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Abstract

Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencepha-
lography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different
methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the
analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It
demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The
analyses presented demonstrate the potential value of implementations which examine the timeseries projections in
multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the
case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than
source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-
space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming
methodologies in order to help remove ambiguity about the specifics of the techniques which have been used.
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Introduction

Magnetoencephalography (MEG) is a non invasive neuroimag-

ing technique now commonly used to investigate human neural

processes [1]. The technique measures the magnetic fields outside

the head produced by neuronal activity. As such there is a need for

source modelling techniques to project the measured sensor data

into the source space of the brain. One of the principle techniques

used is a spatial filtering technique referred to as beamforming

[2,3]. Beamforming is a data-driven scanning technique which

requires no a-priori modelling of the number of underlying

sources, and can, in theory, evaluate the signal at all locations

within the brain.

The underlying principle of beamforming is that, given a set of

spatially distributed sensors and data over time, it is possible to

calculate a set of weights such that a source at a particular location

within the brain can be reconstructed using these weights to

linearly combine the sensor-space data. This reconstructed source

is often referred to as a virtual electrode (VE). This VE is then

characterised by a metric which quantifies some aspect of the VE

time series thought to be of interest. The most commonly used

metric in beamforming is based upon power, the Neural Activity

Index (NAI) or pseudo-z statistic. These metrics are then

commonly compared using a true- or pseudo-t statistic in order

to look for differences between periods of active and passive data

[4,5]. Although power is the most commonly used method of

assessing beamformer outputs, other metrics such as event-related

measures [6,7], inter-trial coherence [8] and correlation-based

measures (e.g. [9,10]) have been used. In addition, the spatial

filtering approach has been used in the frequency domain to look

at coherence across brain regions [11,12].

There are various approaches to the calculation of the spatial

filters, all of which derive from the formalism described by Van

Veen et al [4]. Huang et al [13] provide a comparison of several

different beamformer implementations and it is noted that they

primarily differ in their application of the noise normalisation

process. Noise normalisation is necessary due to inhomogeneities

in signal-to-noise ratio throughout the volume. Estimates of power

are therefore biased by differing levels of noise making

comparisons problematic. Normalisation is performed in an

attempt to estimate purely signal-based power, thus allowing

more accurate comparisons to be made. As well as changing

throughout the volume, signal-to-noise ratios will also be different

at different orientations at a specific location. Huang et al refer to

the Van Veen approach as a ‘‘Type-I’’ beamformer and make the

point that the noise normalisation described in equation 27 of [4]

(repeated in this paper as equation 8) may result in orientations

with poor signal-to-noise ratios dominating real signals coming

from other orientations. To address this issue Huang et al propose

a modification of this normalisation in which each orientation is

normalised with respect to its own noise. The implementation of

this modification however, has the effect of altering the calculation

of the spatial filter. This issue is the main focus of this paper and

the details will be discussed in the methods section.

Another major difference between beamformer implementa-

tions is whether they are considered scalar (non-linear) or

vectorised (linear) beamformers. The difference between the two

is in whether any given metric, for example pseudo-Z, is assessed
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in a single orientation (scalar) or multiple orientations (vector) for

each location within the volume. There are a variety of methods of

choosing which orientation is used in a scalar beamformer

implementation. Some scalar beamformers also restrict analysis

to the tangential plane (for example, Synthetic Aperture

Magnetometry or SAM [14]) although this is not inherently

required by the technique. In this paper, we will use the

terminology of scalar-output and vectorised-output beamformers,

to refer to either a single or multiple source reconstructions for a

given location.

An often discussed issue in MEG analysis is the problem of

radial sources. In the limit an isolated neural current which is

completely radial to a magnetometer or gradiometer will result in

no signal being measured. Although modern MEG systems

typically have well in excess of 200 channels, all of which are

oriented differently, it is considered that radial sources will be

difficult to detect using MEG. This is partially due to the

traditional constraints of the single-sphere forward model in which

radial sources in the model will be invisible [15]. Despite the fact

that in multiple-spheres forward models [16], no direction will be

considered truly radial to all sensors, various applications restrict

themselves to the tangential plane.

Whilst using a scalar-output beamformer and restricting to the

tangential plane reduces the dimensionality of the data and avoids

the previously discussed issues with predominantly radial sources,

is it possible that information may be lost by adding these

constraints. Hillebrand and Barnes [17] provide evidence for this

in their investigation of the sensitivity of MEG using gradiometer-

based sensors and equivalent current dipoles, in which they

concluded that the depth of a source was considerably more

important in affecting its detectability than the orientation of that

source. It is therefore important to examine how well the

beamformer approach can reconstruct known signals in multiple

orientations.

