
Universal Entropy of Word Ordering Across Linguistic
Families
Marcelo A. Montemurro1*, Damián H. Zanette2

1 The University of Manchester, Manchester, United Kingdom, 2 Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Centro Atómico Bariloche and Instituto
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Abstract

Background: The language faculty is probably the most distinctive feature of our species, and endows us with a unique
ability to exchange highly structured information. In written language, information is encoded by the concatenation of basic
symbols under grammatical and semantic constraints. As is also the case in other natural information carriers, the resulting
symbolic sequences show a delicate balance between order and disorder. That balance is determined by the interplay
between the diversity of symbols and by their specific ordering in the sequences. Here we used entropy to quantify the
contribution of different organizational levels to the overall statistical structure of language.

Methodology/Principal Findings: We computed a relative entropy measure to quantify the degree of ordering in word
sequences from languages belonging to several linguistic families. While a direct estimation of the overall entropy of
language yielded values that varied for the different families considered, the relative entropy quantifying word ordering
presented an almost constant value for all those families.

Conclusions/Significance: Our results indicate that despite the differences in the structure and vocabulary of the languages
analyzed, the impact of word ordering in the structure of language is a statistical linguistic universal.
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Introduction

The emergence of the human language faculty represented one

of the major transitions in the evolution of life on Earth [1]. For

the first time, it allowed the exchange of highly complex

information between individuals [2]. Parallels between genetic

and language evolution have been noticed since Charles Darwin

[3] and, although there is still some debate, it is generally accepted

that language has evolved and diversified obeying mechanisms

similar to those of biological evolution [4]. There may even be

evidence that all languages spoken in the world today originated

from a common ancestor [5]. The extant languages amount to a

total of some 7,000, and are currently divided into 19 linguistic

families [6]. Within the Indo-European family some of the

languages differentiated from each other not long after the end

of the last glacial age [7], which pushes cross-family divergences

far into prehistoric times. The evolutionary processes that acted

since then have led to a degree of divergence that can make

distantly related languages totally unintelligible to each other.

Notwithstanding the broad differences between languages, it has

been found that linguistic universals exist both at the level of

grammar and vocabulary [8,9,10].

Written human languages encode information in the form of

word sequences, which are assembled under grammatical and

semantic constraints that create organized patterns. At the same

time, these constraints leave room for the structural versatility that

is necessary for elaborate communication [11]. Word sequences

thus bear the delicate balance between order and disorder that

distinguishes any carrier of complex information, from the genetic

code to music [12,13,14]. The particular degree of order versus

disorder may either be a feature of each individual language,

related to its specific linguistic rules, or it may reflect a universal

property of the way humans communicate with each other.

A rigorous measure of the degree of order in any symbolic

sequence is given by the entropy [15]. The problem of assigning a

value to the entropy of language has inspired research since the

seminal work by Claude Shannon [16,17,18,19]. However, to

comprehend the meaning of the entropy of language it is

important to bear in mind that linguistic structures are present

at various levels of organization, from inside individual words to

long word sequences. The entropy of a linguistic sequence

contains contributions from all those different organizational

levels.

In our analysis, we considered individual words as the most

elementary units of linguistic information. Therefore, the first

organizational level in a linguistic sequence is given by the

distribution of frequencies with which different words are used.

Zipf’s law [20] states that if the word frequencies of any sufficiently
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long text are arranged in decreasing order, there is a power-law

relationship between the frequency and the corresponding ranking

order of each word. Moreover, this relationship is roughly the

same for all human languages. Zipf’s frequency-rank distribution,

however, does not bear any information about the way in which

words are ordered in the linguistic sequence, and would be exactly

the same for any random permutation of all the words of the

sequence. A second organizational level is then determined by the

particular way in which individual words are arranged. Discrim-

inating between the contributions of those two levels of

organization can add relevant insights into statistical regularities

across languages. The present paper is focused on assessing the

specific impact of word ordering on the entropy of language. To

that end, we estimated the entropy of languages belonging to

different linguistic families. Our results show that the value of the

total entropy depends on the particular language considered, being

affected by the specific characteristics of grammar and vocabulary

of each language. However, when a measure of the relative

entropy is used, which quantifies the impact of word patterns in

the statistical structure of languages, a robust universal value

emerges across linguistic families.

