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Abstract

Background: An essential phenomenon during brain development is the extension of long collateral branches by axons.
How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft
remains unclear.

Methodology/Principal Findings: The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral
diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal
mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus.
Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral
diencephalon and migrating during development to arrange themselves into several discrete groups around the branching
point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined
subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of
mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching
point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to
differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract.

Conclusions/Significance: Our results define for the first time a model system where interaction of the axonal shaft with a
specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative
transcriptional regulation necessary to promote and organize an intricate axonal tree.
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Introduction

Outgrowing axons commonly branch immediately proximal to

the growth cone sending offshoots to nearby targets [1]. However,

stereotyped (i.e. identical in all individuals) axonal collaterals form

through sprouting and branching at the axonal shaft away from

the growth cone [2,3]. Although it remains unclear how the

precise branching points are initiated, it has been suggested that

cells in close apposition to the axon could contribute to branching

[4]. Here we use the development of the pm (Fig. 1) and its

surrounding cells as a model to study the possible interaction

between local environment and axonal collaterals. The mammil-

lary body (MBO) is a nuclear complex in the postero-ventral

diencephalon with defined functions in learning and memory [5].

The MBO generates the pm which is continued by the mtg (Fig. 1).

The mammillothalamic tract (mth) is a large, stereotyped collateral

of the pm connecting MBO with thalamus (Th in Fig. 1) [6]. The

mammillotectal tract (mtc) connects MBO to the tectum [7,8].

We approached this model through analysis of its development

in wild type and in several mouse lines carrying null phenotypes

for genes expressed in identified cellular subpopulations surround-

ing the branching point. We also made use of the Foxb1-tauLacZ

allele, an unambiguous genetic marker of mammillary axons.

Our results show that the future branching point in the pm is

marked by a complex arrrangement of specific cells including a

unique cell group formed by at least two distinct, specific

subpopulations originated, respectively, in the ventral and in the

dorsal diencephalon. We found evidence strongly supporting that
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interaction between the axonal shaft and specific populations of

surrounding cells is indispensable for collateral branching.

Additionally, we show that Foxb1 cooperates with Pax6 to

differentially regulate navigation of mammillary axonal bundles

targeting the tectum and tegmentum, probably through control of

fasciculation.

Materials and Methods

Mouse lines
Animals were handled in ways that minimize pain and

discomfort, in agreement with the European Communities

Council Directive (86/609/EEC). To obtain embryos, timed-

pregnant females of the appropriate crossings were killed by

cervical dislocation.

Foxb1-tau-lacZ. This mouse mutant line [7] carries axonal

marker tau-lacZ [9] as a reporter of Foxb1 expression. Foxb1

heterozygotes show normal phenotype [7,10–12] and no

homozygotes were used in this study. Since Foxb1 is specifically

expressed in the MBO including the dorsal premammillary

nucleus [7,13] expression of beta-galactosidase in heterozygotes

provided us with a clear-cut genetic marker of this nuclear

complex and its axonal projections.

Foxb1::Cre. This line carries the Cre recombinase under the

control of Foxb1 regulatory sequences (knockin-knockout) [14].

Upon crossing with reporter line ROSA26R [15], it reveals the

Foxb1 cell lineage [16].

Pax6-Small eye (Sey). A spontaneous null mutant allele of

Pax6 [17,18].

Pax6::lacZ. This targeted null allele of Pax6 expresses beta-

galactosidase as expression reporter [19].

Lrp6 mouse mutant line. Courtesy of Dr. Kenji Imai

(Helmholtz Center Munich, Germany) [20].

Gbx2 mouse mutant line. Courtesy of Drs. Gail Martin

(University of California San Francisco) and Alex Joyner (Sloan-

Kettering Cancer Center, New York).

Immunohistochemistry
Embryos of the appropriate ages were obtained and fixed by

immersion in paraformaldehyde 4% in phosphate buffer saline

(PBS). Paraffin sections (15 micrometer) of mouse brains were

dewaxed, preincubated in PBT/10% fetal calf serum and

incubated overnight (4uC) in rabbit anti-beta-galactosidase

antibody (Molecular Probes-Invitrogen Cat. Nr. A11132), or

chicken anti-beta-galactosidase antibody (1:500) (Abcam Cat. Nr.

9361) and/or mouse monoclonal anti-Pax6 antibody (1:50)

(Developmental Studies Hybridoma Bank). Either fluorescent

secondary antibodies (Alexa 488 and Alexa 594, Invitrogen), or

biotinylated antibodies (Vector Laboratories, Cat. Nrs. BA-9010,

BA-9200 or BA-1000) followed by Streptavidin-POD (GE

Healthcare, RPN 1231V) and diaminobenzidine (Sigma-Aldrich,

D3939) were used for visualization.

In situ hybridization
Was performed on cryostat sections of fresh-frozen embryo

brains according to current protocols [16,21,22].