In this paper, we will study the accuracy of VE reconstructions

throughout the brain when using a vectorised beamformer to

recover synthetic, known, sources. We will also compare different

methods of constructing a spatial filter. Although the differences

between spatial filter construction methods are present in the

initial literature, many papers do not make it clear which filter

construction method is in use for any given study. The advantages

and drawbacks of each method will be described as well as the

importance of ensuring clarity in how the spatial filter was

calculated when reporting beamformer findings.

Results

The mathematical notation used in this paper is that a lower case,

standard font letter, x, is a scalar, a lower case, bold font letter, x, is a

vector and an uppercase, bold font letter, X, is a matrix. Details of

the terminology used in this paper can be found in table 1.

Spatial filters
There are in fact two distinct interpretations of a ‘‘scalar’’

beamformer, i.e. scalar in the output and scalar in the filter.

Similarly a ‘‘vector’’ beamformer can be a vectorised output of a

beamformer or a vectorised, 3-dimensional filter implementation.

Throughout this paper, we will use the conventional definitions of

‘‘scalar’’ and ‘‘vector’’ to describe the nature of the output of the

filters. When discussing the generation of the filters, we will

describe them as either ‘‘three 1-d filters’’ or ‘‘one 3-d filter’’.

The work described in this paper uses a vectorised, linearly

constrained minimum variance beamformer as described by Van

Veen et al [4] and referenced in Huang et al [13] as a ‘‘Type I’’

beamformer. Although these implementations are superficially

similar, there is an important difference in the calculation of the

spatial filter. Van Veen et al showed how a spatial filter could be

constructed that will minimise the power transmitted through the

filter whilst maintaining unit gain at a position and orientation of

interest. This will, in general, minimise the power from all sources

not at the position and orientation of interest.

A more detailed derivation can be found in Van Veen et al [4],

but the ideal spatial filter is defined such that its inner product with

the measured magnetic field gives the source at the location of the

spatial filter, i.e.:

Yk~Wk
T B ð1Þ

This is equation 11 in Van Veen et al [4], extended for multiple

time points. Huang et al [13] describes similar filters in his

equation 4, but instead defines single orientation filters:

ykd~wkd
T B ð2Þ

where now d~1,2,3, which are three orthogonal directions.

Equations 1 and 2 are equivalent. Equation 1 is simply a

shorthand way of expressing the three instances of equation 2. If

the weights in equation 1 are a concatenation of the weights in

equation 2 then the the output of equation 1 will also be a

concatenation of the output of equation 2, i.e. if:

Wk~
wkx wky wkz

..

. ..
. ..

.

 !

then,

Yk~

ykx . . .

yky . . .

ykz . . .

0
B@

1
CA

In this ideal situation the spatial filter can also be defined in terms of its

pass characteristics, that is the gain of the filter for different locations

Table 1. Definitions of mathematical terms used in the text.

k Spatial location

d Spatial orientation

y, Y Virtual-Electrode time series reconstruction

B MEG sensor data

C Estimate of MEG sensor data co-variance (BBT )

l Smallest eigenvalue of C

Cr Regularised estimate of MEG sensor data co-variance (Czl 1½ �)
Sr Regularised estimate of MEG sensor data noise c0-variance

w, W Spatial-filter defining weights (a number of sensors by 1 vector or
number of sensors by 3 matrix respectively)

l, L Leadfield (a number of sensors by 1 vector or number of sensors by
3 matrix respectively)

n Neural Activity Index

r Radial direction, defined using average sphere centre

h, w Two orthogonal directions in the tangential plane

doi:10.1371/journal.pone.0022251.t001

Effect of Spatial Filtering Constraints on MEG

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e22251



and orientations. This is simply a product of the weights of the spatial

filter and the leadfield at a given location and orientation, k0.

Wk0
T Lk~

1½ � k~k0

0½ � k=k0

�
ð3Þ

where the leadfield, Lk is generated for every grid point in the head

and describes the sensitivity profile of each of the sensors in the array

to that position. For the work carried out in this paper the leadfields

were calculated using a multiple spheres model [16].

Calculating the weights
In reality of course, such an ideal spatial filter cannot be

constructed. Instead the spatial filter is optimised by minimising the

total power it passes, with the constraint of unity gain for the point

and orientation of interest. This is performed using a Lagrange

multiplier, the exact form of which marks the difference between the

Van Veen and the Huang Type I beamformer.

