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Abstract

Background: Pachycephalosaurs were bipedal herbivorous dinosaurs with bony domes on their heads, suggestive of head-
butting as seen in bighorn sheep and musk oxen. Previous biomechanical studies indicate potential for pachycephalosaur
head-butting, but bone histology appears to contradict the behavior in young and old individuals. Comparing
pachycephalosaurs with fighting artiodactyls tests for common correlates of head-butting in their cranial structure and
mechanics.

Methods/Principal Findings: Computed tomographic (CT) scans and physical sectioning revealed internal cranial structure
of ten artiodactyls and pachycephalosaurs Stegoceras validum and Prenocephale prenes. Finite element analyses (FEA),
incorporating bone and keratin tissue types, determined cranial stress and strain from simulated head impacts. Recursive
partition analysis quantified strengths of correlation between functional morphology and actual or hypothesized behavior.
Strong head-strike correlates include a dome-like cephalic morphology, neurovascular canals exiting onto the cranium
surface, large neck muscle attachments, and dense cortical bone above a sparse cancellous layer in line with the force of
impact. The head-butting duiker Cephalophus leucogaster is the closest morphological analog to Stegoceras, with a smaller
yet similarly rounded dome. Crania of the duiker, pachycephalosaurs, and bighorn sheep Ovis canadensis share stratification
of thick cortical and cancellous layers. Stegoceras, Cephalophus, and musk ox crania experience lower stress and higher
safety factors for a given impact force than giraffe, pronghorn, or the non-combative llama.

Conclusions/Significance: Anatomy, biomechanics, and statistical correlation suggest that some pachycephalosaurs were
as competent at head-to-head impacts as extant analogs displaying such combat. Large-scale comparisons and recursive
partitioning can greatly refine inference of behavioral capability for fossil animals.
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Introduction

Many animals strike with their heads at conspecifics, in ritualized

flank-butting, head-to-head shoving matches and head-butting

combat. Correlates cited for head-butting in modern ungulates

include cranial sinuses [1] that form strut-perfused osseous domes

above the brain, and secondary correlates include neurovascular

canals supplying a protective keratin covering on the skull surface

[2]. In addition to colliding with their horns (which spreads the

impact in dual horn-horn contacts [3]), bighorn sheep (Ovis

canadensis) vigorously impact each other on the apices of their heads

between the horn cores [4]. Duikers (Cephalophinae) are small

bovids with thick, rounded frontals, which they use in intraspecific

head-to-head impacts [5], [6]. Similarly dome-shaped crania of

pachycephalosaurian dinosaurs have been hypothesized as appro-

priate for head- or flank-butting, but internal histology appears to

contradict such capability in young and old individuals [7] unless a

thick keratinous covering protected the osseous dome [8].

Dome function in pachycephalosaurs has been controversial, with

trabeculae within the dome interpreted as developmental traces

inconsistent with head-butting [7], or as structures that would halt or

absorb strain during collisions [9]. A highly vascular cancellous zone

[7] undoubtedly sped the development and growth of pachycepha-

losaur domes. However, quantitative tests have supported a

complementary energy-absorbing role for trabeculae. Farke [1]

determined that trabeculae within cranial sinuses of goats would

better dissipate strain than sinuses alone, similar to what Snively and

Cox [8] found for cancellous regions of some pachycephalosaur

domes. Maity and Tekalur [10] corroborated this phenomenon in

bighorn sheep, despite a different loading pattern.

We use CT (computed tomographic) scanning and finite

element analysis (FEA) to compare structural capabilities of crania

in head-striking artiodactyls (the duiker Cephalophus leucogaster, musk

ox Ovibos moschatus and giraffe Giraffa camelopardalis [6], [10], [11],

[12], [13]) and a possibly analogous combatant, the pachycepha-

losaur Stegoceras validum. As controls we examine specimens of other
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artiodactyls that engage in a spectrum of combative behaviors.

Bighorn sheep [Ovis canadensis) butt heads, and regress in horn-

horn contact as these ornaments take a greater display function in

older rams [4]. Male pronghorn Antilocapra americana collide with

cranial ornaments but do not butt heads [14], whereas neither

behavior occurs in female elk (wapiti) Cervus canadensis, peccary

Tayassu tajacu and llama (Lama glama). Expanding on previous

studies of pachycephalosaur crania, we perform 3D finite element

analysis (FEA) of simulated head impacts with models based on

CT scans.

These methods test three main hypotheses and predictions.

First, we test the prediction that like some pachycephalosaurs [8],

head-butting artiodactyls will have a deep layer of cancellous bone

beneath dense compact bone. Second, we extend Farke’s

hypothesis for goats ([1], [5], and references therein), that frontal

sinuses with trabeculae would dissipate strain, to other head-

butting bovids. The morphology of soft tissue covering pachyce-

phalosaur domes is unknown, and we test the effects of different-

shaped keratin pads by applying concentrated and broad forces to

the dome. Finally, we examine whether Stegoceras, musk ox and

duiker cephalic structures would experience similar stress levels

under similar impact loads.

Structural terminology and interpretation of finite
element results

In the following discussions, ultimate stress refers to the

material’s strength (breaking point), and yield stress is that of

permanent deformation (beginning the inelastic portion of the

stress-strain curve). Ultimate stress is usually higher than yield

stress, and results in full breakage or crushing of a structure or its

constituents. A brittle material, with little porosity to dissipate

energy of cracking, often has similar strength and yield stresses.

Bone has both a brittle mineralized component and ductile,

flexible collagen, whereas keratin is highly ductile. Safety factor

refers to ultimate or yield stress (or strain) divided by the

experienced value.

When FEA reveals safety factors under given loads, we can

predict and compare forces necessary to break the structures. A

cranial element with a higher safety factor can experience higher

magnitudes of impact force before it breaks, which would

potentially damage critical soft tissues. (A classic example is a

blow to the squamous portion of the temporal in humans,

rupturing the middle meningeal artery and causing epidural

hematoma.) The strain threshold of fatal soft tissue injury dictates

the maximum force of a strike, which can be higher if extensive

stiff and compliant hard tissues diminish impact stress and absorb

strain energy. The current comparison quantifies relative capabil-

ity for head-strikes of hard tissues of the head, a major step for

circumscribing behavioral hypotheses. In the absence of trace

evidence, inference of actual behavior of fossil animals requires

novel phylogenetic and statistical methods.

Correlations of functional morphology and behavior
A potentially useful method for inferring behavior is recursive

partition analysis (RPA), an algorithm used to guide diagnoses of

illness based on correlations between an affliction and its

symptoms. Analogously to a patient with an unknown illness and

presented symptoms, an extinct animal can be diagnosed for an

unknown behavior based on morphological traits. Correlation

strengths for animals with known behavior can test for likelihood

of the behavior in an extinct taxon. Hieronymous and colleagues

[2] applied RPA to examine strength of correlation between types

of soft tissue and their osteological correlates. We use RPA to

examine how well osteology, head shape, and FEA results

correlate with behaviors in our examined taxa and several others

(Table 2).

We also introduce an extension of RPA called correlate

disruption, which examines how strongly adult Stegoceras morphol-

ogy would suit it for combat relative to extant head-butting taxa.