Counting axons on histological sections
Immunodetection of beta-galactosidase was performed on

sagittal paraffin sections of three E16.5 brains per genotype.

E16.5 was chosen since at this age there is no mth yet in normal

animals (see Results section). Three sections were counted per side

of the brain, and the right and left sides of the brain were

considered separately. The immuno-labeled axons coming out of

the dorsal side of the pm were scored as belonging to one of two

groups— the ones oriented rostro-dorsally (the ‘‘problem axons’’,

see Results section) from the ones oriented caudo-dorsally (mtc).

Statistic analysis was performed with Prism software (GraphPad,

La Jolla, California).

Axonal tracing with DiI
The lipophilic carbocyanine dye DiI (Invitrogen, Darmstadt,

Germany) was dissolved (25%) in dimethylformamide and a very

small amount of the solution (it is not possible to know exactly how

much) was injected in paraformaldehyde-fixed brains with a glass

capillary. The brains were left at 37uC protected from the light for

several days, then embedded in 4% agarose, cut with a vibrating

microtome and analyzed and photographed in a fluorescence

microscope with a rhodamine filter.

Microscopy
Nikon A1 confocal (Nikon Engineering, Yokohama, Japan),

Leica DMR and MZ APO microscopes (Leica Mikrosysteme,

Wetzlar, Germany), Olympus DP50 cameras (Olympus, Tokyo,

Japan) and Cell-F 2.6 software (Olympus Soft Imaging Solutions

GmbH, Münster, Germany) were used for analysis and photog-

raphy. Image contrast was enhanced by applying Photoshop 7.0

software tools (Adobe Systems Inc., San José, California) to one

whole image file at a time. IMARIS software (Bitplane, Zürich)

was used for reconstructions of DiI-labeled axons.

Results

Arrangement of specific cell groups at the pm branching
point

The pm branching point finds itself in the posterior hypothal-

amus (ventral diencephalon), dorsal to the mammillary body, and

approximately in register with the boundary between two dorsal

diencephalic subdivisions classically named dorsal and ventral

thalamus. Based on recent advances in our understanding of

diencephalic development a new terminology is being introduced

(see for instance [23–25]) in which the names prethalamus

(formerly known as ventral thalamus) and thalamus (formerly

known as dorsal thalamus) are preferred. In order to avoid

confusion, we will call these two structures prethalamus/ventral

thalamus (PTh/VTh, labeled in the Figures with an asterisk) and

thalamus (Th). Transcription factor gene Pax6 is a marker of PTh/

VTh [26,27] and we used it as the basis of our analysis. We found

a trail of Pax6-positive cells joining the most ventral end of the

PTh/VTh to the branching point (black arrow in Fig. 2A, B).

Figure 1. The mammillary body and its efferents as classically
described. Diagram of MBO efferent connections to diencephalon and
brainstem. P, pons; TG, tegmentum. Other abbreviations: see text.
doi:10.1371/journal.pone.0020315.g001

Specific Cell Group Elicits Collateral Branching
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Closer examination (Fig. 2B) revealed an intriguing and complex

distribution of Pax6-expressing cells around the mammillary

axonal tree. The Pax6-expressing trail of cells was in contact with

the mth and ended in a group of cells closely apposed to the

branching point (black arrowheads in Fig. 2B). Pax6-positive cells

were also present between the mth axons (white arrowhead in

Fig. 2B) lending the first stretch of this tract its characteristic

reticulate appearance [7,28]. Finally, numerous Pax6-positive cells

were found scattered in the area defined by the mtg and the mth

(white arrow in Fig. 2B). Transcription factor Foxb1 is a specific

marker of the MBO (Fig. 2C, D) [7,29]. We detected a group of

Foxb1-expressing cells apposed to the caudal side of the branching

point (arrowhead in Fig. 2D). To elucidate the relation between

the Pax6-expressing and the Foxb1-expressing cells around the pm

branching point, we performed double immuno-staining for beta-

galactosidase and Pax6 on E18.5 Foxb1::tau-lacZ heterozygous

brains [7] (beta-galactosidase detection indicates Foxb1 expression

and the tau-beta-galactosidase fusion protein is localized to the

corresponding axons) (Fig. 2E). The results showed a group of

Pax6-positive cells and Foxb1-positive cells (arrowhead in Fig. 2E)

in the caudal side of the branching point. Closer observation at

higher magnification (Fig. 2F) revealed that marker expression was

mutually exclusive—no green labeled cell somata (Foxb1-positive)

(white arrowheads in Fig. 2F) had red nuclei (Pax6-positive) (white

arrows in Fig. 2F).

