percentage of responses as a function of

response type for both the ascending and the descending

experimental conditions (Figure 2A). In order to test the effects

of experimental condition and stimulus visibility, for each response

type we conducted a separate 2 (experimental condition:

ascending vs. descending)67 (g value) mixed ANOVA, with

response percentage as the dependent variable. Detailed results for

these analyses are presented in Table 1. The percentage of

‘‘Nothing’’ responses decreased gradually as visibility (g) increased

(see Table 1 and Figure 2A, left) and this pattern was similar for

the ascending vs. descending condition, as indicated by the

absence of effects for experimental condition or the interaction of

the two factors. Post-hoc contrasts revealed that there were

significant drops in the percentage of ‘‘Nothing’’ responses from

g = 0.05 to g = 0.20 (see Table 1 and Figure 2A, left).

The value of g had a significant effect on the percentage of

‘‘Uncertain’’ responses, but this effect manifested differently in the

two experimental conditions (as indicated by a significant g6
experimental condition interaction; see Table 1). More precisely,

in the ascending condition there was a clear peak at g = 0.10,

reaching 46.46% (post-hoc contrasts indicated significant increases

from g = 0.05 to g = 0.10, and decreases from g = 0.10 to g = 0.30;

see Table 1 for details). In the descending condition, subjects

reported uncertainty in less than 22% of cases, and this was, on

average, relatively constant across different visibility levels (the

trend was flat for gs between 0 and 0.25 and had a significant

increase only from g = 0.25 to g = 0.30) (Figure 2A, middle).

‘‘Seen’’ responses increased with increasing g value from g = 0 to

g = 0.25, according to a sigmoidal curve (Figure 2A, right). The

effect of g interacted with experimental condition: there was a

steady increase in response percentage from g = 0.05 to g = 0.30 in

the ascending condition, and from g = 0 to g = 0.20 in the

descending condition, where we also found a drop in response

percentage from g = 0.25 to g = 0.30. There was no effect of

experimental condition alone on ‘‘Seen’’ response percentage.

We next carried out the same type of analysis22 (experimental

condition)67 (g value) mixed ANOVA (see Table 1 for results

details)2grouping the data according to verbal response accuracy

(percent of correct and incorrect responses) (Figure 2B). Results

were, with very few exceptions, similar to those found when

grouping data according to response type. In the first block (g = 0)

subjects reported correctly that there was ‘‘Nothing’’, but their

failure to detect objects for larger visibility levels (e.g., g = 0.05) led

to a peak of incorrect responses (Figure 2B left) that was then

progressively reduced with increasing g. The percentage of

incorrect responses (Figure 2B, left) was affected by g (after the

initial peak at g = 0.05, there was a steady drop until g = 0.20), but

not by experimental condition or the interaction of the two

variables.

Correct responses were a majority in the first block (response

‘‘Nothing’’ to lattices containing no object-related information

when g = 0), but then dropped for g = 0.05, and subsequently

increased across a smooth sigmoidal threshold (Figure 2B, right).

As in the case of ‘‘Seen’’ responses, there were significant effects of

g (a steady increase from g = 0.05 to g = 0.25) and experimental

condition6g value (ascending: a performance improvement from

g = 0.05 to g = 0.30; descending: improvement from g = 0.05 to

g = 0.20, with a performance drop between g = 0.25 and g = 0.30).

However, overall correct recognition performance did not differ

between the two groups of subjects (i.e., no effect of experimental

condition alone).

Grouping of data according to response type (‘‘Nothing’’,

‘‘Uncertain’’, ‘‘Seen’’) reflects the dependence of subjective recog-

nition on g. When responses are grouped according to correctness

of verbal response (incorrect, ‘‘Uncertain’’, correct), this represents

a more objective dependence of recognition performance as a

function of g. To quantify recognition thresholds, we fitted

subjective (Figure 2A, right) and objective (Figure 2B, right)

recognition curves (portion with g.0) with a sigmoid function, for

each subject (see Materials and Methods, Sigmoid fitting for

threshold identification). In the case of subjective curves

(Figure 2A, right), recognition thresholds were significantly lower

for the descending (Qdescending = 0.09) than for the ascending

(Qascending = 0.12) condition [t(24) = 4.41, p,0.001, d = 1.80]

(Figure 2C, left). The same was true for the objective recognition

curves (Figure 2B, right), with thresholds significantly lower for the

descending (Qdescending = 0.08) than for the ascending (Qascending = 0.13)

condition [t(24) = 4.95, p,0.001, d = 2.02] (Figure 2C, right).

Within each experimental condition, the subjective and objective

recognition thresholds were not significantly different (paired-

samples t-test: t(12) = 2.11, p = 0.06 for the ascending and

t(12) = 0.69, p = 0.50 for the descending condition) and were highly

correlated (r = 0.94, p,0.001 for the ascending and r = 0.87,

p,0.001 for the descending condition).

The above recognition thresholds were computed for each

subject by taking performance curves across the entire set of

objects. We next turned to investigate how individual objects

were detected and recognized. To this end, for each object we

computed the separation border between ‘‘Nothing’’/‘‘Uncer-

tain’’ (detection) and between ‘‘Uncertain’’/‘‘Seen’’ (recognition),

by finding the lowest g value where ‘‘Uncertain’’ and ‘‘Seen’’

responses occur, respectively. Results revealed that separation

borders were specific to individual objects (Figure 3A). The two

borders were also correlated and this correlation was higher for

the ascending (r = 0.79, p,0.001) than for the descending

condition (r = 0.58, p,0.001). This indicates that detection and

recognition borders were more coherently modulated by object

identity for the ascending than for the descending condition. In

other words, if the detection border was lower/higher, then the

recognition border was also lower/higher for the same object, but

this relation was more prominent for the ascending condition. On

average across objects, borders in the descending condition were

both lower than their corresponding borders in the ascending

condition (Figure 3B; t(49) = 3.74, p,0.001 and t(49) = 12.19,
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p,0.001 for detection and recognition, respectively; paired-

samples t-test). This was the case for individual objects as well.