For an extant animal with strong linkages between structure and

behavior, the strengths of these correlations will decrease when an

incorrect behavior is assigned in RPA. We can test for a

hypothetical behavior in an extinct animal by varying its

behavioral assignment. If the alternate hypothesis changes

correlation strength by the same amount as for the mis-assigned

extant animal, the extinct animal can be inferred as an

equivalently probable candidate for the behavior.

Results

Bone densities of Stegoceras and artiodactyl crania
Specimen numbers are listed in Table 1. Figures 1, 2, 3, 4, 5, 6,

7, 8, 9 depict external anatomy and densities from CT scans of

Stegoceras, Cephalophus, and juvenile and adult Ovibos. Superficially

the dome of Stegoceras is highly and uniformly dense (Figures 1),

although CT beam hardening appears to increase Hounsfield

Table 1. Taxa and specimens examined, and forces applied for FEA.

Specimen number Skull length (m) Force for FEA (N)

Antilocapra americana (pronghorn) UCMZ M 1989.61 0.27 3672

Cephalophus leucogaster (duiker) AMNH 52802 0.17 1360

Cervus canadensis (elk/wapiti) UCMZ M 1986.54 0.42 n/a

Giraffa camelopardalis (giraffe) UCMZ 1976.33 0.65 51233

Lama glama (llama) UCMZ M 1987.5 0.31 5558

Ovibos moschatus (musk ox) UCMZ 1979.60 0.34 n/a

Ovibos moschatus (musk ox) UCMZ M 1978.1.92 0.41 12858

Prenocephale prenes (pachycephalosaur) GI SPS, field number PJC2004.8) incomplete n/a

Stegoceras validum (pachycephalosaur) UALVP 2 0.18 1360

Tayassu tajacu (peccary) UCMZ 1975.279 0.25 n/a

Abbreviations: UCMZ: University of Calgary Museum of Zoology. AMNH: American Museum of Natural History. GI SPS: Geological Institute Section of Paleontology and
Stratigraphy, People’s Republic of Mongolia. PJC: Philip J. Currie field number. UALVP: University of Alberta Laboratory for Vertebrate Paleontology.
doi:10.1371/journal.pone.0021422.t001

Artiodactyl and Pachycephalosaur Combat Function
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values above those of the original bone (Figure 2). Densities of

bone of the palate and occiput are substantially lower than those of

the bone in the dome, supraorbital bones, and posterior ornaments

(Figure 1 B and F). The external surface of the Cepahlophus dome

(Figure 3) is denser than the horn-bearing portion of the frontals

and the dorsal surface of the parietals, but not notably denser than

the nasals or lateral portion of the parietals. The proximal horn

cores of Cephalophus are much denser than their keratin sheaths. In

contrast, horn sheaths in Ovibos are dense compared with cranial

cancellous bone (Figures 7, 8, 9). The keratin sheaths of the adult

Ovibos are denser and larger than in the juvenile (Figures 7 and 9),

and bone densities overall are greater. The median visualized

density for the juvenile Ovibos had to be lowered to easily depict

keratin versus bone; hence the tooth enamel density is clipped and

the teeth appear white (Figure 9).

As evident in histological sections through mature pachycepha-

losaur domes [7], CT sections into the Stegoceras cranium reveal

dense inner and outer compact bone and a less dense intermediate

region (zones 1, 3 and 2, respectively, identified by Goodwin and

Horner [7]). The outer zone of compacta becomes thicker towards

the apex of the dome (Figure 2) from all peripheral directions, and

most notably posteriorly from the rostrum and medially from just

behind the orbits (Figure 2C, D). In the CT sections the outer

compact bone appears highly dense, approaching 3,000 Houns-

field units (water = 0; dark red in Figures 2, 5, and 6). Deep

attenuation of density indicates that beam hardening inflates

apparent density of the superficial dome, although the lack of such

a gradient from the palate dorsally suggests that the outer dome

did consist of dense compact bone. Lower-density compact bone

lines vascular traces that exit onto the dome surface (Figure 2 C–

E), differentiating them from surrounding cancellous bone. (These

tubular structures do not increase in density superficially, again

indicating that high Hounsfield values of the surrounding cortex

do not solely reflect beam hardening.) Similarly dense compacta

occur just deep to the outer dome, and as two internal bands

probably representing earlier stages of dome development (green

bands, Figure 2 C and D).

The frontal dome of Cephalophus displays stratification like that of

Stegoceras, with a dense compact layer (zone 1) adjacent to the

braincase, and cancellous and compact layers superficially

(Figures 4 and 5). Inflation of densities from superficial beam

hardening is unlikely, because Hounsfield values are similar for the

floor and roof of the braincase. Trabecular size and density are

more variable in the Cephalophus scan than in Stegoceras (Figures 4, 5,

Table 2. Possible categories and classes for recursive partition analysis.

Morphologial categories

Compacta

Taxon
Extensive
trabeculae Layer thickness Density

Large
struts

Surface
vessels

Head
shape

Neck
muscles

Stegoceras yes thick dense struts yes domed broad

Ovibos yes intermed. dense struts yes domed broad

Giraffa no thick dense struts no spiked narrow

Lama no thin sparse no struts no flat narrow

Tayassu no thin sparse no struts no flat narrow

Antilocapra no thin dense no struts no flat moderate

Ovis yes intermed. dense struts yes domed broad

Synceras yes intermed. dense struts yes domed broad

Buceras yes thick dense struts yes domed broad

Equus no thin sparse no struts no flat narrow

Cephalophus yes thick dense struts no domed broad

Biomechanical categories Behavioral classes

Braincase strain Stress dissipation Specific behavior Agonism

Stegoceras low maximum head strikes yes

Ovibos low maximum head strikes yes

Giraffa low intermediate body blows yes

Lama high poor no head butting no

Tayassu no head butting no

Antilocapra high poor no head butting yes

Ovis head butting yes

Synceras head butting yes

Buceras head butting yes

Equus no head butting no

Cephalophus low intermediate head butting yes

Biomechanical categories can be included in RPA, but missing data gives more ambiguous results. Specific behavior and Agonism) are alternate choices for behavioral
class. For layer thickness, ‘‘intermed’’ refers to intermediate compacta thickness. ‘‘Thick’’ for the giraffe refers to compact bone of the ossicones.
doi:10.1371/journal.pone.0021422.t002
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Figure 1. Relative surface densities of cranial bone in Stegoceras validum (UA 2). External densities of the cranium of Stegoceras validum, in
dorsal (A), ventral (B), lateral (C, D), anterior (E) and posterior (F) views. Note high densities of cranial ornamentation, and numerous neurovascular
canals (correlates of a keratinous pad) exiting onto the cranial roof.
doi:10.1371/journal.pone.0021422.g001
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6). Some Cephalophus trabeculae recall the neurovascular conduits

seen in Stegoceras, but form a cancellous latticework of struts rather

than traversing the entire dome. The high density of some regions

of the Cephalophus dome recalls regression of trabeculae seen in

some large adult pachycephalosaurs [7], although the Cephalophus

dome lacks their uniformity of compact bone.