The Foxb1-expressing cells originate in the MBO
Since Foxb1-positive and Pax6-positive cells are distinct

populations, we asked if they have different origins. Detection of

Foxb1 expression on wild type embryonic brains at E10.5 (Fig. 3A)

Figure 2. A complex and specific cell aggregate around the bifurcation point. A–D) In situ hybridization for Pax6 (A, B) and Foxb1 (C, D) on
sagittal sections of wild type E18.5 brains (rostral to the left). (B) and (D) show high magnification details of (A) and (C). Black arrowheads, specific cell
groups around the branching point. ac, anterior commissure; CTX, cortex; PT, pretectum. B) Pax6-expressing cells are also found forming a trail under
the mth (black arrow) continuous with the PTh/VTh (asterisk), between the mth axons (white arrowhead), and in the area between mth and mtg
(white arrow). E, F) Confocal pictures of antibody detection of Pax6 (red cell nuclei) and beta-galactosidase (green cell bodies; proxy for Foxb1
expression) on a sagittal section of an E18.5 Foxb1-tau-lacZ heterozygous brain. Blue labeling, DAPI nuclear staining. E) Double labeling of the
branching point shows a compact group of Pax6- and Foxb1-positive cells (arrowhead). F) Foxb1-positive (arrowheads, green cell bodies) and Pax6-
positive (arrows, red nuclei) cells are distinct from each other. Asterisk in A, B, C: PTh/VTh. Scale bars 100 micrometers.
doi:10.1371/journal.pone.0020315.g002

Specific Cell Group Elicits Collateral Branching
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revealed strong expression in the MBO [29] as well as in a

‘‘column’’ spreading dorsally from this nucleus (arrowheads in

Fig. 3A) and in a more dorsal, looser group of cells (arrows in

Fig. 3A). This column of Foxb1-expressing cells expanded dorsally

through E14.5 (Fig. 3B) and E16.5 (Fig. 3C), finally reaching the

boundary between thalamus and PTh/VTh in the dorsal

diencephalon (dotted line in Fig. 3C). The Foxb1-positive cell

column seemed to be apposed to the lateral side of the pm axons

(Fig. 3B, C).

Sagittal sections (Fig. 3D, E) confirmed that the labeled cells

form a numerous group along the pm and mtg, and there is a

looser group more dorsally positioned at the future branching

point (arrow in Fig. 3D, E).

The Pax6-expressing cells originate in the PTh/VTh and
are missing in Pax6-deficient brains

To elucidate the origin of the Pax6-expressing cells we used the

Pax6-lacZ mouse line, which carries a null mutation of Pax6

followed by lacZ as reporter [19] (see also Table 1). In E15.5

heterozygotes, a trail of beta-galactosidase-positive cells can be

followed from the PTh/VTh to a specific point of the rostral side

of the pm, where they aggregate (arrowhead in Fig. 4A). By E16.5,

in heterozygous brains the trail of beta-galactosidase-positive cells

connecting PTh/VTh and pm is still evident (Fig. 4B). In addition

to the labeled cell group on the rostral side of the pm (arrowhead

in Fig. 4B), a second group is forming on the caudal side (arrow in

Fig. 4B). Because of the close proximity between the cells and the

branching point, we hypothesized that they play a role in the

branching process. Since mice deficient in Pax6 lack a PTh/VTh

[27], we first asked if the branching point cells are also absent in

these mutants. Homozygous brains at E15.5 showed only very few

reporter-expressing cells in this region (arrowheads in Fig. 4C),

and none of them reached the pm. Homozygotes at E16.5 showed

again few labeled cells and none of them was situated next to the

pm (arrowhead in Fig. 4D). Other PTh/VTh marker gene, Arx

[30] (Fig. 4E) also labels the trail of cells between PTh/VTh and

pm as well as a cell group around the pm branching point.

Examination of the expression pattern database www.genepaint.

org (in the public domain) in search for other markers of this

region suggested that the cannabinoid receptor Cnr1 [31] could be

a good candidate. Our in situs confirmed this, since Cnr1 is

expressed like Arx and Pax6 in this region (Fig. 4G). Both Arx and

Cnr1 confirmed the lack of PTh/VTh cells around the pm in the

mutant (Fig. 4F, H).

We concluded that the branching point cells are an extension of

the PTh/VTh and that, like the rest of the PTh/VTh, they are

absent in the Pax6 mutant.

Mammillary axons growing towards the thalamus in the
Pax6 mutant

We then analyzed the mammillary axonal tree in wild type and

in the Pax6 mutant by injecting DiI tracer into the MBO (Fig. 5A,

B). In the wild type, the mth, mtg and mtc were easy to recognize

(Fig. 5A). In the mutant diencephalon, the mth was absent.

Instead, there was a number of axons apparently originated in the

branching point and sometimes oriented towards the thalamus

(arrowheads in Fig. 5B) which are however less in number and of

shorter length than the axons of the wild type mth. They also lack

the characteristic morphology of the early mth axons (thin, beaded

axons weaving their way around local cell bodies that leave

‘‘holes’’ in an otherwise compact bundle) [7,28]. We termed them

‘‘problem axons’’ and set out to investigate their origin.