The detection border was, for most objects, lower in the

descending than ascending condition, and this effect was even

clearer for the recognition border, where it held for all objects

(Figure 3C). In addition, the magnitude of the border-lowering

effect by experimental condition was object-specific because the

effect was stronger for some objects (e.g., ‘‘headphones’’) than for

others (e.g., ‘‘piano’’) (see Figure 3C).

Lastly, we investigated RT differences between response types

and as a function of experiment (Figure 4). For each subject, we

extracted median RTs for each g value and then averaged them

Figure 2. Psychometric curves, subjective and objective thresholds. Psychometric curves grouped by response type (A) and by verbal report
accuracy (B) as a function of visibility (g value) and experimental condition (ascending and descending). (C) Thresholds for sigmoidal response curves
corresponding to ‘‘Seen’’ (subjective) responses (left) and correct (objective) verbal responses (right). Error bars represent s.e.m.
doi:10.1371/journal.pone.0022831.g002
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for each response type to obtain a global RT. RTs differed

significantly between subjects included in Experiment 1 versus

Experiment 2. We therefore included experiment as a separate

independent variable in this analysis. We conducted a 2

(experiment: 1 vs. 2)63 (response type: ‘‘Nothing’’, ‘‘Uncertain’’,

‘‘Seen’’) mixed ANOVA with RT as the dependent variable.

Overall, RTs were faster for subjects in Experiment 1 compared

to those in Experiment 2: F(1, 24) = 13.54, p,0.01, gp
2 = 0.36.

We also found a significant effect of response type: F(2,

48) = 47.09, p,0.001, gp
2 = 0.66; post-hoc pairwise comparisons

with Bonferroni correction indicated that subjects were fastest

when responding ‘‘Seen’’ and slowest when responding ‘‘Uncer-

tain’’ (all comparisons were significant at p,0.01). Finally, we

found a significant experiment6response type interaction [F(2,

48) = 6.63, p,0.01, gp
2 = 0.22], explained by the fact that the

effect of response type was smaller for Experiment 1 (gp
2 = 0.53)

compared to Experiment 2 (gp
2 = 0.73) (see Figure 4 for details).

These results show that instructions to subjects related to RT did

have effects on visual exploration. However, the relation between

trial durations across different response types remained the same,

i.e. lack of instruction regarding response speed merely scaled up

RTs.

Table 1. Analysis of variance results.

Dependent variable Factor MSE F gp
2 g change intervals{

% ‘‘Nothing’’ EC 22.15 0.26 0.01

g 95411.29 208.92*** 0.90 [0.05, 0.20]***

EC6g 330.53 0.72 0.03 -

% ‘‘Uncertain’’ EC 177.85 2.28 0.09

g 4355.42 8.11** 0.25 [0.05, 0.25]**

EC6g 3258.11 6.06** 0.20 A: [0.05, 0.10]* [0.10, 0.30]*
D: [0.25, 0.30]**

% ‘‘Seen’’ EC 325.54 3.63 0.13

g 85160.39 443.67*** 0.95 [0.00, 0.25]*

EC6g 1921.88 10.01*** 0.29 A: [0.05, 0.30]*
D: [0.00, 0.20]* [0.25, 0.30]*

% Incorrect EC 32.03 0.72 0.03

g 52749.14 191.65*** 0.89 [0.05, 0.20]**

EC6g 179.76 0.65 0.03 -

% Correct EC 59.79 0.97 0.04

g 75232.01 143.25*** 0.86 [0.05, 0.25]***

EC6g 2921.43 5.56** 0.19 A: [0.05, 0.30]*
D: [0.05, 0.20]** [0.25, 0.30]*

Fix. spread EC 541.32 5.90* 0.37

g 2002.62 21.65*** 0.68 [0.00, 0.10]**

EC6g 685.14 7.41*** 0.43 A: [0.00, 0.10]*
D: -

Norm. fix. count EC 0.00

g 4.59 11.52*** 0.54 [0.10, 0.15]*

EC6g 1.38 3.46* 0.26 A: [0.15, 0.25]*
D: [0.10, 0.15]** [0.25, 0.30]*

Avg. fix. duration EC 8586.72 1.19 0.11

g 39879.94 4.34* 0.30 [0.15, 0.20]*

EC6g 3987.81 0.43 0.04 -

Local contour density EC 2.76 0.89 0.08

g 289.96 63.68*** 0.86 [0.00, 0.15]**

EC6g 12.72 2.79* 0.22 A: [0.05, 0.15]**
D: [0.00, 0.10]**

Dot displacement EC 4205.17 1.41 0.12

g 253849.30 39.32*** 0.80 [0.00, 0.10]*** [0.15, 0.20]** [0.25, 0.30]**

EC6g 51823.92 8.03*** 0.45 A: [0.00, 0.10]**
D: [0.00, 0.10]* [0.15, 0.30]*

Note: EC = experimental condition (Ascending vs. Descending); A = Ascending; D = Descending. ANOVAs were conducted with Huynh-Feldt correction.
{Post-hoc repeated contrasts.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0022831.t001
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Eye tracking data
To shed new light on the integration of visual information

during free visual exploration and on how visual exploration is

affected by previous exposure, we complemented the psychophys-

ical measurements with eye-tracking recordings. We investigated

how eye movement patterns differed depending on the availability

of sensory evidence and previous exposure (top-down processes).