Similarly to Cephalophus and Stegoceras, a mid-sagittal cranial

section of Ovis canadensis (Figure 6C) shows deep compact,

cancellous, and superficial compact zones, but with an additional

sinus region (zone 2a: Figure 6C). The deep zone 1 [7] and

cancellous zones (2b in Ovis canadensis) are especially similar

between the specimens. We predict that more mature specimens of

Ovis canadensis will possess a thicker compact zone 3, as seen in this

Stegoceras and other pachycephalosaur specimens.

The Ovibos crania display bone density patterns grossly similar to

those in Cephalophus and Stegoceras (Figures 7, 8, 9), but with

relatively larger cancellous regions. As in Cephalophus the frontals of

Ovibos are superficially dense, although no denser than compact

bone of the nasals and maxillae. Densities of compact bone are

higher in the adult Ovibos (Figures 7 and 8) than in the juvenile

(Figure 9). Beneath the apices of the horn sheaths, and in line with

the occipital condyles, a superficial layer of dense compact bone

overlies a deep and extensive region of cancellous bone contiguous

with the endocranial cavity (Figure 8). This internal structure

recalls zones 1 and 2 of pachycephalosaur domes [7]. Unlike in

pachycephalosaur domes, the bone lining the endocranial cavity is

not notably dense, and the superficial compact layer is much

thinner. Frontoparietal sinuses and associated struts of bone occur

primarily lateral and anterior to the apices of the horn sheaths

(Figure 8). Struts run anteroventrally within maxillary sinuses that

are sagittally in line with the tooth rows.

The other artiodactyls vary substantially in distribution of

cranial sinuses, trabecular bone, and compact bone (Figures 10

and 11). The Giraffa crania lack a thick cancellous region, and have

more extensive cranial sinuses above the brain than do bighorn

sheep (Figure 10A–C). Giraffe ossicones, however, have dense

superficial compacta and deep region of less-dense compact bone

(Figure 10B and C), as in the scanned domes of Stegoceras (Figure 6)

and Prenocephale prenes (Figure 10E). The median ossicone of a large

male giraffe (Figure 10A) has similar density distribution to that of

the Stegoceras dome. However, its cortical region appears to lack

long vascular canals running to the surface, and is more like a large

Pachycephalosaurus dome in gross cross sectional appearance [7].

The peccary (Figure 10D) has cranial sinuses above the braincase,

but its skull roof lacks a cancellous region. The Cervus, Lama, and

Antilocapra specimens (Figure 11) lack extensive sinuses or

trabecular regions above the braincase. The skull roofs of Lama

and Cervus are thin in cross section; Cervus has some cancellous

bone (particularly in the antler nubs), but this region is not

particularly deep. The frontals of Antilocapra are thin between the

flanking horn cores, but much denser than the equivalent region of

Cephalophus. This inter-horn bone in Antilocapra is the densest seen

in any of the artiodactyl crania, aside from bone of some auditory

bullae,

Finite element results and correlations with bone density
distribution

Stegoceras validum (UA 2). Figures 12 and 13

Stresses in the Stegoceras dome diminish rapidly deep to the area

of loading (Figure 12). When force is applied to a broad area

(simulating a spread of stress from a keratin covering), stress is

lower and more diffuse (Figure 13). Strain energy is slightly higher

in the cancellous internal region of the dome than in the compact

periphery, but stress is so low that the increase in strain is apparent

but minimal. Even in the most diffuse cancellous regions of the

dome, strains never reach ultimate strain of cancellous bone (0.52–

1.21% [15]; Figure 13B). With cancellous bone parallel to impact

force assigned an elastic modulus of 1 GPa, safely factors are 5–10

at the 1360 N force of a simulated impact.

The high-resolution Stegoceras model (Figure 13) has more

singularity artifacts than other models, but is still informative

about force transmission through varying keratin pads. Stresses

peak artificially at the occipital condyle constraint (up to 52 MPa)

and never exceed ultimate or yield stress of compact bone, yet

peak magnitudes vary with loading and constraint. The highest

stresses at the apex of the dome are 46 MPa for concentrated

impacts, and 8 MPa for cap-distributed impacts, at artificial

singularities on the edge of a neurovascular canal. Deep to these

artifacts, peak stresses are 1.5–2 MPa, similar to those seen in

Figure 12. Stresses are relatively higher ventral to the brain cavity

than dorsal to it, and as in the artiodactyls stresses are highest at

the condyle or points of muscular constraint. Moderate strains in

cancellous bone of the condyle and condylar neck indicate some

cushioning effect [1]. However, when the models are also

realistically constrained by dorsal neck muscles, stresses diminish

at the occipital condyle and the floor of the endocranial cavity.

Stress and strain are lower above the endocranial cavity in

Stegoceras than in Ovibos.

Cephalophus leucogaster. Figures 14 and 15

Expected from its less voluminous dome, stresses in Cephalophus

deep to the point of impact were higher than in Stegoceras for the

same impact magnitude, despite the animals’ similar basal skull

lengths. Von Mises stresses decline precipitously from the impact

towards the brain, falling from 10 MPa to 7, but the magnitudes

remain higher than in Stegoceras. Two peaks of stress occur on the

roof of the endocranium ventral to the dual impact sites (Figure 15

B), and overall stress of bone surrounding the brain (Figures 14,

15) is higher than in Stegoceras. The highest stress occurs at the

constraints, and this stress does not diminish as markedly as in

Ovibos or Stegoceras. Stress magnitudes in Cephalophus are much

lower than in the flat-headed Lama, even when corrected for

differing force magnitudes.

Ovibos moschatus (UCMZ M 1978.1.92). Figure 16

Stresses at the impact sites are higher in Ovibos than in

Cephalophus, but both stress and strain diminish more rapidly deep

to the force application. Stress and strain are higher in struts

traversing the parietal sinus than in struts less in line with the

impacts. Compact bone of the skull roof experiences low stress.

Expected from its lower elastic modulus, cancellous bone over the

Figure 2. Internal densities of bone in Stegoceras validum (UA 2). Transverse CT sections from anterior (A) to posterior (F) through the cranium
of Stegoceras validum (UA 2) seen in anterior oblique view. Inset CT reconstruction in lateral view (top) depicts section positions. Density and
thickness of cortical bone increase towards the apex of the dome from the periphery, anteroposteriorly (B–D) and medially (C, D). Trabeculae radiate
roughly perpencidular to the dome’s outer surface, evident in the low-density (blue) region posterior to the orbit (B–E). Note that density of
superficial bone may be inflated by beam hardening, but a dense, deep compact layer is definitively present. Dense compact bone (Hounsfield values
of approximately 2000) surrounds presumed vascular traces, forming tubes that empty onto the dome surface; three of these are visible in D and E.
These tubular structures recall struts within artiodactyl cranial sinuses.
doi:10.1371/journal.pone.0021422.g002
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Figure 3. Surface densities of cranial bone in the duiker Cephalophus leucogaster (AMNH 52802). External cranial densities of the white-
bellied duiker, in dorsal, ventral (A, B), right and left lateral (C, D), and anterior and posterior (E, F) views. Duikers collide with a rounded dome formed
by thick frontals (the frontals are not fused, as in Stegoceras). The color scale is in Hounsfield units, centered at 1334 (water = 0). The horn sheaths are
rendered as slightly transparent, to emphasize high densities of the horn cores; compare with the musk oxen (Figures 4, 5, 6).
doi:10.1371/journal.pone.0021422.g003
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brain and especially in the occipital condyles experiences higher

strain than compact bone. The dorsal surface of the endocranial

cavity experiences lower stresses and strains than in any of the

other artiodactyls (Figure 16 D), but is higher than in Stegoceras.