The problem axons develop earlier than the mth
To label the mammillary axons unambiguously, we crossed the

Pax6-deficient Small eye (Sey) mutant, carrying no reporter gene,

Figure 3. Foxb1-expressing cells migrate from the MBO along the pm. A) Foxb1 expression on a transverse section of a wild type E10.5 brain.
Arrowheads, column of Foxb1-expressing cells originated in the MBO and migrating dorsally, preceded by a pioneer group (arrow). B, C) Foxb1
expression on transverse sections of wild type E14.5 (B) and E16.5 (C) brains. Left side shows Nissl counterstaining, right side shows dark field. Dotted
line in C, E, external medullary lamina (zona limitans). D, E) Foxb1 expression in a sagittal section of an E14.5 wild type brain. (D) shows Nissl
counterstaining, (E) shows dark field. Arrow, pioneer group of Foxb1-expressing cells. Asterisk in C, D: PTh/VTh. Scale bars A, B, C: 50 micrometers; E:
25 micrometers.
doi:10.1371/journal.pone.0020315.g003

Specific Cell Group Elicits Collateral Branching
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[17,27] with the Foxb1-tau-lacZ transgenic line and used anti-beta-

galactosidase antibody to compare the axons of Foxb1-tau-lacZ

heterozygous embryos (normal embryos) (Fig. 5C, D, G) (see also

Table 1) to those of double mutant embryos (Foxb1-tau-lacZ

heterozygous/Sey homozygous) (Fig. 5E, F, H).

Analysis of Foxb1-tau-lacZ heterozygotes at E18.5 showed that

the mth and mtg separated from each other at right angles leaving

a broad area between them occupied by mtc axons not forming an

obvious bundle (Fig. 5C, D). Some mtc axons follow the mth for a

short stretch to separate later at right angles, while others spread

from the beginning over a wide area (Fig. 5C and see Fig. 6I

below). Some of these loose axons spread over the ‘‘decision area’’

between mth and mtg, were oriented caudo-dorsally towards the

tectum (Fig. 5D, arrowhead) while others followed originally a

dorsal trajectory first, before turning sharply into the caudal

direction (Fig. 5D, arrow). In the Pax6 mutant at E18.5 (Fig. 5E,

F), some of the problem axons followed a caudal path similar to

some of the non-bundled axons found in the wild type (Fig. 5F,

black arrow and arrowhead). There was however a number of

short axons extended in a dorsal and rostral direction towards the

thalamus (Fig. 5F, red arrow). We asked if these short, thalamus-

oriented axons were also present in the wild type, but hidden by

the mth. To solve this question we analyzed mutants at an earlier

age, E16.5, when there is no mth yet in the normal brain (Fig. 5G,

H). Indeed the normal brain at that age showed also some axons

growing in the direction of the thalamus (red arrow in Fig. 5G),

and these appeared to be more numerous in the Pax6 mutant at

the same age (red arrows in Fig. 5H).

We concluded that, in wild type as well as in Pax6 mutant brains

there is a number of short mammillary axons extended in the

direction of the thalamus as well as axons coursing dorsal/caudal

before the mth is formed at all.

The mammillary axonal tree has three branches
The realization that there are some mammillary axons

unaccounted for in the current descriptions of the mammillary

axonal tree, prompted us to examine the normal development of

this fiber system using Foxb1-tau-lacZ heterozygotes. Foxb1 is

specificallly expressed by neurons of the MBO as well as by the

dorsal premammillary nucleus (DPM) [29]. The first pm axons can

be seen at E10.5 growing towards the tegmentum (Fig. 6A, B) [32].

At E14.5 some axons from the pm start growing towards the

tectum—they form the mtc (Fig. 6C, D). A pronounced bend in

the pm is visible at E14.5 (Fig. 6C, D) and increases through E16.5

(Fig. 6E, F) and E18.5 (Fig. 6G, H). It is precisely in this bend that

the mth develops. Although the first sprouts of the mth can be seen

at E17.5 (not shown), its full extent however is only visible from

E18.5 on (Fig. 6G, H), more than a full week later than the earliest

pm axons (Fig. 6A, B). In agreement with the beta-galactosidase

data and our previous results [7], at E18.5 three components of the

mammillary axonal tree (mtc, mtg and mth) can be anterogradely

visualized by injecting DiI tracer in the MBO (Fig. 6I). This

confirms that the mammillary body generates not two but three

axonal bundles (Fig. 6J, K).

The ‘‘problem axons’’ in the Pax6 mutant are probably
misdirected mtc axons

Our observations suggested that the problem axons seen in

the Pax6 mutant are not the product of pm branching, but

simply an increased number of the mtc axons also found in

normal animals. In that case, they would not be the product of a

branching event but simply misdirected axons that set out in the

wrong path and are unable to proceed (schematized in Fig. 7A).

We reasoned that, if in the Pax6 mutant there is an increase in

the number of mtc axons inappropriately navigating towards the

thalamus, then there must be a smaller number of properly

oriented mtc axons. We therefore counted the mtc axons and

the problem axons in Foxb1-tau-lacZ heterozygous and in double

mutants (Foxb1-tau-lacZ heterozygous/Sey homozygous). To

prevent some mtc axons from being hidden by the mth, we

performed the countings at E16.5, when the mth has not yet

been formed.