Results

Empirical evidence for a quantitative linguistic universal
We analyzed eight corpora from five linguistic families and one

language isolate, comprising a total of 7,077 texts. Texts were

considered for the analysis as sequences of tokens. Each token was

a word or, depending on the language, an equivalent unit of

semantic content. In what follows, we will refer as ‘word’ to any of

those basic linguistic units.

Due to the presence of long-range correlations in language

[21,22] it is not possible to compute accurate measures of the

entropy by estimating block probabilities directly. More efficient

nonparametric methods that work even in the presence of long-

range correlations are based on the property that the entropy of a

sequence is a lower bound to any lossless compressed version of it

[15]. Thus, in principle, it is possible to estimate the entropy of a

sequence by finding its length after being compressed by an

optimal algorithm. In our analysis, we used an efficient entropy

estimator derived from the Lempel-Ziv compression algorithm

that converges to the entropy [19,23,24], and shows a robust

performance when applied to correlated sequences [25] (see

Materials and Methods).

For every text in the corpora two basic quantities were

estimated. First, we computed the entropy of the original word

sequence, H, which contains information about the overall order

in the sequence. To quantify the contribution of word patterns

that cannot be explained just by chance, we considered a random

version of the text where linguistic order was absent. We achieved

this by shuffling all the words in the original text in a totally

random fashion. The typical entropy of the shuffled texts, denoted

as Hs, can be computed by direct methods (see Materials and

Methods). By destroying linguistic structures at the level of word

ordering, the degree of disorder in the sequence is increased. Thus,

an estimation of the entropy of the disordered sequence typically

yields a higher value. Therefore, the entropy of the original

sequence can be written as H~Hs{Ds, where the quantity Ds is

the decrease in entropy due to the ordering of words with respect

to that contributed by their frequencies alone. The relative entropy

Ds can thus be used to quantify word ordering.

In Figure 1 we show the distribution of the entropy of individual

texts obtained for three languages belonging to different linguistic

families. In each of the upper panels, the rightmost distribution

corresponds to the entropy of shuffled texts. The central

distribution in each panel corresponds to the entropy of the

original texts. This entropy contains contributions both from the

words’ frequencies regardless of their order and from the

correlations emerging from word order. Note that the displace-

ment between the two distributions is only a consequence of word

ordering. Finally, the leftmost distribution in the upper panels of

Figure 1 corresponds to the relative entropy Ds between the

original and shuffled texts in each language.

For the three languages considered in Figure 1, the

distributions of the relative entropy Ds is narrower than those

of the entropies H and Hs, and they all seem to peak close to the

same value. To verify whether this is the case for other

languages as well, we computed the average of the three

quantities, H, Hs, and Ds, for each of the eight corpora. The

results are shown in Figure 2A. Due to grammar and vocabulary

differences, the entropies of real and shuffled texts show large

variability across corpora. However, their difference remains

bounded within a narrow range around 3.3 bits/word across

corpora and linguistic families (see also Table 1). For example,

the language with the largest entropy for the random texts was

Finnish, with average entropy of 10.4 bits/word while, at the

other end, Old Egyptian had on average 7 bits/word. However,

when we measured the relative entropy Ds in both languages to

quantify the impact of word ordering in their statistical structure

we found 3.3 bits/word for Finnish and 3.0 bits/word for Old

Egyptian. In other words, while the two languages showed a

difference of almost 50% in the value of the entropy, they only

differed by 10% in the value of the relative entropy. The relative

variability across all corpora, defined as the standard deviation

of entropies within each corpora divided by the mean entropy

across corpora, was 0.14 for Hs, 0.23 for H, and only 0.07 for

the relative entropy Ds. This suggests that beyond the apparent

diversity found between languages, the impact of word ordering

stands as a robust universal statistical feature across linguistic

families.