To this end, we monitored eye position for subjects in Experiment

2 and computed the patterns of saccades/fixations (see Materials

and Methods, Identification of fixations). The analyses conducted

Figure 3. Detection and recognition of individual objects. (A) Borders between ‘‘Nothing’’/‘‘Uncertain’’ (detection) and ‘‘Uncertain’’/‘‘Seen’’
(recognition) computed on individual objects, for the ascending (left) and descending (right) conditions. Error bars are s.e.m. (B) Average and SD of
detection and recognition borders from (A) across all objects. (C) Individual object detection and recognition borders in the descending versus
ascending condition.
doi:10.1371/journal.pone.0022831.g003
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on this data were similar to the ones conducted for response

percentages – i.e., 2 (experimental condition: ascending vs.

descending)67 (g value) mixed ANOVAs, with fixation-related

measures (see below) as the dependent variable in each case (see

Table 1 for details on statistical results).

When the stimulus was visible, fixations were localized in

stimulus areas where dot displacement (Figure 5A, left) represented

the underlying local contour density from the POI map (Figure 5A,

right). The spatial distribution of fixations was markedly different

in the ascending versus the descending condition. Fixations for all

objects are shown for two representative subjects (one performing

the ascending the other the descending task) across different g

values in Figure 5B. In the ascending condition subject a010

explored almost the entire stimulus surface at g = 0. As visibility

was increased, fixations became more concentrated towards the

center, where objects were located (Figure 5B, left). This was not

the case for a subject (d014) that viewed stimuli in descending

order of visibility. In this case, the spatial extent of fixations at

g = 0.3 was compressed for intermediate visibility levels and then

expanded again as g approached 0 (Figure 5B, right). The reported

effects were also consistent when we investigated population data

and computed the distances of fixations from the center of the

stimulus (fixation spread) (Figure 5C). Overall, fixation spread was

significantly larger in the ascending versus descending condition.

We also found a main effect of g (see Table 1 for details), but the

g-related curves differed, as indicated by a significant experimental

condition6g interaction. Fixation spread was largest in the

ascending condition for g = 0 and then decreased until g = 0.10.

For the descending condition, fixation spread had a ‘‘U’’ shape

[quadratic trend: F(1, 5) = 7.66, p,0.05, gp
2 = 0.60].

To further describe the image exploration process we next

investigated fixation count per trial and fixation duration. For each

subject, fixation count was first normalized to the individual

average because its absolute value tended to be highly subject-

specific (fixation count per trial is tightly related to reaction time,

and thus to individual subjects’ exploration strategy). Normalized

fixation count was not affected by experimental condition, but it

changed as a function of g (see Table 1) and the interaction of g

with experimental condition: it decreased monotonically and

linearly in the ascending condition [linear trend: F(1, 5) = 19.77,

p,0.01, gp
2 = 0.80] and was ‘‘U’’-shaped in the descending

condition [quadratic trend: F(1, 5) = 129.56, p,0.001,

gp
2 = 0.96] (Figure 5D). In addition, at maximum visibility

(g = 0.3) subjects made significantly more fixations in the

descending than ascending condition [t(10) = 3.75, p,0.01;

independent-samples t-test], indicating that stimulus novelty was

a factor influencing fixation count. Fixation duration was

modulated differently by visibility as it varied only as a function

of g, while experimental condition or its interaction with g had no

statistically significant effect. In both conditions, the duration of

fixations was longer for low and intermediate visibility levels

(significant decrease from g = 0.15 to g = 0.20; see Figure 5E)

indicating that subjects tended to maximize the integration of

available visual features under difficult viewing conditions. In

addition, stimulus novelty also played a role because at maximum

visibility (g = 0.3, which is the first block in the descending

protocol) the descending (versus ascending) condition was

associated with significantly longer fixations: t(10) = 2.33, p,0.05.

Local contour from the original image is a hidden variable

because subjects have only indirect and limited access to it by

means of dot displacement. It is however possible to estimate how

subjects accessed this information. To this end, we considered

locations of fixations on the stimulus (dot image) and then

computed the corresponding underlying average local contour

density (from the POI map) in a region spanning 0.5u visual angle

around each fixation. We found that the average local contour

density in explored locations increased with increasing g value,

indicating that information about local contours was progressively

made available to subjects and they used this information to reach

a decision (Figure 5F): we found no difference between the two

experimental conditions, but there was an effect of g (increase from

g = 0 to g = 0.15) and of the experimental condition6g interaction

(increase from g = 0.05 to g = 0.15 in the ascending condition, and

from g = 0 to g = 0.10 in the descending condition). These analyses

reveal that explored contour density reached a plateau around

g = 0.10–0.15, showing that already around the observed recog-

nition thresholds subjects were able to seek out most informative

locations. In addition, at very low visibility levels subjects in the

descending condition were able to more efficiently explore

informative locations than in the ascending condition [at

g = 0.05: t(10) = 3.25, p,0.01; independent-samples t-test], sug-

gesting that top-down effects can guide visual exploration

(Figure 5F).

Finally, we investigated how subjects used the information

available in the stimulus itself, that is, the deformation of the lattice

by displacing the location of dots. We considered each fixation and

computed the displacement of dots from the grid (contribution of

jitter not included), within an area of 0.5u around the fixation. We

then computed the total integrated dot displacement per trial by

summing displacements over trial fixations. Intuitively, this

measure reflects the amount of dot displacement integrated by

the subject to reach a decision. Results indicate that integrated dot

displacement (Figure 5G) varied as a function of g (increases from

g = 0 to g = 0.10, from g = 0.15 to g = 0.20 and from g = 0.25 to

g = 0.30) and experimental condition6g (an increase from g = 0 to

g = 0.10 in the ascending condition, and an increase from g = 0 to

g = 0.10 and g = 0.15 to g = 0.30 in the descending condition), but

not experimental condition alone. Thus, in the ascending

condition integrated dot displacement saturated already around

the perceptual threshold. Even though displacement increased

with increasing g, subjects explored roughly the same amount of

dot displacement to reach a decision by making progressively

fewer fixations (see Figure 5D). In the descending condition,

subjects first explored a large amount of displacement at

maximum visibility (g = 0.3), because of stimulus novelty, but at

intermediate visibility levels they integrated less dot displacement

than did subjects in the ascending condition [independent samples

Figure 4. Exploration time estimated by measuring reaction
time as a function of response type in the two experiments.
Error bars represent s.e.m.
doi:10.1371/journal.pone.0022831.g004
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t-test: t(10) = 4.25, p,0.01 for g = 0.15; t(10) = 2.50, p,0.05 for

g = 0.20]. The latter effect suggests that strong priming can have a

dramatic influence on the integration of visual information

required to support a decision.