In Van Veen the power is given by:

YYT~Wk
T BBT Wk

~Wk
T CWk

and is minimised subject to the ideal constraint of equation 3

applied only for the position of interest, i.e.:

WT
k Lk~ 1½ �

This treats the reconstruction of the sources as an integrated, 3-

dimensional problem and therefore ensures that the gain at a given

position is unity in the orientation of interest and zero for

orthogonal orientations:

Wk0
T Lk0

~

1 0 0

0 1 0

0 0 1

0
B@

1
CA ð4Þ

In Huang however, the power is given by:

wkd
T Cwkd

and is minimised subject to:

wT
k0

lk0
~1

This apparently minor alteration is in fact a relaxing of the

constraint and only ensures that the gain at a given location in the

orientation of interest is unity. This treats the reconstruction as

three independent 1-dimensional problems. This makes the

Huang equivalent of equation 4:

Wk0
T Lk0

~

1 ? ?

? 1 ?

? ? 1

0
B@

1
CA ð5Þ

where now the ?s in the off diagonal positions are left undefined.

In both cases the spatial filter is constructed using weights, W or

wd , generated for every grid point k. These weights are calculated

using an estimate of the covariance of the data C and the leadfield

L or ld as described by equation 6 or 7.

Wk~
C{1

r Lk

LT
k C{1

r Lk

ð6Þ

wkd~
C{1

r lkd

lTkd C{1
r lkd

ð7Þ

Here Cr is the regularised version of the estimate of the

covariance. For the work carried out in this paper regularisation

was applied to the calculation of the covariance matrix using the

smallest eigenvalue of C. The regularised covariance matrix is

therefore Cr~Czl 1½ �. In general W will not be a concatenation

of w.

Source reconstruction
The equation for calculating the neural time course at a given

location in a given orientation (ykd (t)) is the same across

beamformers in that it is the inner product of the weights and

the MEG sensor data. This reconstruction is given by equation 1

when treated as an integrated three dimensional problem (where

W is given by equation 6 above), and by equation 2 when treated

as three separate, one-dimensional problems (where w is given by

equation 7 above).

For the analyses presented, both beamformers were implement-

ed as vectorised output beamformers, and therefore time series

reconstructions were generated in three orthogonal directions,

either as the three separate outputs of three 1-d filters or the three

dimensional output of one 3-d filter. To investigate the sensitivity

of MEG to predominantly radial sources, the co-ordinate system

used was a point specific one, with r, h and w unit vectors defined

at each point. As the leadfields were implemented using a multiple

spheres model there is no no truly radial direction at a given

location. An approximately radial unit vector, r, was defined using

the mean of the sphere centres as the origin. Two orthogonal unit

vectors h and w were then defined in the tangential plane.

Localisation and Normalisation
As well as the accuracy of source reconstructions, it is important

to consider the related but separate issue of the accuracy of source

localisations. As previously noted, source localisation is compli-

cated by the inhomogeneous distribution of signal to noise

throughout the brain volume. When considering the reconstructed

time course of a phase locked source, this effect is ameliorated by

the averaging process and the assumption that any noise

components will not be phase locked. Both the Van Veen and

Huang Type-I beamformers normalise the source power by

(LTS{1
r L){1, but again the difference is whether the system is

treated as one 3 or three 1 dimensional problems. Van Veen

describes his NAI in his equation 27 as:

n~
trf(LT C{1

r L){1g
trf(LT P{1

r L){1g
ð8Þ

Huang expands this in his equation 10 as:

n~
(lTx C{1

r lx){1
k z(lTy C{1

r ly){1
k z(lTz C{1

r lz){1
k

(lTx
P{1

r lx){1
k z(lTy

P{1
r ly){1

k z(lTz
P{1

r lz){1
k

ð9Þ

Effect of Spatial Filtering Constraints on MEG

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e22251



however this only holds if the 363 matrices (LT C{1
r L){1 and

(LTS{1
r L){1 have zero off-diagonal terms. This is analogous to

equation 5, where the Huang formalism ignores the off-diagonal

terms. In fact it is the off-diagonal terms that contain the

information that allows the constraint of equation 4 to be met.

Huang does make the point though, that in either way of

describing the NAI there is the possibility that a noisy orientation,

i.e. with a small leadfield, will dominate the NAI. Huang proposed

a modification that avoids this problem by normalising in each

orientation separately:

n~
(lTx C{1

r lx){1
k

(lTx
P{1

r lx){1
k

z
(lTy C{1

r ly){1
k

(lTy
P{1

r ly){1
k

z
(lTz C{1

r lz){1
k

(lTz
P{1

r lz){1
k

ð10Þ

Although in the original papers the co-ordinate system used was a

cartesian x, y, z system, these equations hold for any orthogonal 3-

space co-ordinate system including the r, h, w system used here to

systematically investigate the reconstruction of predominantly

radial sources.

In the following results, the Van Veen implementation of a

beamformer (equation 6) will be described as a one 3-d spatial

filter and the Huang implementation (equation 7) will be described

as three 1-d spatial filters.