Universality of the Kullback-Leibler divergence
The analysis in the previous section shows that a measure of

relative entropy between a real text and a disordered version of it

where word order has been destroyed presents an almost constant

value across different linguistics families. We also considered

another mechanism to neglect linguistic structure in the texts that

makes it possible to relate the relative entropy to the Kullback-

Leibler divergence between real and random texts, and thus set

the analysis within the framework of standard information theory.

As before, the random text was a sequence of the same length as

the original one. Now, however, each place in this sequence was

assigned a word chosen at random with a probability given by that

word’s frequency in the original text. On the average over many

realizations of the sequence, the frequencies of each word in the

original text and in its random version were the same but, in the

latter, word ordering was determined by chance and lacked any

linguistic origin. All the possible random sequences generated from

the same original text defined an ensemble to which an entropy

measure can be assigned. That entropy, which we denote as Hr,

can be computed directly from the Zipf’s distribution of the

original text (see Materials and Methods). The values of Hr

obtained for the texts in our corpora were similar to the values

obtained for entropy of the disordered texts, Hs, as can be seen in

the lower panels of Figure 1, and comparing with the upper panels

of the same figure. Moreover, it can be shown that for the limit of

very long texts both Hr and Hs become identical (see Materials and

Methods).

Universal Entropy of Word Ordering
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Besides allowing a direct connection with the formalism of

information theory, this second model of the random texts

rigorously neglects all correlations between word positions. Within

this model, in fact, the probability of occurrence of sequence of

words is given as the product of the normalized frequencies of the

individual words (see Materials and Methods). We can also relate

the values of the entropy of the random texts in lower panels of

Figure 1 to the lexical diversity of the different languages. For

instance, highly inflected languages, like Finnish, have very

diversified vocabularies due to the multiplicity of word forms that

derive from a common root. This leads to a relatively flat Zipf’s

distribution with higher average entropy [26]. On the other hand,

less inflected languages such as English tend to have a steeper

Zipf’s distribution with lower entropy.

Proceeding in a similar way as in the previous section we

computed the difference Dr~Hr{H , which is an estimation of

the relative entropy, or Kullback-Leibler (KL) divergence,

between the original and random texts [15] (see Materials and

Methods). Repeating the analysis using this measure, we found

that the KL divergence across all the linguistic families

considered remains almost constant around 3.6 bits/word, as

shown in Figure 2B. This suggests that our main finding of a

linguistic universal related to the quantification of word ordering

does not depend on the precise way in which linguistic order is

neglected or destroyed.

Simplified language models
In order to gain insight on the origin and meaning of the

common value of the relative entropy, Dr, across linguistic families,

we studied a few simplified models where the interplay between

vocabulary and correlation structures can be understood either

analytically or numerically. We first studied a minimalist model

that can be completely solved analytically. It describes a language

with only two words as a first order Markov process. In this simple

case, the Zipf’s distribution is completely determined by the overall

probability of occurrence of one of the two words, which we call r.

The other parameter is the correlation length between words in a

linguistic sequence, l. Once the parameter r is fixed, the entropy

Hr can be computed. Details of the model are given in the

Materials and Methods section. In Figure 3A we show a contour

plot of the KL divergence as a function of the entropy of the

random sequence, Hr, and the correlation length. The contour

lines correspond to the curves of constant Dr. This shows that in

the two-word language model the constraint of maintaining a

constant value of the KL divergence requires that an increase in

correlation length is balanced by a decrease in the entropy of the

random sequence Hr.