Discussion

During natural vision, humans actively explore their visual

environment and are able to map known patterns onto

perceptually defined categories. Visual exploration relies on

processes such as saccades and fixations [27] and supports an

amazingly robust mapping between visual patterns and object

categories during recognition. To effortlessly classify objects,

humans can use most available information extractable from

visual features, such as contour, color, depth, motion, texture,

shading etc [28]. For this reason, under natural viewing conditions

recognition is highly robust and occurs almost instantaneously.

The investigation of object recognition thus requires a strategy to

enable the manipulation of object perception in a controlled

fashion.

One of the most popular approaches in the study of object

perception is masking, which limits the exposure duration of the

stimulus (e.g., see [18,29]). We argue that this prevents the

possibility to investigate active visual exploration and may hinder

the study of realistic, natural vision, for several reasons. First,

transients due to brief presentations of visual stimuli induce onset

and offset responses of visual cortex neurons [30–32]. Such

responses may have confounding effects on the study of object

perception because one cannot dissociate integration of visual

information from other cortical mechanisms related to temporal

dynamics of the neuronal populations’ activity. Second, the use of

masks to limit subjects’ access to visual information is controversial

[33] because the mask may not effectively remove object-related

information. The latter may persist for hundreds of milliseconds in

visual cortex, even following a mask [34]. Other methods to study

object recognition can be employed without necessarily flashing

stimuli and hence without masking, being useful to reveal different

aspects related to object perception, such as visual exploration.

These methods include transformative [1–5,7,8,10] and generative

techniques [13–16] that both offer control over the perceptual

process by manipulating object-related information content in the

stimulus itself rather than by restricting visual access to it.

The most powerful transformative methods, such as RISE [7,9–

11,29] or SNR manipulation [8], can preserve global image

statistics, such as global luminance, contrast, or spatial frequency

and enable the control of object perception across a continuous

domain. In addition, transformative techniques include a large

amount of visual features corresponding to the object because they

manipulate the original image itself. Thus, they have the

advantage that one can also devise visual tasks involving fine

object discrimination, i.e. subordinate-level categorization (e.g.,

telling apart a dog breed from another). Among disadvantages, we

first note that although global image statistics can be preserved, the

transformations involved usually do not preserve local image

properties (e.g., local luminance). Furthermore, in transformative

techniques one has little control over the image features that are

affected by the transformation because multiple features are

present in the stimulus (contour, shading, texture, possibly color,

local luminance, etc). As an example, one cannot precisely control

how object contour is affected during image degradation or phase

randomization. Improvements and workarounds are of course

possible, but by their nature transformative techniques do not

isolate individual features, and thus, their controlled expression in

the stimulus is more difficult.

Generative techniques solve some of the problems of transfor-

mative methods by isolating a limited set of visual features

corresponding to the object, a process in which many visual details

are lost. Isolated features (e.g., contour) are included in a

controlled fashion in the generated stimulus by using local

elements, such as oriented Gabors [13–15] or oriented line

segments [35]. Generative methods have the advantage that

features available to the subject for visual recognition can be

precisely controlled. Furthermore, the manipulation of these

features via local elements (e.g. by changing the orientation of

local Gabor patches or line segments) keeps image statistics

(luminance, contrast) relatively constant, both globally and locally.

However, by their nature, generative techniques have the major

pitfall that they cannot convey detailed visual information about

the object and hence cannot be used for subordinate-level

categorization. In this respect, generative and transformative

techniques should be considered complementary.

The method we presented here is a novel generative technique.

Many previous methods in this category render a set of local

elements in fixed spatial locations and encode a relevant visual

feature by changing the properties of these local elements (e.g.,

orientation of Gabors [13–16]). By contrast, our method uses

homogeneous local elements (dots – but other self-symmetric

elements are also an option), which by themselves carry no

relevant visual information, and manipulates their position. Local

contour information from the original image is encoded into the

stimulus by deforming the lattice onto which the local, identical

elements are rendered. By progressively deforming the regular

lattice of dots, the method allows to manipulate the amount of

object-related information conveyed to the subject. Lattice

deformation effectively transfers local contour information corre-

sponding to the object into the stimulus, but many features from

the original image, such as color, texture, luminance, and so on,

are missing. The progressive deformation of the dot lattice, via a

single parameter, creates novel stimuli that are progressively more

homologous to the original image of the object in terms of local

information. In addition, lattice deformation keeps global image

statistics such as luminance and contrast constant, and, at visibility

levels where subjects already perceive objects, local image statistics

are affected very little. For example, at threshold visibility

(g,0.10–0.20) the lattice is minimally deformed, with average

dot displacement as low as 1.57 pixels (SD = 0.13 pixels)

representing 0.023u visual angle (stimulus gallery available online

– see Materials and Methods, Stimuli).

The present stimulus-generation technique was developed

mainly to enable investigation of visual inference under conditions

with limited object-related information [36,37]. As such, the

method allows subjects to incrementally integrate visual evidence.