Table 1. Foxb1 and Pax6: Mutants and Phenotypes.

Mutant
Null mutant
for: Reporter Gene Problem axons mth pm Foxb1 BPC1 Pax6 BPC1

Pax6 +/lacZ b-gal2 in PTh/VTh4 and
Pax6-BPC1

very few yes --- --- yes

Pax6 lacZ/lacZ Pax6 b-gal2 (in the sparse
remnants of PTh/VTh4)

abundant no --- --- no

Pax6Sey/Sey Pax6 none abundant (DiI) no (DiI) loose (DiI) --- ---

Foxb1-tau-lacZ +/2 b-gal2 in mam3 axons and
Foxb1-BPC1

very few yes tightly bound compact yes

Foxb1-tau-lacZ +/2 Pax6 Sey/Sey Pax6 b-gal2 in mam3 axons and
Foxb1-BPC1

abundant no loose loose no

Foxb1-tau-lacZ 2/2 Pax6 Sey/Sey Foxb1 Pax6 b-gal2 in mam3 axons and
Foxb1-BPC1

very abundant no very loose very loose no

Foxb1-tau-lacZ 2/2 Foxb1 b-gal2 in mam3 axons and
Foxb1-BPC1

very few yes tightly bound compact yes

The mutants are listed in the order they appear in the Results section. Two different Pax6 mutants, with and without reporter were used. The Pax6-driven reporter (Pax6-
lacZ) labels the PTh/VTh and Pax6-BPC, but not the mammillary body, axons or Foxb1-BPC. The Pax6 Sey mutant carries no reporter and its phenotype is analyzed by DiI
axonal tracing. The Foxb1-tau-lacZ mouse carries a Foxb1-driven reporter labeling the mammillary body and axons and the Foxb1-BPC. The pm and Foxb1 BPC have not
been examined in the Pax6-lacZ mutant because they express neither Pax6 nor the Pax6-driven lacZ reporter.
1BPC: Branching Point Cells;
2b-gal: beta-galactosidase;
3mam: mammillary;
4PTh/VTh: Prethalamus/Ventral thalamus.
doi:10.1371/journal.pone.0020315.t001

Specific Cell Group Elicits Collateral Branching

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e20315



Our results show (Fig. 7B) that the Foxb1-tau-lacZ heterozy-

gotes (i.e. normal animals) have a certain small number of

problem axons [33], confirming our previous observation

(Fig. 5G, red arrow). Sey/Sey mutants displayed significantly

more problem axons than normal animals (Fig. 7B, compare

white bars). Next we counted the mtc axons in the same samples

and found that the Sey/Sey mutant had significantly less mtc

axons than the normal animals (Fig. 7B, compare black bars),

and that the difference in number approximately matched the

difference found in problem axons. These results support the

hypothesis that the problem axons are misdirected mtc axons

and not the product of pm branching (schematized in Fig. 7C).

Since Pax6 is not expressed by the MBO, the effect is non cell-

autonomous and caused by the scattered cells, which control

navigation in this area.

The pm does not branch in Pax6-deficient mutants
In order to directly confirm that there is no morphological

branching of the pm axons in the Sey/Sey mutant, we took resource

to 3-D confocal microscopy imaging of our DiI data. In the wild

type E18.5 brain, at low magnification, it was possible to observe

images of axonal bifurcation (arrowheads in Fig. 7D) which could

be confirmed at high magnification (arrowhead in Fig. 7E).

The same technique made obvious that the axons that can be

seen in Sey/Sey at right angles with the principal mammillary (red

arrows in Fig. 7F) do not arise from bifurcations. In wild type

brains, at earlier stages, the pm axons show swellings or varicosities

from where the branches arise (not shown). Later, axons become

thicker and the varicosities disappear (Fig. 7D, E). Interestingly, in

the Sey/Sey mutant brain, which does not have a mammillotha-

lamic tract, the axonal varicosities were still present at this age, but

no branches where visible (Fig. 7G). We concluded that the Pax6

mutant shows a specific non-cell autonomous defect in pm

branching.

Normal mth outgrowth in mutants with severe thalamic
phenotypes and intact PTh/VTh

Pax6 is expressed in the early dorsal thalamus, target of the mth.