Reconstruction in the correct orientation
Figure 1 shows a two-dimensional histogram for the gain and

correlation of the source reconstruction obtained using three 1-d

spatial filters at each grid location. The left, middle and right-hand

panels show the reconstructions in the r, h and w directions

respectively. Inspection of the figure shows that sources seeded in a

predominantly radial orientation are not reconstructed as

accurately as in the two non-radial directions. The mean

correlation in the tangential directions was 0.96 (std = 0.06)

whereas it was 0.77 (std = 0.10) for the predominantly radial

direction. The highest correlation in the r direction was 0.98,

whilst 72.40% of grid locations showed a correlation greater than

0.7. (The figure of 0.7 allows comparison with Hillebrand and

Barnes [17].) This percentage increases to 99.32% and 99.14% in

each of the two non-radial directions. No grid locations had a

reconstruction with a gain magnitude greatly displaced from 1

(range 20.86 to 1.15). Figure 1 suggests that in a non-radial

direction, a three 1-d spatial filter implementation of a vectorised

beamformer is able to reconstruct a known source with a high

correlation and an accurate gain. Although the correlations

observed in the r direction are not as high, it is inaccurate to

describe this beamformer as unable to reconstruct predominantly

radially oriented sources. Figure 2 shows a volumetric map of

correlations seen for each point when a source was seeded in the r
direction. The image has been thresholded at 0.7, and it is clear

that the volumetric locations with low correlations are found at

deeper rather than superficial locations.

Reconstruction in the off orientations
The results shown in figure 1 provide an estimate of how

effective a tool a vectorised beamformer might be and confirm that

such an approach is able to accurately reconstruct signals

throughout the volume and also in predominantly radial

directions. These results, however, were obtained by reconstruct-

ing the time series in the same orientation as the signal was placed,

i.e. in a known orientation. In contrast, in a typical analysis using

an observed response evoked by some stimulus, the orientation of

the sources will be unknown. It is therefore important to examine

signal reconstructions in the off-directions when using three 1-d

spatial filters.

Figure 3 shows the gain and correlation information for sources

seeded in r, h and w (upper, middle and lower rows respectively)

whilst the columns represent the reconstructions in each of these

orientations. The information on the diagonal of this figure is

therefore the same information as is shown in figure 1.

In the off-directions, ideally there would be a gain and a

correlation of zero due to the fact that no source was seeded in that

specific orientation and location.

The reconstructions in the two non-radial directions (h and w)

when no source was placed in this orientation, show predomi-

nantly small gains (81.48% of all reconstructions had a gain of zero

+/20.1). However, the correlation of the reconstructed waveform

and the seeded waveform can be high, despite the fact that the

embedded signal was placed in a different orientation (5.03% of

the volume showed a correlation stronger than 0.7). Therefore the

signal placed in one orientation is ‘‘leaking’’ through into the other

directions.

The r reconstructions show both a high gain and correlation

when the source was embedded in the r direction, as previously

Figure 1. Two dimensional histogram of gain and correlation of the reconstruction compared with the embedded signal at each
location in the brain volume for three 1-dimensional filters. The left, middle and right columns show the results for sources both embedded
and reconstructed in the r, h and w directions respectively.
doi:10.1371/journal.pone.0022251.g001
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PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e22251



discussed. When the signal was seeded in a non-radial direction,

the reconstructions in the r direction show a combination of high

gains and high correlations. 32.56% of the locations were found to

have a gain magnitude greater than 1 in the r direction when no

source was seeded in this orientation (range 24.56 to 5.49).

40.07% of the volume was found to have a correlation greater

than 0.7. Figure 4 shows a volumetric image of the magnitude of

the gain at each location in the r source reconstruction when a

signal was seeded in one of the two tangential directions. The

image has been thresholded to only show locations where the

magnitude of the gain was above 1. As the overlay in red shows,

there are large parts of the volume where the reconstruction in the

r direction has a gain magnitude greater than 1 even though no

source was seeded in this orientation. These locations are

predominantly superficial.

Reconstruction using a three-dimensional spatial filter
Figure 5 shows the gain and correlation for the time series

reconstructions in r, h and w when using a three-dimensional

implementation of a vectorised beamformer, i.e. the construc-

tion of the filter constrains the pass characteristics of the off-

directions.