The setup presented here is not a typical visual search but rather a

Figure 5. Eye-tracking analyses. (A) Pattern of fixations/saccades revealed in relation to the ‘‘cannon’’ stimulus (left) and its underlying POI map
(right). (B) Pooled fixations on all stimuli as a function of visibility for a subject performing the ascending (left) and one performing the descending
protocol (right). (C) Average fixation spread (distance from image center). (D) Fixation count, normalized per subject. (E) Fixation duration. (F) Average
local contour density (computed from POI map) in areas of 0.5u in diameter around explored locations corresponding to fixations on the dot stimulus.
(G) Integrated dot displacement, computed as a sum of displacements of dots (in areas of 0.5u in diameter around each fixation) relative to the
undeformed lattice. The sum runs over all fixation locations in the trial. Error bars represent s.e.m.
doi:10.1371/journal.pone.0022831.g005
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visual exploration paradigm [38] because the local elements are all

identical (dots) and there are no distractors in the classical sense

[39]. By contrast, in methods relying on contour integration the

same property of local elements (Gabor orientation) is usually

manipulated for both elements that represent the target (the

contour) and for elements that do not contain object-related

information. The latter elements act as distractors [13–15] in a

similar fashion as in visual search tasks [39]. We tried to separate

visual search from visual integration in the present paradigm. That

this is indeed achieved is demonstrated by fact that in the

‘‘Uncertain’’ condition (having longest exploration time) the

patterns of fixation are restricted almost entirely to the location

of the object. Indeed, subjects detect the object but they cannot

recognize it. This happens not because distractors impair the

detection process (the location of relevant visual information is

clear to the subject) but because visual information is too limited to

reach a perceptual decision. Thus, in the ‘‘Dots’’ method

recognition difficulty is manipulated by controlling the amount

of information available for visual integration and not by using

distractors.

We used a single parameter to manipulate the amount of object-

related information in the stimulus, i.e. g value, an advantage also

shared by other methods [7,8,13]. The change of this single

parameter produces significant changes in perception, leading to

higher recognition levels as g increases. In statistical tests, we have

found that this parameter was consistently effective on dependent

variables, even at the level of visual exploration behavior, such as

fixation pattern. The transition from not seen/not detectable to

seen/identifiable stimuli is smooth across a set of objects and

passes through a state of uncertainty where objects can be detected

but not recognized.

As the dot lattice is progressively deformed, perception assumes

all stages, from no detection, to detection without identification,

and finally to successful identification. Thus, detection and

identification do not occur instantaneously and simultaneously,

as has been suggested for other stimuli [18], but seem to be

separate processes, in line with recent findings [16,19,29]. Object

detection under free visual exploration, as shown here, is not a

trivial process. In our setup, detection not accompanied by

recognition (‘‘Uncertain’’) determines subjects to explore for

significantly longer durations than in cases where nothing is

perceived or when the object can be clearly identified. This timing

relation is preserved both when subjects are instructed that

reaction time is a relevant variable and when this instruction is

missing, but in the latter case reaction times are scaled up and are

more variable. Although experiments reported here should not be

considered reaction-time relevant in the classical sense, measure-

ment of trial duration shows how visual exploration duration is

correlated to perceptual outcome and demonstrates that uncer-

tainty is always associated with longest exploration. It is therefore

interesting to use the present method to investigate how the brain

explores visual hypotheses [36,40] and, by employing electrophys-

iological or fMRI techniques, to identify cortical processes related

to visual exploration. Another interesting result is that as soon as

subjects report that they can clearly see an object (beyond

detection), they can also correctly identify it. Subjective (cases

where subjects report to have clearly seen an object) and objective

(cases where subjects report correctly the identity of the object)

thresholds are identical.

Stimuli consisting of dots have been employed before to study

visual perception [21,41–48]. Uttal and colleagues have used dots

to represent shapes such as alphabetic characters [47], lines,

curves, and angles [41], and three-dimensional surfaces [42],

embedded in a set of distractor, ‘‘masking’’ dots located randomly

in space and time [41]. While parallels may be drawn to stimuli

proposed here, there are several major differences. First, our dot

stimuli can be generated automatically from original source

images and can represent fairly complex objects whose depiction

would be difficult if they had to be generated manually, as was the

case with Uttal’s dot shapes. Second, stimuli proposed here are

static, their structure remaining fixed throughout stimulus

presentation. Finally, instead of representing the object’s structure

quite clearly and using distractors to prevent immediate

recognition [41], we distort a regular lattice that is not a distractor

field but can be considered more like a reference field. Distortion

of the dot lattice then manipulates perceptual processes underlying

Gestalt phenomena such as good continuation and grouping. Dot

lattices were extensively used to study Gestalt principles such as

grouping by proximity or similarity. For example, Kubovy defined

several types of dot lattices (e.g., hexagonal, rhombic, rectangular,

square) [21] and showed that their geometry can be changed to

flexibly manipulate grouping [43]. Here, we used dot lattices as a

deformable regular reference in order to study object perception

rather than basic Gestalt phenomena – but low-level principles of

good continuation and grouping are most certainly involved in

perception of dot stimuli introduced here.

In relation to the above-mentioned Gestalt phenomena, precise

quantitative studies have been performed relying exactly on dot

stimuli. Notable is the work of Feldman [44–46] who has studied

in great detail how groups of dots are perceived as a function of

perceptual task. Using groups of 3 [44], 4 [45], 5 or 6 dots [46],

arranged in parametrizable configurations, he has shown that

perceptual classifications of such configurations are consistent with

a Bayesian model of contour integration. Thus, humans rely on

Bayesian-like inference [44,46], having prior probabilities im-

printed by experience, when judging contour (and likely also shape

[49]) information. These findings are especially relevant in the

context of our stimuli because it is likely that subjects extract at

least two types of visual features from dot stimuli: they integrate

contours (Gestalt principle of good continuation) and evaluate dot

densities (Gestalt principle of grouping by proximity). In regions

where the local information in the original image is coherent along

continuous contours, the POI map will contain preferentially

responses from Gabors aligned to the local contour, thereby

creating a coherent local displacement of dots along the respective

contour. Such dot contours can be integrated by subjects when

extracting information about the identity of the object. Under-

standing the underlying process of this integration is important

[44–46,50] and may be helpful in revealing how the fixation-by-

fixation visual sampling process is guided. For example, it is now

known that the curvature of the contour contains a large amount

of information [51,52] and that areas with concave contours are

especially important when processing the boundaries of objects

[52–54]. One may then use the proposed dot stimuli to investigate

further how contours are integrated: Do subjects sample mainly

regions with high curvature and among those are the concave

contours explored preferentially? These questions can be ad-

dressed with the proposed stimuli because recognition is not

immediate but there is substantial exploration relying on several

fixations. In addition, dot contours in these stimuli follow contours

with natural statistics, from images of real objects, therefore

allowing one to study contour integration in a naturalistic, less

constrained setting.