If target attraction was essential for pm branching, differentiation

defects in the Pax6-deficient thalamus [34] could contribute to the

branching defect. If on the other hand target attraction was not

essential for pm branching, mutant mouse brains showing an

altered thalamus but preserving a normal PTh/VTh (together

with branching point cells) should have a mth. The gene Lrp6

encodes an important co-receptor of Wnt ligands expressed in the

thalamus [35,36]. Accordingly, the thalamus of Lrp6 mutant mice

is dramatically defective and unable to develop thalamocortical

efferents [37]. Our analysis shows, however, that the Lrp6 mutant

PTh/VTh expresses Pax6, and Pax6-expressing branching point

cells are present in the appropriate position around the pm

(Fig. 8A). Gbx2 is a transcription factor gene essential for thalamus

differentiation, and Gbx2 mutant mice show severely impaired

thalamic development and absence of thalamocortical axons [38–

40]. Pax6 was expressed in the Gbx2 mutant PTh/VTh and there

were Pax6-expressing cells in the cell groups around the pm

branching point (Fig. 8B). Consistently, DiI tracings showed that

the pm branches into a mth of normal appearance in Lrp6 mutants

(Fig. 8C) and Gbx2 mutants (Fig. 8D). Together, these results

suggest that an intact thalamus is not a precondition for the initial

outgrowth of mth axons for as long as the local interactions (e.g.

with the Pax6-expressing branching point cells) are maintained.

Axonal fasciculation and cell aggregation impaired in the
Foxb1/Pax6 double mutant

Foxb1::tau-lacZ homozygotes show a mth navigational phenotype

that has been analyzed [7]. They showed however no alteration in

mtg or mtc. Double homozygous brains for Foxb1::tau-lacZ and Sey,

however, showed a slight increase in the number of misguided mtc

axons (former ‘‘problem axons’’). This increase was statistically

significant (Fig. 9A) (see also Table 1) and histologically visible

(compare Fig. 5E, F with Fig. 9B, C red arrows) but not large

enough to be reflected in a significant decrease of mtc axons

(Fig. 9A). We then used sections along the dotted line in Fig. 9B to

analyze the mtg. While in single Foxb1 homozygotes the mtg

consisted of one compact axonal bundle (arrowhead in Fig. 9D), in

Foxb1 heterozygous/Sey homozygous brains the mtg was subdi-

vided in a number of bundles (arrowheads in Fig. 9E). Double

homozygotes showed an mtg disgregated into numerous smaller

axonal fascicles (arrowheads in Fig. 9F). The Foxb1-expressing

Figure 4. Pax6-expressing cells are continuous with the PTh/
VTh and are missing in the Pax6 mutant. A–D) Beta-galactosidase
antibody detection on sagittal sections, rostral to the left. Ages and
genotypes as indicated. A trail of Pax6-expressing cells (arrowheads in
A, B) from the PTh/VTh lands on the pm branching point at E15.5
(arrowhead in A). At E16.5 there is a second labeled cell group on the
caudal side (arrow in B). In the Pax6 mutant these cells (arrowheads in C,
D) are very scarce and do not contact the pm. E–H) In situ hybridization
detection of PTh/VTh markers on sagittal sections. Both Arx (E) and Cnr1
(G) expression label the branching point cells continuous with the PTh/
VTh (arrowheads in E, G). Both markers are absent in the Pax6-deficient
diencephalon (F, H). Asterisk in A, B, E, G: PTh/VTh. Scale bars 100
micrometers.
doi:10.1371/journal.pone.0020315.g004
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branching point cells showed also progressively impaired aggre-

gation (Fig. 9D through F).

We concluded that Foxb1 has a role in the control of cell

adhesion and axonal fasciculation. This role could be non cell-

autonomous (through loss-of-function in the Foxb1-expressing

branching point cells) or cell autonomous (since the neurons

originating the mtc and mtg axons express Foxb1). In this way

Figure 6. Stepwise development of the three components of
the mammillary axonal tree. A, B) Beta-galactosidase activity
detection in the flat-mounted right side of an E10.5 Foxb1::Cre x
ROSA26R heterozygous brain showing the first axons (arrwoheads in B)
from the MBO navigating towards the tegmentum. Rostral to the left.
(B) shows a high magnification detail of (A). ov, optic vesicle; TL,
telencephalon. C–H) Antibody detection of beta-galactosidase on
sagittal sections of Foxb1-tau-lacZ heterozygous brains. D, F, H show
high magnification details of C, E, G, respectively. The dotted line in C, E,
G marks the boundary between PTh/VTh and Th. C, D) The first mtc
axons detach from the pm at E14.5. E, F) At E16.5 the pm acquires a
pronounced bend marking the origin of the mtg. G, H) The mth appears
at E18.5, branching from the bend in the pm observed at E16.5. I) DiI
tracing shows the components of the mammillary axonal tree at E18.5.
J) Diagram of MBO efferent connections to diencephalon and
brainstem. K) Diagram of mammillary efferent axons. Grey, dorsal
premammillary axons. Black, axons from the MBO proper. Asterisk in C,
E, G: PTh/VTh. Scale bars: C, E, 25 micrometers; G, 50 micrometers; D, F,
H, I, 100 micrometers.
doi:10.1371/journal.pone.0020315.g006