High stresses propagate through the keratin pad towards the

muscular constraints (Figure 16 E).

Giraffa camelopardalis (UCMZ 1976.33). Figure 17

Ossicones of Giraffa experience high stress relative to the

impacting structures in Ovibos. Stress is also greater in struts within

frontal sinuses of Giraffa than in similar struts of Ovibos. Stress and

strain are low in compact bone over the brain cavity, but

substantially higher in impacts to the median ossicone than when

all three are loaded (Figure 17). This differs from the condition in

indirect, horn-impact loads in Capra [1], which also has a sinus and

struts beneath points of impact and most of the brain posterior to

it. Because the Giraffa model created in MimicsH has an artifact of

thickened intrasinus struts for proper volumetric meshing, in life

stress and strain would be higher in these structures. However, the

applied force (Table 1) appears higher than likely.

Antilocapra americana (UCMZ M 1989.61). Figure 18

Stresses in Antilocapra differed greatly from those of the other

specimens (Figure 18). The horns display tensile stress medially

and compression laterally, expected given that the impact would

induce bending loads. The frontals at the base of the pronghorns

experience high stress but not particularly high strain, yet the skull

midline between the pronghorns displays high strain energy and

high tensile stress in a complex pattern. Stress is high at the

occipital constraints, but not as high as in the other artiodactyls.

Tensile stresses induced by lateral bending of the horncores

predominate in Antilocapra (Figure 18). Although anteroposterior

peak stresses are higher at the constraints, the frontals experience

5–10 MPa mediolateral tensile stress, and the base of the

horncores 27 to 214 MPa compressive stress, over large areas.

Locations of high stresses correspond to dense compact bone of

the pronghorn cores and the frontals. Complex tensile stresses in

the skull roof occur at the interfrontal suture (Figure 18), where

bone is slightly less dense than that lateral to it. Cancellous bone

between the pronghorn cores and brain cavity may experience

tensile and compressive strains from lateral bending of the cores.

Peak von Mises stresses are 26 MPa, for a safety factor of four to

five.

Lama glama (UCMZ 1987.5). Figure 19

The Lama model experienced high bending stresses and strains,

with primarily compressive stress on the skull roof and tensile

stress on the dorsal surface of the endocranial cavity. The latter

stresses are particularly high compared with those in the other

Figure 4. Densities of the frontal dome of Cephalophus leucogaster (AMNH 52802) in transverse section. A section through the posterior
portion of the orbit and anterior region of the endocranial cavity (A, B) shows dense and diffuse trabecular bone (C) between bands of compact bone.
Regions of compact bone are thinner than in Stegoceras, and larger trabeculae appear more robust (compare with Figure 2). The density color scale is
the same as in Figure 3.
doi:10.1371/journal.pone.0021422.g004

Artiodactyl and Pachycephalosaur Combat Function
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Figure 5. Comparison of sagittal-section densities in crania of Stegoceras validum (UA 2) and Cephalophus leucogaster (AMNH 52802).
A, B, C. Sagittal sections through the cranium of Stegoceras validum, at positions shown in the dorsal view (top). D, E, F. Sections through the cranium
of Cephalophus leucogaster, at positions shown in the dorsal inset (top). Note similar stratification of compact and cancellous layers in F, through the
middle of the duiker’s lobate dome, and B, through the center of the pachycephalosaur’s dome. ec = endocranial cavity.
doi:10.1371/journal.pone.0021422.g005
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examined taxa, despite artificial thickening of the model

necessary for successful FE meshing. Peak von Mises stress

reached 60 MPa for a distributed impact (Figure 19), and

120 MPa (which would chip the bone) for force applied to the

parietal crest. These results are consistent with both structural

and material characteristics of the Lama cranium. The skull roof is

thin in the Lama, as in Antilocapra, but cranial bone densities and

elastic moduli are lower. As with the Giraffa model, the Lama

geometry is slightly inflated for solid meshing and stresses would

be higher in realistically thinner bone.

Recursive partitioning situates pachycephalosaurs
among head-butting taxa

Figure 20 and Table 3 show strengths of correlation between

cranial functional morphology and agonistic behavior (Table 2),

and probabilities that taxa are correctly assigned to behaviors

given their suites of morphology. The presence of extensive

cancellous bone, dome versus flat head shape, and the size of neck

muscle attachments have high correlation with behavior, whereas

density of compact bone correlates less strongly.

Correlate disruption suggests that Stegoceras has a high head-

butting probability when included among extant taxa. Classifying

the head-butting Cephalophus and Stegoceras as non-combatants

reduces likelihood ratio chi-square values (G2) by the same

amount; the morphology of Ovibos is a slightly better fit. In

contrast, Giraffa disrupts G2 values less than the other taxa,

indicating that giraffe morphology is better classified outside that

of the animals that strike their heads together directly.

Discussion

Extant combative ungulates vary in adaptations for head-

butting, and pachycephalosaurs possessed a combination of their

respective traits. In extant ungulates, recursive partition analysis

shows strong correlations between head-butting and cranial

morphologies that also occur in Stegoceras. Both Ovibos and Giraffa

have dome-like structures that dissipate force, yet in Ovibos

cancellous bone lies over the brain as compliant protection, and

in the giraffe the point of impact lies anterior to the brain cavity

and above struts of the frontal sinus. The Antilocapra model

experiences tension in the thin skull roof. The domes of Stegoceras

and Prenocephale resemble Ovibos heads in general shape and

occurrence of cancellous bone, and domes of Cephalophus leucogaster,

Ovis canadensis and giraffe ossicones in stratification of compact and

trabecular regions.

The closest morphological matches of pachycephalosaur domes

are the domes of Ovis canadensis and especially Cephalophus leucogaster

(Figure 7), despite the presence of sinuses and/or horns in the

artiodactyls. Bighorn rams famously collide with their horns by

rearing and falling towards each other, which produces loud

reverberations. However, they also charge and collide with the

tops of their heads between the horns, a direct head-butting

behavior similar to head strikes suggested for Stegoceras.

Recursive partitioning suggests that Stegoceras’s morphology fits

head-strike behavior comparably to the duiker and musk ox. More

taxa and biomechanical results would better evaluate strengths of

character/behavior associations, and improve on our application

of the method. However, strong correlations of head butting

with features common to this Stegoceras specimen and fighting

artiodactyls suggest behavioral and biomechanical commonalities.

Biomechanical FEA results of this study corroborate the

interpretations of Farke [1] for artiodactyls and Snively and Cox

[8] for pachycephalosaurs. The large osseous dome of Stegoceras is

more effective at spreading force than the lower domes of

Cephalophus, and the keratin pad of Ovibos better absorbs strain [8],

[10]. However, the Cephalophus FE model experienced much lower

relative stress than did the thin-skulled lama, suggesting that thick,

solid frontals suit duikers well for head-butting [1], [5], [6].