In addition to contours, local dot densities may also be used by

subjects by virtue of grouping by proximity. Perception of dot

densities has also been studied recently [55,56]. Segmentation of

dot densities into different parts was shown to depend on the

distance between densities and the density of dot clouds [55]. In
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dot stimuli presented here, local dot density is proportional to the

local energy extracted by Gabors in the POI map and therefore

both the location and density of the clouds is modulated by the

structure of the object. Perhaps a dot density segmentation is

operational in guiding fixations in our stimuli, subjects exploring

sequentially areas with high dot density (high POI energy). If such

segmentation takes place, then it is interesting to study how

segmented subparts are bound together during recognition. This

may be a gradual process, such that during the uncertain state one

is able only to segment local information but is unable to bind it.

For object identification binding of the locally identified features

into a coherent whole may be further required. Thus, one may use

the proposed stimuli to investigate both segmentation and binding.

It is possible that Bayesian-like inference observed by Feldman

[44,46] at the processing of low-level features, such as contour,

may also be operational at the holistic level when binding locally

identified dot densities during recognition. Finally, at this point, it

is unclear if contours and dot densities contribute differently to

recognition. Further studies relying on the proposed stimuli could

elucidate how low-level processes such as contour integration and

grouping drive accumulation of evidence to subserve object

identification.

Object recognition is thought to involve both a fast, feed-

forward sweep of coarse visual information [57,58] and a feedback

component that guides further detailed visual exploration

[23,59,60]. Deformed dot lattices provide only coarse, low spatial

frequency visual information about objects. As a result, visual

exploration becomes more extensive because fine image structure

to quickly guide exploration is missing. By presenting stimuli in

blocks ordered according to ascending or descending visibility, we

were able to touch on the non-trivial interaction between feed-

forward and feedback processes. We found that the descending

condition (where subjects first perceive the objects clearly)

significantly lowers recognition thresholds as compared to the

ascending condition, a phenomenon known as perceptual

hysteresis [5]. Hysteresis is believed to be caused by feedback,

which enables the perceptual system to identify an object that was

recently seen, even when only little feed-forward information is

available [17].

We found that visual hysteresis is manifested to different extent

for individual objects, consistent with previous reports [7,10] and it

affects both detection and recognition. These results suggest that

top-down modulations act to guide visual exploration, facilitating

both recognition and detection, such that objects can be

recognized and detected under poorer visibility conditions. In

addition, borders for detection and recognition are object specific

and are better correlated when subjects have no previous exposure

to the set of objects (ascending condition) than when subjects have

been previously primed with the easily identifiable stimuli

(descending condition). This effect is likely produced by the

change in exploration strategy induced by top-down processes in

the descending as compared to the, naive, ascending condition. In

the latter case, objects were explored more extensively, systemat-

ically, and those that were more difficult to detect were also more

difficult to recognize, leading to a correlation between detection

and recognition borders. By contrast, in the descending condition,

subjects could recognize objects at lower visibility levels, even

relying on subparts of objects to identify them, and this

compressed the distance between recognition and detection

borders. In addition, ‘‘Uncertain’’ response percentage did not

exhibit a peak at intermediate visibility levels, as was the case in

the ascending condition, but uncertainty remained, on average, at

a baseline level. As a result, the detection border was more

variable and more fuzzy in the descending condition because

subjects frequently jumped from ‘‘Seen’’ directly to ‘‘Nothing’’

responses (without the uncertain state). This fuzziness of detection

threshold also contributed to a lower correlation of detection and

recognition borders. Thus, robust top-down knowledge lowers

detection and recognition borders of individual objects, changes

exploration strategy and perceptual decisions, and leads to a more

polarized response pattern including more frequent ‘‘Seen’’ but

less frequent ‘‘Uncertain’’ responses.

Eye-tracking analyses confirmed the above scenario. Subjects

explored stimuli across a larger spatial extent in the ascending than

the descending condition. In the latter case, top-down influences

can decrease the spatial extent of exploration and the number of

fixations even though the available visual information decreases

(top-down knowledge compensates external information loss). This

holds up to a point where feedback is not sufficient to support a

perceptual decision and therefore sampling of external information

increases again (thus the characteristic ‘‘U’’ shape of fixation

pattern statistics in the descending condition). The effect of top-

down guidance of visual exploration was evidenced robustly when

we investigated how subjects explored and integrated visual

information. As g value was scaled up, local contour information

(from the POI map), although not directly accessible to subjects,

was more efficiently explored by corresponding fixations on dot

stimuli. Importantly, at low visibility levels top-down control

(descending condition) guided fixations to regions of the object that

had more underlying information in the hidden POI map (even if

this information was not revealed or was very difficult to detect in

the dot stimulus), a behavior that was not shared by naive subjects

performing the ascending protocol. At intermediate visibility

levels, the latter integrated clearly more visual information

(measured as integrated dot displacement) to reach a perceptual

decision than subjects which have previously seen the objects

clearly (descending condition). Evidence shown here, revealed by

psychophysics and fixation analyses, suggests that top-down

processes induced by previous exposure to target objects not only

modulate perception but can also guide visual exploration and

optimize the integration of visual information. In such cases,

subjects make fixations where informative locations of the objects

were supposed to be, even if these are no longer present in the

stimulus. Priming is possible not only by presenting images of

targets but also by using non-visual congruent cues, such as words

related to the identity of the object [2,7]. It would be interesting to

study whether such non-visual priming could affect visual

exploration behavior as well.