Figure 5. Thalamus-oriented axons in the Pax6-deficient
diencephalon. A, B) DiI tracing on sagittal sections of E18.5 wild type
(A) and Pax6 homozygous (B) embryos. In the mutant, a few short axons
(arrowheads in B) can be seen in place of a mth. C–H) Antibody
detection of beta-galactosidase on sagittal sections, ages and
genotypes as indicated. D, F are high magnification details the frames
in C, E. C, D) Some mtc axons navigate directly towards the tectum
(arrowhead in D) and others course towards the thalamus, then sharply
change direction (arrow in D). E, F) In the Pax6 mutant, similar mtc

axons can be seen changing course towards the tectum (black arrow in
F), others grow straight dorsally (arrowhead in F) and finally others grow
rostrally in the direction of the thalamus (red arrow in F). 3V, third
ventricle. G, H) At E16.5, before the mth appears, there are mtc axons in
Pax6 wild type (G) and mutant (H) (arrows and arrowheads as in F).
Scale bars 100 micrometers.
doi:10.1371/journal.pone.0020315.g005
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Foxb1 cooperates with a non-cell autonomous role of Pax6 to

guarantee the appropriate anatomy of the mammillary tree.

Discussion

How does the immediate cellular environment contribute to the

formation and navigation of different fiber bundles in a complex,

stereotyped axonal tree? While in vitro evidence suggests that the

local environment could secret a variety of factors eliciting

branching (see below), no example of a group of identified cells

has been found which is essential for the formation of a specific

axonal bundle by collateral branching in a certain system. We

have identified an elaborate arrangement of specific cell

populations migrating from different sources and converging

around the branching point of a major forebrain axonal tract, the

pm. We offer several kinds of evidence (digital reconstruction of

confocal images, axon counting, analysis of mutants with

differential phenotypes) pointing to an indispensable role of these

cells in collateral branching and navigation. This concept

complements previous reports of axonal guidance supported by

surrounding cells that serve as guideposts [41].

Several cell groups organize around the pm branching
point

We show that migration from the PTh/VTh as well as from the

hypothalamus results in several groups of cells arranged around the

future pm branching point. Some of the Pax6-expressing cells could

arise in a Pax6-expressing domain of the midbrain neuroepithelium

[26]. Particularly curious is the cell group at the caudal side of the

pm branching point, formed as the meeting point of Foxb1-

expressing and Pax6-expressing cells originated respectively in the

ventral and dorsal diencephalon. Although the diencephalon is the

source of extensive non-radial migrations across dorso-ventral and

rostro-caudal boundaries [16], formation of such cell groups of

heterogeneous origin is not obvious from current paradigms of

hypothalamic development [42–44]. Arranged along axonal

bundles, some of the Pax6-expressing cells could act as guideposts

for mth axons as shown for other systems [45–47] and the Foxb1-

expressing cells could fulfill a similar role for pm axons.

Pax6-expressing cells and collateral branching
We show 1) that the Pax6-positive cells that surround the pm

branching point are absent in Pax6-deficient brains and 2) that this

absence is ensued by major alterations in the axonal tree. We have

investigated these alterations with a specific genetic marker of

mammillary axons (the Foxb1::tau-lacZ allele) and digital recon-

structions of confocal microscopy data to show unambiguously

that the pm axons do not branch in the mutant. Previous

descriptions of a number of pm collaterals in Sey/Sey brains [33,48]

probably result from unintentional co-labeling (DiI tracing or

silver impregnation) of the mtc when attempting to label MBO

projections.

Our results strongly suggest that close contact with the Pax6-

expressing cells plays a role in fulfilling the potential of the

Figure 7. The problem axons in the Pax6-deficient dienceph-
alon are mammillotectal. A) Diagram showing the component axons
of the MBO in wild type (top) and Pax6 mutant (bottom). In the wild
type in blue, axons from the dorsal premammillary nucleus. In the
mutant, problem axons are labeled by a question mark. B) Problem
axons increase and mtc axons decrease in the Pax6 mutant. Mean +/2
SD; (**) P,0.01. C) Interpretation of the axon counting results in (B). The
problem axons (red) are mtc axons initially directed dorsally and unable
to turn caudally towards the tectum. D–G) 3D reconstruction of
confocal images from DiI-traced pm branching point of wild type (D, E)
and Pax6-deficient (F, G) E18.5 brains at lower (D, F) and higher (E, G)
magnification. D, E) Obviously bifurcated axons can be found in the wild
type branching point. F, G) Mutant axons show the characteristic beads
but no branching out of them.
doi:10.1371/journal.pone.0020315.g007

Figure 8. Mammillary branching is present in several thalamic
mutants. A, B) Pax6 in situ hybridization shows that PTh/VTh and
branching point cells are present in the Lrp6 mutant (A) and the Gbx2
mutant (B) brains at E18.5. C, D) DiI tracing demonstrates presence of a
mth in these mutants (C, D). Scale bars 100 micrometers.
doi:10.1371/journal.pone.0020315.g008
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initial branching bud. This agrees with previous work showing

that direct physical contact with growth factor-soaked beads

elicits branching in cultured axons [49,50] (see [51] for a review)

and that contact with nearby dendrites enhances collateral

branching of cortico-spinal axons [4]. That humoral factors,

including those locally secreted, can elicit axonal branching is

well established (see for instance [52]) and therefore an altered

Pax6-deficient thalamus [34,46,53,54] could cause the pm

branching failure through lack of target attraction as shown in

other models [2,55,56]. Our finding that a mth is present in

mutants showing severe thalamic differentiation defects while

preserving Pax6-expressing cells around the pm branching point

(Fig. 8) rather reinforces the notion that, in this model,

branching and initial outgrowth depend on the local influence

of a specific cell group.