Although we were unable to vary material properties in the

Cephalophus model, we can predict lower strains close to the

endocranium than in Stegoceras. Higher densities and larger struts

of cancellous bone (Figures 4, 5, 6) in Cephalophus would result in

higher stiffness, lower deformation, but less absorption of impact

energy than in the pachycephalosaur. High cancellous strain in

Ovibos corroborates Farke’s [1] FE results with a simulated

Figure 6. Comparison of dome structure in Stegoceras (UA 2),
the duiker Cephalophus (AMNH 52802), and bighorn sheep Ovis
canadensis (UCMZ). Midsagittal sections through the crania of
Stegoceras validum, duiker Cephalophus leucogaster, and a bighorn
sheep Ovis canadensis reveal similar dome structure. A. In the Stegoceras
specimen, compact bone (z1 and z3: zones 1 and 3: [7]) occurs deep
and superficial to a cancellous region (z2: zone 2: [7]). Moderately dense
compact bone shows as a green band at the base of zone 3 (white line);
note cancellous bone (blue) above the line in the anterior portion of
this zone. B. Cephalophus. C. Similar stratification is evident in the
sectioned Ovis cranium, with nearly identical zones of cancellous and
compact bone broken by a ventral sinus.
doi:10.1371/journal.pone.0021422.g006
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Figure 7. External cranial bone and horn densities in the adult musk ox (Ovibos moschatus: UCMZ M 1978.1.92). Densities of the
cranium and horn sheaths in adult Ovibos moschatus, in dorsal (A), ventral (B), lateral (C, D), anterior (E) and posterior (F) views. Note bone higher
bone densities than in the juvenile specimen (Figure 5), and the expanded keratin pads over the parietals.
doi:10.1371/journal.pone.0021422.g007
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trabeculae-filled frontal sinus, and his prediction that copious

struts within Cape buffalo and bighorn sheep crania would absorb

shock of vigorous head-butting. Both Farke’s and the current study

strongly parallel Maity and Tekalur’s findings for bighorn sheep

[10], which will further guide evaluations of strain and material

effects on combative behaviors.

Similarly to Snively and Cox’s [8] simple geometric models, the

CT based Stegoceras FE model experiences low cortical strain,

Figure 8. Internal densities of horn and bone in adult musk ox (Ovibos moschatus UCMZ M 1978.1.92). CT sections through the cranium
of juvenile Ovibos moschatus. Dorsal and lateral CT renders show section position. A.–C. Right, mid-, and left sagittal sections show thick regions of
trabeculae above the endocranial cavity, with a superficial layer of dense cortical bone over the apex of the brain (B). The most extensive cancellous
bone occurs beneath the apeces of the horn sheaths, in line with the occipital condyles. A network of struts connects frontal and maxillary sinus
regions (A and C). D.–F. Transverse sections from anterior to posterior show decreasing instances of struts and increasing cancellae as the horn
sheaths become taller, and dense bone of the skull roof beneath the sheaths. Note the extent of trabecular bone between the sheaths and occipital
condyles, in line with forces of head-butting impacts. Abbreviations: ec = endocranial cavity, fs = frontal sinus, ms = maxillary sinus, ps = parietal sinus.
doi:10.1371/journal.pone.0021422.g008

Figure 9. External densities of horn and bone in juvenile musk ox (UCMZ 1979.60). Densities of the cranium and horn sheaths in juvenile
Ovibos moschatus, in dorsal (A), ventral (B), lateral (C, D), anterior (E) and posterior (F) views. Note higher densities anterior to the bases of the horns,
and higher density of horn keratin than much of the cranial bone. The horns’ keratin has yet to develop into a large pad above the parietals. Enamel
densities are high and clipped out using this color scale.
doi:10.1371/journal.pone.0021422.g009
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Figure 10. Cranial densities in Giraffa (TMM M 6815, UCMZ 1976.33), the peccary Tayassu (UCMZ 1975.279), and pachycephalosaur
Prenocephale (GI SPS, field number PJC2004.8). CT sections through crania of comparative taxa, with slices mapped onto lateral renders of
crania. A. Giraffa camelopardalis male (TMM M6815), transverse section through the region of a median ossicone. B. Oblique transverse section of
Giraffa camelopardalis (UCMZ 1976.33) through the posterior ossicones. C. Enlargement of B focusing on the ossicones. The layering of densities in
the giraffe ossicones resembles that in the dome of Stegoceras validum (Figure 6). D. Transverse section through the cranium of Tayassu tajacu,
showing a non-cancellous skull roof over cranial sinuses. D. Section through the cranium of the pachycephalosaur Prenocephale prenes (GI SPS).
Despite mineral inclusions (localized red and yellow areas) and CT artifacts, the scan shows dense superficial and cancellous deep regions within the
dome. Abbreviations: ec = endocranial cavity, fs = frontal sinus, lo = lateral ossicone; mo = median ossicone; ps = parietal sinus.
doi:10.1371/journal.pone.0021422.g010
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higher (but still low) cancellous strain, and dramatic reduction of

stress distal to the impact on the dome surface. The cortical

portion of the dome experiences peak stresses of 8–46 MPa, below

their ultimate levels (180–200 MPa in compression: [15]; incor-

rectly set at 300 MPa in reference [8]). For its cortical bone to

reach ultimate stress and strain [15], this Stegoceras would have to

impose 5–10 times the tested force on its dome. The highest peak

stresses occur at the edges of neurovascular canals, where the mesh

has artificially sharp angles; lower cortical stresses adjacent to these

artifacts represent the more probable life condition. Cancellous

stress and strains peak at 1 MPa and 0.02%, below failure levels

(6–12 MPa; 0.2–1.21% strain [11], [16], [17]) even in low density

regions of the dome. This suggests that failure of the entire dome

was unlikely even in younger pachycephalosaurs with primarily

cancellous bone, despite their diffuse, apparently fragile trabecu-

lae. Radiating trabeculae In older adults with primarily compact

bone, strain and displacement near the brain would be negligible,

similar to results from Farke’s [1] simulations of an artificially solid

dome in Capra.

The dome of this specimen of Stegoceras was structurally capable

of dissipating force of impacts against solid objects, more so than

skull roofs of artiodactyls known to head-butt at high forces.

However, low dome vascularization in large individuals [7], and

presumably reduced healing ability and supply to a keratin pad,

argue against head-head combat in older pachycephalosaurs [7],

[8]. Examination of older Cephalophus leucogaster, which head-butt

despite dense domes and lack of a large keratin pad above the

point of impact, will test this interpretation. Apparent beam

hardening in the Stegoceras scans highlights the necessity of physical

sectioning and histological examination [7] to check CT densities

in fossil vertebrates. Regardless, dome strengths of large, old and

young pachycephalosaurs must be examined with the present or

similar methods, to assess impressions based on histology, CT

data, and even FEA of the current specimen.