Our findings add to previous studies that have emphasized the

importance of feedback [2,60,61] and have shown that processes

as early as figure-ground segregation may rely on it [62,63]. A

recent fMRI study by Strother and colleagues [64] has pointed out

that in the absence of strong bottom-up cues, as is also the case

with stimuli presented here, figure-ground segregation is associated

to longer persistence of activation for upright than inverted images

of faces and animals. This suggests that for difficult to perceive

stimuli feedback from higher areas is actively involved as early as

the primary visual cortices [64].

We also found that novelty (first exposure to stimuli in the

descending condition) and low discriminability (small g values)

were associated with an increase in fixation duration. The latter

was reported to be unrelated to stimulus familiarity but more likely

connected to cognitive demand [65,66]. This is also suggested by

increased fixation duration when subjects identify new over old

stimuli [67]. Because stimulus parameters and task load are under

control, the present method allows tackling this problem more

precisely. Our results confirm that increased fixation duration is

due to increased cognitive demand (novel type of stimulus/
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unknown objects in the first block of descending condition and low

discriminability for low g values). This further indicates that under

conditions with high cognitive demand the brain optimizes

sampling of visual information not only by guiding fixation

location during visual exploration but also by controlling the

amount of integration per fixation.

The use of deformed dot lattices to represent objects is not

without drawbacks. First, high spatial frequency details of objects

are lost. Therefore, it is not possible to use the method to dissociate

between objects that are part of the same category and have very

similar shapes (subordinate level categorization). Fine discrimina-

tion, between e.g. two similar dog breeds, is often impossible with

such stimuli. For subordinate-level categorization transformative

methods such as RISE [7] may be more appropriate. Second,

because visual information is limited to the approximation of local

contours, the method requires that the object is first isolated from

background before computing the POI map. Background is not

distinguishable from the object in deformed dot lattices and may

heavily interfere with detection and identification. Finally, humans

are very good at detecting regularity, such that, for a perfect lattice

of dots, they can immediately realize that no object is there and

therefore quickly cease to explore the stimulus. To compensate for

this problem addition of noise to the lattice is required. This

prevents subjects from directly telling that no object is present and

motivates them to actively explore the stimulus.

To conclude, the ‘‘Dots’’ stimulus-generation method is useful

for investigating object recognition under free visual exploration.

The precise control over visual information and the ability to

relate it to quantitative properties of the stimulus could open the

way for a new generation of studies investigating object

recognition and free visual exploration.

Materials and Methods

Ethics Statement
Psychophysical and eye-tracking measurements were performed

on human subjects who gave their prior written informed consent

to participate in the experiments. The experimental protocols have

been approved by the local ethics committee of the University of

Medicine and Pharmacy ‘‘Iuliu Haţieganu’’ of Cluj-Napoca

(approval No. 150/10.12.2009).

Stimuli
The original images used for generating the stimuli were selected

from the Caltech 101 [68], Caltech 256 [69] and ETH-80 [70]

databases, or from various internet sources. We used 50 images (plus

2 additional images for the practice trials) of different plants, fruits,

animals and human-made objects (Figure 1D). Images were

rescaled such that the image frame occupied the same size

(6006400 pixels) and, additionally, all background information

was removed and the object of interest was centered in the frame.

The lattice deformation procedure was applied to each image, using

a lattice of black dots on a white background (6006400 pixels) with

a dot diameter of 5 pixels and a distance between dots of 10 pixels.

The elastic constant K was set to 10, and the distance h between POI

and lattice planes was set to 5. Seven stimuli were generated from

each image, corresponding to seven different gravitational constant

(g) levels, from 0 to 0.3, in steps of 0.05. To prevent subjects from

instantaneously detecting that no object was present when g = 0

(perfect, undeformed lattice), we added a uniform random jitter of

zero-mean and 3 pixels maximum amplitude to the position of dots

after deformation. This small jitter was applied for all levels of

visibility. Examples of dot stimuli generated from the same source

image are presented in Figure 1C. Thus, the final stimulus set

consisted of 350 stimuli and an additional 14 for the practice trials

(the full set of stimuli is freely available under http://www.

raulmuresan.ro/sources/lattdef).

Object recognition difficulty from dot stimuli depended to a

large extent on the physical spacing between dots and on the

distance of the subject from the monitor. Therefore, we had to

calibrate monitor distance such that subjects had a very hard time

identifying the objects for g = 0.05 and could effortlessly identify

them for g = 0.3. After the calibration, stimulus images of 6006400

pixels spanned 8.7u65.6u of visual angle corresponding to an inter-

dot spacing of 0.1015u in the original undeformed lattice. Stimuli

were displayed on a 22 inch Samsung SyncMaster 226BW LCD

monitor with fast response time (2 ms), placed at a distance of

1.12 meters from the subject. Viewing distance was maintained

using a chinrest.

Experiments
Because the present study focused on free visual exploration, the

task was designed for measurement of accuracy rather than

reaction time. Nevertheless, because we wanted to quantify the

duration of exploration for different response types we additionally

measured reaction times. All results regarding reaction times

should therefore be interpreted not in the classical sense but as a

reflection of exploration duration. Two different experiments were

carried out. In Experiment 1, instructions given to subjects

emphasized accuracy, but mentioned that speed was important as

well (see Procedure for details). In Experiment 2, subjects were

given no instructions regarding response speed. In addition, in the

latter experiment we carried out concurrent eye-tracking to

identify the pattern of saccades/fixations during each trial.