Figure 2. Volumetric image showing correlations between sources embedded in the r direction and the reconstructed signals when
using three 1-dimensional filters. The image is thresholded at 0.7.
doi:10.1371/journal.pone.0022251.g002

Figure 3. Two dimensional histograms of gain and correlation of the reconstruction compared with the embedded signal at each
location in the brain volume for three 1-d filters. The upper, middle and lower rows represent sources seeded in r, h and w respectively; whilst
the left, middle and right hand columns show reconstructions in r, h and w. The diagonal of these figures shows the same data as that in Figure 1.
doi:10.1371/journal.pone.0022251.g003

Effect of Spatial Filtering Constraints on MEG
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Figure 5 is analogous to figure 1 and again shows that

reconstructions in the tangential directions have a gain magnitude

and correlation both around 1 (mean = 0.95, std = 0.06). As in the

case of the one-dimensional spatial filter, the reconstructions in the

r direction again show lower correlations (mean = 0.73, std = 0.10).

The percentage of locations with a correlation above 0.7 are now

60.41%, 99.08% and 99.05% in the r, h and w directions

respectively. The results shown in figure 5 suggest that when the

time series reconstruction is performed in the correct orientation,

both the one- and three-dimensional spatial filter implementations

perform comparably, although in the r direction, the three 1-d

filter implementation performs slightly better than the single 3-d

filter.

Figure 6 shows that the results in the off-directions are both

quantitatively and qualitatively different to the one-dimensional

implementation results shown in figure 3. The reconstruction in

the two directions orthogonal to the embedded source orientation

now show gains and correlations closely centered around zero.

Across all the grid points in which a time series reconstruction was

performed in the non-embedded direction (six experiments of

14793 grid points; giving 88,758 reconstructions) the range of the

gains was 20.22 to 0.23 and the range of correlations observed

was 20.11 to 0.16. This suggests that the ‘‘leaking’’ of the signal

into other orientations which was seen in the one-dimensional

filter implementation is not present when one 3-dimensional filter

is used.

Experimental source localisation
The three 1-dimensional and one 3-dimensional spatial filter

implementations were also used to localise responses from human

sensory experiments. The first data involved a somatosensory

stimulation experiment. The analysis windows used to localise the

response were a pre-stimulus baseline period of 2300 to 250 ms

pre-stimulus-onset and an ‘‘active’’ period of 50–300 ms post-

stimulus-onset. These time intervals were used to estimate the

source power throughout the volume and a t-test was subsequently

performed on these power maps. Although a t-test was performed,

only the peak in the map was considered for analysis. No statistical

thresholds were applied. Figure 7a shows in blue the peak in the t-
map generated using the three 1-dimensional filters approach. The

overlay in green shows the t-map for the exact same analysis

conducted using the one 3-dimensional filter approach. The slice

selections are centred over the left primary somatosensory cortex

and whilst the peak for the t-map created using three 1-

Figure 4. Volumetric image showing magnitudes of the gains of sources inaccurately reconstructed as being in the r direction when
the embedded source was in the tangential plane (h or w direction) when using three 1-dimensional filters. The image has been
thresholded to show the magnitude of the gain being greater or equal to 1.0.
doi:10.1371/journal.pone.0022251.g004

Figure 5. Two dimensional histogram of gain and correlation of the reconstruction compared with the embedded signal at each
location in the brain volume for one 3-dimensional filter. The left, middle and right columns show the results for sources both embedded and
reconstructed in the r, h and w directions respectively.
doi:10.1371/journal.pone.0022251.g005

Effect of Spatial Filtering Constraints on MEG
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dimensional filters is found in this region, the 3-dimensional filter

does not localise the response to primary somatosensory cortex.

The second experimental dataset consisted of the response to an

auditory steady state stimulus. At each point on a 5 mm grid

placed throughout the volume, a t2 statistic was calculated using

the magnitude and phase of the 4 Hz Fourier component across

all 239, one-second epochs. This analysis was performed using

both the three 1-dimensional and one 3-dimensional spatial filters.

The peaks in the t2 maps are shown plotted in blue (three 1-d case)

and green (one 3-d case) in figure 7b for a single individual. The

peak in the t2-map for the summed output of three 1-dimensional

filters shows a primary peak in the inferior portion of the temporal

lobe. This is accompanied by a secondary peak in the superior

plane of the temporal lobe. There is a decrease in t2 values in-

between these two peaks. It is at this location that the maxima in

the t2-map for the one, 3-dimensional filter is seen. The exact

same analysis path was followed to generate both maps. For each

component of the vectorised beamformer outputs, a t2 value was

calculated across epochs and these were then summed at each

point to give an estimate of the total t2 value for the Fourier

component of interest at each point. The only difference in the

analyses is the initial construction of the spatial filters, whether the

inverse problem was posed as an integrated 3-dimensional

problem or three independent 1-dimensional problems.