The scanned adult Stegoceras shares morphological correlates of

head-butting with extant artiodactyls. A deep cancellous region

beneath a point of impact occurs in the largest head-striking

artiodactyls, including Ovibos and Giraffa, and we predict this

zonation in CT scans of smaller head-striking forms. Stegoceras lacks

pneumatized frontal sinuses present in Giraffa and Ovis canadensis.

However, compact bone surrounding vascular traces in Stegoceras

forms tubular struts that traverse the dome, recalling the struts

within cranial sinuses of ungulates. These neurovascular canals

open onto the skull surface, a condition Hieronymus et al. [2]

identify as a correlate of cornified pads (as in Ovibos) covering the

crania of head-butting artiodactyls and hornbills. The struts in

Stegoceras are interpretable simultaneously as vascular conduits

feeding development of a keratin covering [2], and as structural

braces analogous to struts in artiodactyl cranial sinuses. Both

biomechanically and developmentally the tubes serve as potential

correlates for head butting capability in pachycephalosaurs. This

hypothesis will be falsified if the struts are shown to be loosely

anchored or little affected by overall impact stress.

Our findings, and those of Farke [1] and Maity and Tekaur

[10], point to other such predictions of functional morphology in

known and putative head-butters, testable through CT and FEA.

CT of tapinocephalid synapsids will likely show struts within

sinuses similar to those imaged here in Tayassu, and present in

head-butting suids that Barghusen [19] identifies as behavioral

analogs. When combined with conceptual advances for evaluating

structures unknown in modern fauna [20], finite element modeling

will further advance hypotheses of behavior in fossil animals

beyond anatomical and mechanical intuition.

Future directions: transient analyses and energy
dissipation

The forces applied thus far to FE models of pachycephalosaurs,

Cephalophus, Capra [1], and Ovis [10] are reasonable impact

loadings [18]. However, FEA has approximated impact events

with steady-state, linear static simulations. True collision simula-

tions are unlikely to greatly alter stress and strain results, but

will better enable analysis of energy dissipation by trabeculae.

Trabeculae and larger struts angled relative to the impact force

would be loaded in bending and be weaker than in compression,

but would absorb strain energy better than struts parallel to the

force [1], [15]. The role of solid struts or neurovascular conduits

(seen in Stegoceras) would be possible to model using 2D analyses [8].

Characterizing how morphology contributes to energy dissipation

has potential application to military, motorcycle, and sporting

helmets designed to reduce injury [21], [22,] [23].

Materials and Methods

CT scanning, geometry reconstruction, and finite
element meshing

Specimen numbers, lengths, and forces for included taxa are

listed in Table 1; all University of Calgary specimens had been zoo

animals. The cranium of a male bighorn sheep (Ovis canadensis) was

sectioned mid-sagittally with a bone saw. Crania of Stegoceras

validum, Ovibos moschatus, Giraffa camelopardalis, Cervus canadensis (elk),

Lama glama, Antilocapra americana (pronghorn), and Tayassu tajacu

(peccary) were scanned on a General Electric Lightspeed CT

scanner (Canada Diagnostics Centre, Calgary, Alberta), at settings

for diagnoses of bone pathology. The Stegoceras validum specimen

was also scanned on a high-resolution x-ray CT at the University

of Texas at Austin. Ovibos specimens represent a juvenile and an

adult, as determined by examining tooth eruption patterns. A

cranium scan of the duiker Cephalophus leucogaster was provided by

Andrew Farke, also scanned on a General Electric Lightspeed

medical scanner [5]. We also imaged a section through the median

ossicone of a large male giraffe (Texas Memorial Museum TMM

M6815, scanned by Timothy Rowe), from a CT sequence on the

University of Texas, Austin Digimorph web site (http://www.

digimorph.org/specimens/Giraffa_camelopardalis/skull/, accessed

August 17, 2009). For anatomical comparison with Stegoceras, we

examined scans of a large specimen of the Mongolian pachycepha-

losaur Prenocephale prenes (Geological Institute Section of Palaeontol-

ogy and Stratigraphy GI SPS, field number PJC2004.8), then on

loan to Philip Currie (University of Alberta).

Figure 11. Cranial densities in the pronghorn (Antilocapra, UCMZ M 1989.61), elk (Cervus UCMZ M 1986.54), and llama (Lama, UCMZ
M 1987.5). CT sections through artiodactyl crania, with insets depicting section locations on lateral CT reconstructions. A. Transverse section
through the pronghorns and anterior braincase of Antilocapra americana, showing dense bone (bright red) where the pronghorns meet the skull roof
but no cranial sinuses. B. Oblique section through the posterior cranium of Antilocapra americana. The lack of cranial sinuses is similar in both
depicted regions. C. Transverse section through the cranium of Cervus canadensis reveals cancellous bone at the antler bases. D. Section through the
cranium of Lama glama reveals a thin skull roof. These specimens’ morphologies contrast with extensive cancellous bone and/or sinuses above the
endocranium in head-striking artiodactyls Ovibos and Giraffa, and the pachycephalosaurs Stegoceras and Prenocephale. Abbreviation: ec = endocranial
cavity.
doi:10.1371/journal.pone.0021422.g011
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Figure 12. Stress and strain in the dome of Stegoceras validum (UA 2). A. Von Mises stresses (indicating closeness to yield) in a mid-sagittal
section through the cranium of the pachycephalosaur Stegoceras validum. The highest stress within cancellous regions of the dome about 1 MPa,
indicating a safety factor of 8–10 at the tested force. Stresses in compact bone surrounding the brain peak at 5 MPa, for a safety factor of 20–30.
Constraints inflate stress artificially at the basal tubera and occipital condyle, and basicrainial and braincase stresses would be lower than depicted
here. B. Von Mises stress and strain at 29 samples of a vertical transect through the dome. Strains are expressed in terms of safety factor: ultimate
bone strain (0.6%) divided by the actual strain. Log10 values are used, because cortical safety factors approach 100 in some regions.
doi:10.1371/journal.pone.0021422.g012
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Figure 13. Effects of keratinous pad shape on head-butting stresses of Stegoceras validum (UA 2). For all simulations impact force is
1360 N, and stresses are von Mises values. The range and peak visible stress are noted in the color scales. A. Dorsal view of cranium. Force is
distributed across a large surface area as a large keratin pad is deformed upon impact. Peak stress at the impact site is 6 MPa, and modal stress is
3 MPa. B and C. More concentrated impacts, simulating a thinner layer of keratin. D. Ventral view of stresses in impact C, showing occipital condyle
(oc) and muscular constraints (mc). The detail level of this model (2 million elements) increases chances of artificially high stress at near-singularities,
such as when force is applied to the edges of neurovascular canals.
doi:10.1371/journal.pone.0021422.g013
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Except for the male giraffe (TMM M6815), all CT data were in

DICOM format. We used OsiriXH for 2- and 3D visualization of

structure and density, to evaluate internal density distribution and

guide reconstruction of finite element geometry and material

properties. Densities were assessed primarily with the full-color

NIH lookup table, which visualizes density gradations more clearly

than do grayscale palettes. OsiriXH can section CT volumes in

transverse, coronal, and sagittal planes. In other planes, we used

Figure 14. External views of finite element stress in the duiker Cephalophus leucogaster (AMNH 52802). Von Mises stresses of a 1360 N
impact are depicted in lateral (A), dorsal (B), and ventral (C) views. Note artificial clipping occurs at the constraints. Higher stress occur at the impacts
and around the brain than in Stegoceras (Figure 12), for the same collision force. The histogram depicts color coding for stress magnitudes, and the
proportion of elements experiencing given levels of von Mises stress.
doi:10.1371/journal.pone.0021422.g014
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the scissor tool to remove unwanted rendered bone, and produce

sections approximately two mm thick. This was necessary for the

Prenocephale specimen, which was rotated slightly out of anatomical

neutral pose on the scanner bed, and for anteroventrally sloping

sections of two artiodactyls. The latter angled sections are of an

un-impacted control region through the braincase of Antilocapra,

and lateral ossicones of the female Giraffa specimen.