Subjects
Twenty six subjects (15 females), aged 20–34 years (M

age = 25.88, SD = 4.20), took part in the study. They were either

volunteers or undergraduate psychology students who received

course credit for participation. All had normal or corrected-to-

normal vision, and no known neurological or visual impairments.

Fourteen subjects (10 female, M age = 23.93, SD = 2.64) partici-

pated in the first experiment and twelve (5 female, M age = 28.17,

SD = 4.61) in the second experiment. In each experiment, subjects

were assigned to one of two experimental conditions (see

Experimental Design), resulting in N = 7 and N = 6 subjects in

each condition for Experiment 1 and 2, respectively.

Procedure
Subjects were instructed that upon viewing each target stimulus

their task was to decide whether the dot pattern represented

something meaningful. They had to respond by pressing buttons

‘‘A’’ (if they decided that nothing meaningful was there—response

‘‘Nothing’’), ‘‘S’’ (if they thought they saw something but were

uncertain what it was—response ‘‘Uncertain’’) or ‘‘L’’ (if they

perceived something meaningful in the pattern and knew what it

was—response ‘‘Seen’’). Each trial started with a fixation mark,

presented centrally for a random variable duration (500–1000 ms

in Experiment 1 and 1500–2000 ms in Experiment 2). The

fixation mark was followed by the target stimulus, presented

continuously until the subject responded by pressing one of the

three buttons. After the button-press response, a message was

displayed on the screen asking subjects to verbalize their response.

An experimenter was present in the room throughout the

experiment and manually recorded the subject’s verbal responses.

When subjects were able to identify an object they had to name it

explicitly. When they were uncertain about the object, they were

instructed to guess, if they could. The task started with a practice
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block of 14 trials, followed by 7 experimental blocks, with a break

period after each block. A block consisted of 50 trials

corresponding to stimuli obtained for the 50 objects at a given g

level. Within each block, presentation order of stimuli was

randomized.

In Experiment 1, it was stressed that subjects should press one of

the three response buttons as soon as they had reached a decision,

but to take as much time as was needed to reach that decision. It

was also suggested that accuracy was slightly more important than

speed. In Experiment 2 subjects were only told to take as much

time as was needed to respond, with no mention that reaction time

was a relevant variable.

In Experiment 2, an ASL EyeStart 6000 system was used to

record eye movements (see Identification of fixations). Calibration

was conducted before each experimental block using a nine-point

display, according to the indications included in the manufactur-

er’s manual. To correct for potential shifts of eye position estimates

in between calibrations, the fixation mark was presented for an

extended duration compared to Experiment 1. Subjects were

instructed to maintain precise fixation on the fixation mark at the

beginning of the trial and this information was later used to correct

for potential shifts in each trial.

Experimental design
In both experiments we used a between-subjects design, with

two versions of the task: (1) ascending (each block contained

stimuli with the same g level – corresponding to the 50 objects in

Figure 1D – and blocks were ordered from g = 0 to g = 0.3); (2)

descending (this version was similar to the previous one, except

that blocks were presented in reverse order of g value – i.e., from

g = 0.3 to g = 0). We used these two conditions in order to

investigate whether previous exposure affects stimulus visibility.

Whereas in the ascending condition visibility relies mainly on

stimulus evidence, in the descending procedure visibility relies on

an interaction between top-down sensory expectations and

stimulus evidence. Each subject was assigned to one of these two

conditions.

Sigmoid fitting for threshold identification
To identify thresholds of object recognition we fitted the

sigmoidal-shaped response and accuracy curves corresponding to

each subject with a sigmoidal function fsig dependent on the

gravitational constant, g:

fsig gð Þ~ 1

1zexp½{a(g{w)�zb ð12Þ

where, a is the slope of the sigmoid at the threshold, b is the vertical

offset, and Q is the horizontal shift on the g axis, i.e. the threshold.

The fit was implemented using a gradient descent method to

minimize approximation error. Instead of using percentages,

values of the accuracy curves were normalized to the interval [0..1]

before fitting, to match the sigmoid function described in Eq. 12.

The relevant parameter for our purposes was Q, that is, the

threshold. It represents the point on the g axis where the sigmoid

function crosses half of its maximum amplitude (offset not

considered).

Identification of fixations
Fixations were identified by a simplified version of the velocity

based algorithm introduced by Nyström and Holmqvist [71] that

uses two adaptive velocity thresholds. A saccade is detected when

the velocity of eye movements rises above the saccade identifica-

tion threshold, vI. A second, lower, threshold, vS, is used to identify

the onset and ending of the detected saccade. The original

algorithm [71] starts with a high vI and in each iteration updates its

value according to the formula:

vI~mvzkvI sv ð13Þ

where, mv and sv are the mean and standard deviation respectively

of all velocities smaller than vI, and kvI = 6.

The iterative process stops when the difference between two

successive values of vI is below 1u/s. Next, the saccade onset

threshold, vS, is computed in similar fashion:

vS~mvzkvSsv ð14Þ

where, kvS = 3.

In our case, setting kvI = 3 and kvS = 1.5 yielded better saccade

identification. As a difference from the Nyström and Holmqvist

algorithm [71], we could not identify glissades because our eye-

tracker sampling period (20 ms) was in the range of glissade

duration. Therefore, we used the same threshold to identify both

saccade onset and ending. Once saccades have been identified,

fixations were defined as samples between successive saccades.

Fixations in which more than half of the eye position samples

could not be correctly recorded by the eye-tracker (due to pupil

loss, corneal loss, or blinks) were discarded (this was extremely

rarely the case). To cope with variable level of noise in eye tracking

recordings the following measures were taken. First, both

thresholds were computed on a trial basis. Second, for each trial,

potential shifts in eye position estimates were corrected by using

the position of the fixation mark onto which subjects were

explicitly asked to fixate before stimulus onset. Third, eye-tracker

calibration was performed before each experimental block (fifty

trials).
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