Simulated source localisation
It is, of course, informative and essential to investigate the extent

to which the different filter implementations affect the volumetric

images produced when analysing real data. However, the difficulty

with this approach is that the ‘‘true’’ location of activity is unknown

and can at best only be estimated. In order to further compare the

ability of the two filter designs to localise activity through a

comparison based on power measures, a series of simulation

experiments were performed. This was a replication of an

experiment described in [9] in which a superficial dipole was

moved from a medial-superior location to a lateral-inferior position

in 5 steps. Each of the 5 dipoles was seeded independently in

separate analyses, so there was only ever one source present. The

dipole was oriented in the y direction (left-right axis). Each of these

analyses was repeated 30 times with the only difference being the

background oscillatory activity in which the signal was embedded.

This allows an estimate of the variability of the metric to be

obtained. The signal embedded and the method were identical to

those described in the methods, with the exception that only one

location was seeded and an NAI was calculated for this active and a

passive window and a t-test performed between the two.

Figure 8 shows the location of the 5 seeded dipoles as open

circles and the localisation from the t-maps are shown as a solid

circle. This localisation was obtained by averaging the location

from the 30 independent experiments. Cross-hairs are used to

show one standard deviation of the localisation across the 30

different noise permutations. Figure 8a shows the localisations

obtained using three 1-dimensional filters. The four most superior

locations are localised accurately to the closest grid point (as the

dipoles were not seeded on the actual grid used for the analysis).

The lack of cross-hairs for these experiments indicate that the

localisation was consistent. The most lateral and inferior dipole

was localised both inaccurately and inconsistently, and therefore

accurately replicate the findings from the initial experiment

described by [9].

Figure 8b shows the same analysis, of the same experimental

conditions when using one 3-dimensional filter. The four most

Figure 6. Two dimensional histograms of gain and correlation of the reconstruction compared with the embedded signal at each
location in the brain volume for one 3-d filter. The upper, middle and lower rows represent sources seeded in r, h and w respectively; whilst the
left, middle and right hand columns show reconstructions in r, h and w. The diagonal of these figures shows the same data as that in Figure 5.
doi:10.1371/journal.pone.0022251.g006

Effect of Spatial Filtering Constraints on MEG

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e22251



superior locations are now poorly localised and the cross-hairs

present on the third and fourth locations (green and black) confirm

that there is more variability across repeated experimental runs.

The results suggest that when localising a response on a power-

based metric, such as the NAI, the implementation described by

Huang is potentially a more accurate, and more reliable method

with which to accurately identify the underlying neuronal source.

Discussion

In this paper we investigated one- and three-dimensional

implementations of spatial filters applied to synthetic MEG data.

The one-dimensional filter implementation constructed three

independent filters in orthogonal directions at each location.

The three-dimensional filter implementation constructed the filters

as a three-dimensional system and therefore included the

constraint that the pass characteristics of the off-direction terms

must have zero gain.

The results presented confirm that if a time series reconstruction

is performed in the same orientation as the source was placed,

there is little difference between the two implementations of the

beamformer. In the non-radial directions the reconstructed time

series at each point showed a gain and correlation both around 1.

In the predominantly radial direction, although the correlations

were lower than in the tangential directions, 60.41% remained

above 0.7 at all grid locations. It was shown that in general, deeper

source locations showed lower levels of correlation. The slight

improvement in the three 1-d filters is not surprising given that the

additional constraints placed on the 3-d filter reduce the degrees of

freedom the filter has to minimise power from the rest of the

volume. This will result in noisier reconstructions, although the

results presented here suggest that the difference is small and that

both implementations can successfully reconstruct predominantly

radial sources. This confirms that a vectorised beamformer is able

to accurately reconstruct activity from any location within the

volume, regardless of orientation. However, deeper sources were

reconstructed with less accuracy when sources were oriented

radially. This is in concordance with work done using Equivalent

Current Dipoles to investigate sensitivity in gradiometer-based

systems which suggested that depth rather than orientation was the

determining factor of the sensitivity of the model [17].

In the one-dimensional implementation, the large gain

magnitudes and correlations observed in the off-directions may

potentially pose a problem. The large gain magnitudes seen in the

r direction in the absence of any signal seeded in this orientation

could cause a problem for any localisation metric which relies on

power. A number of techniques restrict themself to the tangential

plane, most notably SAM [3]. It is often assumed in the literature

Figure 7. Comparison between three 1-d filters and one 3-d filter in experimental data. The blue overlay shows the combined output of
three 1-d filters whilst the green overlay shows the combined output of one 3-d filter. Images are shown in radiological convention. Subfigure (a)
shows t-maps between active and passive normalised power measures in a somatosensory stimulation experiment. Arbitrary thresholds were applied
to only show the peak in the map. In blue are regions with a t-value between 10.5 and a maximum of 12 and in green between 3 and a maximum of
4.5. Subfigure (b) shows t2 maps evaluating the 4 Hz Fourier component in an auditory steady state following response. Arbitrary thresholds were
applied to only show the peak in the map. In blue are regions with a t-squared value between 550 and a maximum of 900 and in green between 350
and a maximum of 450.
doi:10.1371/journal.pone.0022251.g007
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Figure 8. Comparison of the two filter implementations and their ability to localise a single embedded source. The open circles
represent the seeded location, the filled circles represent the average localisation across 30 experiments (with 1 standard deviation shown as cross-
hairs). Subfigure (a) shows three 1-dimensional filters. Subfigure (b) shows one 3-dimensional filter.
doi:10.1371/journal.pone.0022251.g008
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that this is due to an inherent problem with radial sources,