We produced cranial finite element models of Stegoceras,

Cephalophus, adult Ovibos, Giraffa, Lama, and Antilocapra. MimicsH
(Materialise) facilitated construction of most 3D models (Figure 16)

from density-based masks on individual CT slices, after methods of

Arbour and Snively [24] and Bell et al. [25]. Internal spaces were

automatically modeled from scans for the artiodactyls, but for the

Stegoceras models, imaged matrix had to be removed manually

within the cranial sinuses and endocranial cavity. The resulting

models were saved as .stl surface meshes, and errors detected and

corrected cyclically in the MimicsH remesher and GeomagicH
Studio (Geomagic Inc.), for compatibility with Strand7H (Strand7

Pty Ltd) finite element analysis software. We used AvizoH (Visage

Imaging) to construct the finite element model of Cephalophus. The

surface mesh was refined initially with AvizoH’s RemeshSurface

function, and remaining errors corrected with the software’s

surface editor. As with the MimicsH-based artiodactyl models,

AvizoH yielded a high resolution tetrahedral model with larger

struts and nasal conchae intact.

From these surface models and masks, we constructed two types

of FE models. For the Stegoceras, Antilocapra, Giraffa, and Lama

specimens, Strand7H and MimicsH produced error-free tetrahedral

solid meshes, suitable for FEA, from a triangular surface mesh that

included surfaces around internal cavities (Figures 11, 13, 14, 15,

16). For one model of Ovibos, a broken zygoma and circumorbital

bone hindered tetrahedral meshing from its surface model. Instead

of simplifying the modeled osteology, we produced voxel-based,

hexahedral FE meshes using MimicsH, from density masks of both

Ovibos and the hollowed-out Stegoceras CT scans. Incorporating all

voxels results in millions of elements with prohibitive memory

requirements and computation time. We therefore grouped voxels

into larger sets, for meshes of approximately 200,000 hexahedra of

varying shape (not just cubes) to better approximate original surface

contours. This grouping retains anatomical details such as struts of

bone, but results in a blocky external appearance in parts of the

model. Even with varying element shape, a strictly hexahedral mesh

is less ‘‘smooth’’ and accurate than a combination of hexahedral and

tetrahedral elements, as Jasinoski et al. [26] constructed for

dicynodonts. However, a large number of nodes in a hexahedral

mesh ensures adequate resolution of results. We used high-

resolution surface models to smooth the appearance of the FE

mesh and visualize both mesh and external geometry.

An additional FE model of the Stegoceras cranium was created

based on the Austin CT scan, which had twice the transverse

Figure 15. Internal stresses in the cranium of the duiker Cephalophus leucogaster (AMNH 52802). Internal von Mises stresses are evident in
posteroventral oblique (A) and lateral (B) views, through sections shown in respective insets. Impact stress diminishes from superficial to deep (B), but
greater stresses occur at on the internal surface of the braincase than in Stegoceras. The histogram reflects the relative number of elements at
different stress magnitudes.
doi:10.1371/journal.pone.0021422.g015
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resolution and 4.5 times the anteroposterior resolution of the

original medical scan. A tetrahedral mesh of 2.2 million elements

was created in AvizoH. This model became the primary one for

analyses of the Stegoceras cranium.

Material properties and kinematic constraints
We used MimicsH to assign material properties based on

Hounsfield density values to most of the extant specimens

(Figure 21), using procedures similar to those of Arbour and

Figure 16. Finite element stresses in the musk ox Ovibos moschatus (UCMZ M 1978.1.92). Von Mises stresses for Ovibos moschatus, in
anterior oblique, posterior oblique, and dorsal view (A–C). D. Ventral view into the braincase (sectioned at the plane shown in A), showing high stress
posteriorly. The highest stresses occur at the site of impact and (artificially) at muscular constraints (D); note the different color scale for stresses. E.
Sagittal section (location marked in C) shows higher stresses channeled away from the endocranial cavity, in line with the posteroventrally directed
impact force.
doi:10.1371/journal.pone.0021422.g016

Artiodactyl and Pachycephalosaur Combat Function

PLoS ONE | www.plosone.org 21 June 2011 | Volume 6 | Issue 6 | e21422



Snively [24] and Bell et al. [25]. With this method we assigned

elastic modulus to bone in 18 discrete ranges of density, by the

equation [25]:

E~1:12e7.HU

relating elastic modulus (E) and Hounsfield unit opacity (HU) from

data of Hellmich et al. [27]. This equation yields higher elastic

moduli than others, but better encompasses values in the upper

end of the observed range [26], [28] and allows meaningful

comparisons of overall morphological performance. Because

keratin does not follow the same relationship, we manually

assigned its properties (E = 3.9 GPa, n= 0.28, r= 1300 kg/m3

[29]) to the keratin pad of the musk ox. The Stegoceras densities

could not be fully automated (Figure 21) because the extent of

permineralization was unknown. To densities above 2500 HU in

Stegoceras we assigned properties of that density, under the

assumption that beam hardening artifacts inflated values above

those of the original compact bone. Cancellous bone in Stegoceras

was assigned a conservatively low elastic modulus of 1 GPa. In

cattle and humans [30], E = 0.5–4.5 GPa in dense cancellous bone

like that seen in this Stegoceras dome. MimicsH was unavailable for

producing density-stiffness assignments for Cephalophus, and its

cranium was given a uniform density of compact bone (17 GPa

[15]); the implications of this uniformity are discussed above.

To ensure that these structures would deform realistically under

simulated head impacts, we constrained the models in two ways.

Assuming transmission of force through the occipital condyles to

the atlas, we constrained the condyles against translation and

rotation. We also constrained the models along the rim of the

nuchal crest after McHenry et al. [31], assuming offset forces

restrained by neck muscles (m. transversospinalis capitis/m.

Figure 17. Finite element results of two head-strike simulations in the giraffe (UCMZ 1976.33). Von Mises stresses in Giraffa
camelopardalis, with the cranium in dorsal A, B) and oblique (C, D) views. A9 is a ventral view of a coronally-sectioned cranium (at the plane in D),
looking up into the endocranial cavity. A, A9, and C depict vertical impacts through the median ossicone and frontal sinus. Note comparatively high
stresses at the posterior muscular constraint and substantial stress in the endocranial cavity compared with Ovibos (Figure 11 D), yet more localized
stress than in Antilocapra (Figure 13). Peak stresses are lower when the force is spread over all three ossicones (B and D), suggesting that such impacts
are more favorable to the animals.
doi:10.1371/journal.pone.0021422.g017
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complexus in Steoceras [32], [33], [34]; m. splenius capitis in the

mammals). Muscular constraint at the basitubera in Stegoceras

resulted in high stress artifacts ventrally, but did not affect stress

levels in the dome.