Pax6, Foxb1 and adhesion
Adhesion proteins have a role in collateral branching [57] and

specifically in mth development [58]. Abundant literature shows

that a number of adhesion-related genes are downregulated in Sey/

Sey brains: cadherin 4 [45,59], L1cam [60], alpha 5 beta 1 integrin [61],

olfactomedin 3 (optimedin) [62], delta catenin [63], tenascin C [64],

semaphorin-3c and semaphorin-a5 [65]. Intriguingly, Pax6 seems to be

involved in the pruning of inappropriate collateral branches of

cortical pyramidal neurons [66]. Finally, previous analyses of

Pax6-deficient phenotypes support a function for this gene in

contact guidance of pioneer axons in the forebrain [45–47,65,67].

In contrast, Fox transcription factors have not been associated

with adhesion gene expression [68,69], with the possible

exceptions of Vcam1 [70] and Cdh7 [71].

The mtc
An interesting observation made previously by us [7] and

confirmed here is the existence of the mtc. Mammillo-tectal axons

homologous to our mtc have been traced in the adult rat [8].

Specific expression of Foxb1 in the dorsal premammillary nucleus

[7,29] as well as in the MBO evidences a molecular kinship of these

nuclei and supports the proposed inclusion of the dorsal

premammillary in an extended definition of the MBO [8]. The

mtc bundle should be included in any discussion of the formation of

the mammillary axonal tree. We show that non cell-autonomous

Pax6 expression is essential for mtc navigation. Intriguingly,

although the abundant netrin 1-expressing cells in the mammillary

region do not express Pax6, their position around the mammillary

axons is dramatically altered in Pax6 mutant brains [33,67]. This

suggests that the Pax6-expressing cells of the PTh/VTh secret a not

yet identified factor contributing to the appropriate positioning of

the netrin 1-expressing cells and, through this effect, they could

influence also mammillary axonal navigation indirectly.

Foxb1 and Pax6 in the control of mammillary axonal
organization

The double homozygotes demonstrate a Foxb1-regulated

component in mtc and mtg navigation, probably mediated by

Figure 9. Axonal fasciculation and cell aggregation impaired in the Foxb1/Pax6 double mutant. A) Slight increase in problem axons but
no detectable change in mtc axons in the Pax6 mutant. White column, problem axons; black column, mtc axons. Mean +/2 SD; (*) P,0.05; n.s. not
significant. B, C) Beta galactosidase detection on sagittal section of double Foxb1-tauLacZ/Sey homozygote. The problem axons (red arrow) seem
more numerous as in single Sey homozygotes. The dotted line in (B) indicates the approximate plane of section of D, E, F. (C) shows a high
magnification detail of the image in (B). D–F) Beta galactosidase detection on sections along the dotted line in (B) (left side is shown) through the
branching point of E18.5 brains (genotypes as indicated). In Foxb1 single homozygotes (D) there is a mth (branching takes place), the mtg is not
subdivided into fascicles and the Foxb1 branching point cells are tightly aggregated. In the double mutant (F), the problem axons (red arrow in E, F)
are longer and more numerous, the Foxb1-expressing branching point cells (Foxb1 BPC in Fig. 9D–F) are less compactly aggregated and the mtg is
divided in more fascicles (arrowheads) as in the Foxb1 heterozygote/Sey homozygote (E). Scale bars 100 micrometers.
doi:10.1371/journal.pone.0020315.g009
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proteins involved in fasciculation. Since the Foxb1-expressing

branching point cells are still present in the Foxb1-deficient brain,

and the gene is also expressed by the neurons originating the

affected axons, the role of this transcription factor could be or not

cell-autonomous. A non cell-autonomous role has been suggested

for the mth navigational phenotype found in the Foxb1 mutant [7].

Conclusions
This work uncovers a series of complex cell migration events

giving rise to several specific groups of cells of different origin

essential for the formation and organization of an axonal

crossroads linking hypothalamus, thalamus, midbrain and hind-

brain. We show that many of these cells express Pax6, depend on

expression of this gene for their origination, and are necessary for

the formation of specific axonal collaterals through branching of

the pm. Finally, we show cooperation of Pax6 and Foxb1 in mtc

and mtg navigation. This work offers new insights into the

development of a specific cellular environment that favors the

formation and navigation of specific axonal collaterals.
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