however the current work suggests that this is not a generic issue

but may be the result of specific implementation choices with

regard to spatial filter construction and the use of a single sphere

model. However, a number of recent approaches have used a

spatial filter to perform source localisation focusing on stimulus

characteristics other than source power (e.g. [8,9]). For these

metrics, the occurrence of high correlations in the absence of any

source seeded in the orientation regardless of the gain of the source

could also lead to errors in source localisation.

The results presented highlight a number of issues to be aware

of when using outputs from any spatial filter construction. This is

particularly important when using a scalar beamformer which

adaptively selects the orientation for subsequent analysis. If a

signal is oriented predominantly radially, it is possible to accurately

reconstruct both the shape and the magnitude of this signal using a

spatial filter. This was demonstrated using both a one- and three-

dimensional spatial filter. Therefore, if an external stimulus in an

experiment were to elicit a response that is predominantly radial,

subsequently constraining the analysis to the tangential plane

would lead to a reduction in accuracy of the analysis. The three-

dimensional spatial filter described by Van Veen et al is able to

provide an estimate of phase locked source activity in three

orthogonal directions without being biased by the predominantly

radial sources. If one decides it is advantageous to constrain the

analysis to the tangential plane, the orientation must still be

determined and the effects of different filter construction still

apply. There are several methods of choosing the optimal

orientation within the tangential plane (e.g. [18]) and the effects

described in this work could bias the direction that is found,

depending on what constitutes ‘‘optimal’’ for a given method.

The time series reconstruction obtained when using a three-

dimensional spatial filter produced low gains and low correlations

in the directions where no source was placed. This method

therefore yields a more accurate estimate of the three-dimensional

neural time course. Virtual electrode reconstruction and source

localisation are however, not the same problem. Huang et al [13]

modified the spatial filtering approach in order to reduce the

susceptibility to single orientation noise dominance in source

localisation. The somatosensory results presented show that

power-based localisation is closer to somatosensory cortex when

using the modification as proposed by Huang et al based on a priori

knowledge of the anatomical location of primary somatosensory

cortices. In addition, preliminary simulation results support the

claim that the modification proposed by Huang et al results in a

power localisation metric which is both more accurate and less

susceptible to changing background activity than the original

three-dimensional filter described by van Veen et al. Conversely

when performing source localisation on metrics which are more

reliant on accurate source reconstruction, such as examining the

phase and magnitude of a response frequency as shown in the the

auditory data presented, our results suggest that a three-

dimensional spatial filter may be advantageous. Therefore it

may be that the optimum method with which to construct the

spatial filters depends on the type of response being investigated. If

a power-based metric, such as the commonly implemented

pseudo-t evaluation of pseudo-z scores is used then it clearly is

important to noise correct on a per-orientation basis, although the

modification made by Huang et al is not without its drawbacks. It

may be possible to perform per-orientation noise normalisation

whilst maintaining an integrated, 3-dimensional approach to the

construction of the spatial filter. The results presented highlight

some of the problems inherent in using power as a metric for

localisition. Power must be normalised, but the current methods

do so at the cost of accurate source reconstruction and can lead to

large errors in the estimation of non-tangential sources. In this

regard, metrics which focus on characteristics of source recon-

structions which do not require noise normalisation have clear

advantages over standard power based localisations.

The work presented in this paper utilised both a one- and three-

dimensional spatial filter. This is distinct from the implementation

of a scalar or vector beamformer. Scalar and vector beamformers

are commonly taken to describe the number of components

present in a source estimation or reconstruction. The two analyses

presented in this paper would be both be described as a vectorised

beamformer as each one produced three orthogonal estimates of

source activity at each grid point. The difference between the two

analyses is whether the filter is constructed as an integrated three-

dimensional system or as three independent one-dimensional

problems. A scalar beamformer can be calculated using either a

one- or three-dimensional spatial filter. Once the orientation of the

scalar beamformer is determined, the activity in this direction can

be estimated by constraining the activity in the off-terms or by

leaving them to vary freely. Therefore if a scalar beamformer is

used to investigate a given neural response, care must be taken in

how the filter is setup and whether this source estimate is created

from a three- or a one-dimensional system.