Forces and interpretation of structural performance
We applied compressive forces to apices of the horn sheaths in

Ovibos, the top of the dome of Stegoceras, ossicones of Giraffa, the

anterior parietal of Lama, and the medial surfaces of the horns in

Antilocapra. Force applications are evident as dorsal concentrations

of stress in Figures 12, 13, 19. Loads were applied to several areas

of the Stegoceras model in separate analyses (Figure 13), because the

size and spread of force through a keratin pad is unknown [8].

Two analyses were run on the giraffe, with forces respectively

applied to the median ossicone alone, and to the median plus both

lateral ossicones.

Magnitudes of stress and strain scale linearly with force

magnitude unless a structure is greatly deformed. Stress and strain

distributions are independent of force magnitude when force is

applied to precise areas (and material is behaving elastically). In

the absence of data on forces, it is reasonable to apply a unit

magnitude to all FE models in a comparison, and directly scale

stress and strain magnitudes when realistic forces are determined.

However, we scaled forces to puts them in a biological context,

and to open our assumptions to criticism. The baseline force for

Stegoceras specimens was 1360 N, calculated for the similarly-sized

pachycephalosaur Homalocephale colathoceros at a closing speed of

3 m/s [8]. Comparability of structural performance in animals

dictates that forces are scaled to the subjects’ sizes, ideally to

surface areas for feeding comparison [35]. Considering their great

variety of head shapes, we used a different scaling method for the

artiodactyls. Their baseline force was 1088 N, calculated for Capra

with a skull length of approximately 0.18 m [36], [1]. Assuming

the same impact velocity and force proportional to skull mass, this

force was then scaled to cube of the ratio of skull lengths for each

artiodactyl versus Capra (Table 1). The force appears to be

excessive for the giraffe, and caution is warranted for strict

interpretations of its performance relative to other taxa. Because

Cephalophus has a similar basal skull length to Stegoceras, we applied

the same 1360 N to its cranium.

Recursive partition analysis
Inferring behavior in fossil animals is possible by phylogenetic

comparisons [37], [38], especially when pertinent behavior,

Figure 18. Head-strike stresses in the pronghorn (UCMZ M 1989.61). Stresses in Antilocapra americana, primarily from mediolateral bending
(A–C) and consolidated as von Mises stress (D, E). C is a ventral view of the cranium sectioned in the plane shown in A. Relatively high tensile stresses
occur at the base of the pronghorn cores (A, B) and roofing the endocranial cavity (C), where CT reveals dense compact bone (Figure 8).
doi:10.1371/journal.pone.0021422.g018
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morphology, and physiological response [34] converge in the

taxon’s extant phylogenetic bracket [38]. Phylogenetic inferences

become less practical with more specific behaviors and a less

constrained extant bracket [34], [38], and are inapplicable to

pachycephalosaur head-butting. However, we can examine

strengths of morphology/behavior correlation in extant taxa,

and by inference in possible extinct analogs, by recursive partition

analysis (RPA). The method was implemented using JMPH (SAS

Institute, Inc.).

In RPA [2], strengths of correlation are proportional to the

likelihood ratio chi-square values (G2) of correlation between a

category (such as behavior) and a potentially influencing factor

(such as a morphological feature or biomechanical result). We

Figure 19. Simulated head-strike stresses in the llama (UCMZ M
1987.5). Von Mises stress from a simulated head impact in Lama
glama, an artiodactyl that does not fight in this manner. A. Dorsal and B.
ventral endocranial views depict higher stresses that occur at yield in
cancellous bone orthogonal to the impact.
doi:10.1371/journal.pone.0021422.g019

Figure 20. Strengths of behavior-morphology correlations for selected taxa. Correlate disruption values from Table 3, for incorrectly
assigned behaviors in modern taxa and for Stegoceras validum when hypothesized as not head-butting. g correlations values on the left indicate how
much incorrect assignment perturbs the original correlations, and the scale on the right indicates how well the animals’ morphology fits their
‘‘correct’’ behavior. The pachycephalosaur Stegoceras has a strong affinity with its hypothesized head-butting behavior, while the giraffe’s lower score
indicates ambiguous correlations between its morphology and behavior.
doi:10.1371/journal.pone.0021422.g020

Table 3. Correlate disruption of recursive partitioning for
selected taxa.

‘‘Correct’’ O.m.-no S.v.-no G.c.-yes C.l.-no

Cancellae 15.16 4.75 4.75 9.41 4.75

Cmpcta. thickness 9.41 2.28 4.57 4.18 4.57

Cmpcta. density 6.16 0.75 0.75 1.6 0.75

Struts 9.41 2.28 2.28 4.18 2.28

Vasculature 9.75 2.52 2.52 6.78 2.52

Head shape 15.16 4.75 4.75 9.41 4.75

Neck muscles 15.16 4.75 4.75 9.41 4.75

G2 sum deviation 0 58.13 55.84 35.24 55.84

The ‘‘Correct’’ G2 values are those for maximum correlation between behaviors
and traits in Table 2. All other values are correlations when taxa are assigned to
a different category than in Table 2. Ovibos moschatus (O.m.), Stegoceras
validum (S.v.), and Cephalophus leucogaser (C.l.) are changed to ‘‘no’’ head-
butting, and Giraffa camelopardalis (G.c.) is designated as head-butting. G2 sum
deviations are how much the taxa disrupt the additive strength of correlations
(the sum of the correct values minus the sum of disrupted values). Higher
disruption values suggest better original assignments of behavior.
doi:10.1371/journal.pone.0021422.t003
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included comparative taxa whose morphological traits we could

observe directly. These included specimens of the cape buffalo

Synceras caffer which clash through the flat portion of their horns,

the helmeted hornbill Buceras vigil which collide in flight with

keratin-covered osseous domes [2], and the horse Equus caballus

which do not engage in head strikes.

We chose not to include phylogeny as an influencing factor in

recursive partitioning. Analogous morphology and behavior can

arise in distantly related groups, yet behavior can differ between

closely related clades even at the species level. Our application of

RPA strictly assessed correlation between morphology and known

or hypothesized behavior. Because behavior in an extinct taxon is

usually unknown, phylogeny might unduly bias the strength of the

taxon’s behavioral assignment. An example would be bias towards

head butting in a thin-skulled extinct bovid, if ‘‘Bovidae’’ is a trait

that otherwise correlates well with ramming behavior. However,

RPA results can be informative in later studies that optimize co-

evolution of behavior and morphology onto known phylogenies.

To assess the strength of morphology-behavior correlation for

individual taxa, we used correlate disruption as described in the

introduction. Correlate disruption is the decrease in likelihood

ratio chi-square values (G2) from the sum of ‘‘correct’’ G2 values

(CD =SG2 correct-SG2 incorrect), which conversely indicates the

fit of an animal to assigned behavior.
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