Although the differences between the two spatial filter

implementations are described in the literature, the consequences

of these differences have not been fully explored and have received

much less attention than whether a particular beamformer output

is considered scalar or vectorised. The majority of papers using

spatial filtering do not explicitly state how the analysis has been

performed or how the filters were constructed. Often, mathemat-

ical notations are unclear and poorly stated. It is clear that there

are differences between the two implementations, both for virtual

electrode reconstruction and source localisation and therefore we

recommend that authors are more explicit in their descriptions of

the spatial filtering techniques used. This will allow greater

replicability of results and methods.

Methods

Simulated signal
For the simulation experiments described, a system of coupled

oscillators was used to provide a source. Coupled oscillators have

been used successfully to model neural sources (see for example

[19]). In this paper, the coupled oscillators used are described by

the following differential equations, where q1 and q2 are the states

of the system and u is the input [20]:

_qq1~{0:25q1zq2{q3
2zu ð11Þ

_qq2~q1{q2{q1q2 ð12Þ

The input used when generating the two states was broadband noise

low-pass filtered at 100 Hz. This resulted in oscillatory output time

series, with the majority of the power in the 0–40 Hz range, and an

lower magnitude high frequency tail. q1 was taken as the source for all

epochs of all experiments described. The signal strength used for the

simulations were set to yield a phase-locked response on the sensor

array in the same range as those found in real experimental data [9].

Intrinsic Brain Activity
All recordings were made at York Neuroimaging Centre on a

248 channel whole-head magnetometer system (4D NeuroImag-
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ing) with a sampling rate of 678.17 Hz and a 200 Hz bandwidth.

Intrinsic brain activity was collected from a healthy 22 year-old

male with no known brain pathologies. The recording was made

with the subject’s eyes open and a black fixation cross presented on

a white screen. The acquisition lasted for 10 minutes and the

signal was divided into epochs of 1.4 s duration (961 data points).

Two EOG channels were used to reject epochs containing large

signals related to eye movements and from the remaining data, the

first 100 clean epochs were used for the simulation experiments.

Ethical permission was obtained from the Research Governance

Committee of York NeuroImaging Centre, University of York and

written, informed consent was obtained from the subject prior to

scanning.

Simulation Paradigm
A 5 mm grid was placed throughout the cortical volume of the

participant, which yielded 14793 points. Each of these grid points

was analysed independently in a single analysis, with the same

analysis being carried out with the signal embedded in each of the

three directions, r, h and w. The same 100 epochs of intrinsic brain

activity were used for each point and orientation. The analysis

performed was as follows for each of three seeding directions

d~r,h,w;

1. The simulated signal was embedded in each of 100 epochs at a

point within the brain, k, and in a specific orientation, d .

2. A time series reconstruction was performed at the point of

interest in three orthogonal directions and the phase-locked

signal was obtained by averaging this reconstruction across

epochs.

3. A linear regression was then performed on the embedded

signal and each of the source reconstructions performed in r, h
and w, i.e. the direction of embedding and the two orthogonal

directions.

4. This process was repeated at each of the 14793 grid points.

The correlation of the two time series and the slope of the

regression were used to evaluate the accuracy of the source

reconstruction. The optimum outcome for the spatial filter is to

reconstruct a signal in the correct orientation with a correlation

and a gain of one, whilst also showing low correlation and a gain

around zero for the reconstructions in the off-directions, i.e. the

two orthogonal orientations in which the source was not

embedded.

Experimental data
In addition to the simulation experiments performed, two

experimental datasets were analysed. Both experiments were

recorded using the 4-D Neuroimaging MEG scanner previously

described and were also recorded at a sample rate of 678.17 Hz

with a bandwidth of 200 Hz.

The first was a somatosensory experiment, full details of which

can be found in Hymers et al [9]. A plastic diaphragm was used to

stimulate the right index finger. The duration of stimulation was

around 200–250 ms and 150 epochs were presented with a 1.5 s

inter-stimulus-interval. The analysis was conducted by performing

a t-test on NAI maps calculated from an active and passive period.

The active window was defined as 50 ms post-trigger to 300 ms

post-trigger and the passive window was 300 ms pre-trigger to

50 ms pre-trigger. The beamformer weights were calculated

separately for active and passive windows.

The second dataset contained a measure of the auditory steady-

state response. The experiment consisted of diotically presented

500 Hz carrier tones, amplitude modulated at 4 Hz. Full details of

the experimental procedures can be found in [21], but in

summary, an amplitude modulated sound was presented for

239 seconds and this was segmented into one-second epochs. The

4 Hz Fourier component was calculated for each epoch and these

values were subjected to a t-squared test in order to evaluate the

magnitude and phase of the frequency component of interest.
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