The same behavior was found in a K-word language Markov

model, defined by K K{1ð Þ independent parameters (see

Materials and Methods for details). Despite the fact that for

Kw2 the model is not completely determined by the two

Figure 1. Entropy distributions for corpora belonging to three languages. Each panel shows the distribution of the entropy of the random
texts lacking linguistic structure (blue); that of the original texts (green); and that of the relative entropy (red). The three languages: Chinese, English,
and Finnish, were chosen because they had the largest corpora in three different linguistic families. In panels A, B, and C, the random texts were
obtained by randomly shuffling the words in the original ones. In panels D, E, and F, the random texts were generated using the words frequencies in
the original texts.
doi:10.1371/journal.pone.0019875.g001
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parameters l and r, it is still possible to evaluate the correlation

length and the entropy of the Zipf’s distribution. In Figure 3B, we

present a contour plot of the KL divergence as a function of those

two quantities for K~4. Each value in the plot represents an

average of the KL divergence over many realizations of a language

for the corresponding values of l and r. Overall, the plot shows

the same pattern found for the two-word language model in

Figure 3A. Similar results, not presented here, were obtained for

K~3. In K-word languages with K~2 to 4 therefore, keeping the

KL divergence constant requires that the entropy of the random

sequence increases when the correlation length decreases, and vice

versa.

Numerical analysis of K-word language Markov models

becomes prohibitively difficult for Kw4. However, we can still

use the insight gained from those models to test whether similar

behavior occurs in real languages. For the latter, the computation

of Hr is performed as discussed in the preceding section. The

estimation of the correlation length for words in real language is,

on the other hand, a difficult task, due to the limited sampling of

joint occurrences. Moreover, correlations in language decay as

power-law functions [21,27], which means that they have

significant values over considerable lengths, spanning up to

hundreds or thousands of words. In order to provide a quantitative

measure of correlations in real language, we used the Detrended

Fluctuation Analysis technique for estimating the fluctuation

exponent a [28,29,30]. This exponent is closely linked to the

structure of correlations (see Material and Methods for details): the

larger a the slower the decay of correlations.

We calculated the fluctuation exponent a for all the texts in the

corpora. Its distribution was only slightly variable across

languages, showing large overlapping areas. Thus, as a test for

the statistical significance of their differences, we estimated

significance values p for the medians of each pair of distributions,

and only kept those for which the null hypothesis of equal medians

could be rejected (p,1025, Mann-Whitney U-test [31]). In

Figure 4A we present the distributions for the four languages that

passed the statistical test. Figure 4B shows the fluctuation exponent

a as a function of average entropy of the random texts �HHr for each

of the languages considered in Figure 4A.

Figure 2. Entropy of eight languages belonging to five linguistic families and a language isolate (Indo-European: English, French,
and German; Finno-Ugric: Finnish; Austronesian: Tagalog; Isolate: Sumerian; Afroasiatic: Old Egyptian; Sino-Tibetan: Chinese). For
each language, blue bars represent the average entropy of the random texts, green bars show the average entropy of the original texts, and red bars
show the difference between the entropies for the random and original texts. Error bars indicate the standard deviation within each corpus. The
relative variability across all corpora, defined as the standard deviation divided by the mean of the entropy of the original texts was 0.23. (A) the
random texts used to compute Hs were obtained by shuffling the words’ positions; the relative variability across all corpora was 0.14 for the random
texts, and 0.07 for the corresponding relative entropy, Ds. (B) the random texts were generated using the words’ frequencies in the original texts. The
relative variability across all corpora, was 0.15 for the random texts, and 0.06 for the corresponding relative entropy, Dr.
doi:10.1371/journal.pone.0019875.g002

Table 1. Estimated entropy values for each of the corpora.

Language Hs Hr H Ds Dr

English 9.1 9.2 5.7 3.4 3.5

French 9.2 9.4 5.8 3.4 3.6

German 9.4 9.8 6.2 3.1 3.5

Finnish 10.4 10.9 7.1 3.3 3.8

Tagalog 8.1 8.5 5.1 3.0 3.4

Sumerian 6.8 7.5 3.5 3.4 3.9

Old Egyptian 6.7 7.0 3.7 3.0 3.3

Chinese 8.9 9.1 5.3 3.6 3.8

For each language the table shows the corresponding entropy values in bits/
word. The data correspond to the texts that stood the convergence test
described in Materials and Methods.
doi:10.1371/journal.pone.0019875.t001
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Bearing in mind the relation between the exponent a and the

decay of correlations, the plot in Figure 4B can be compared with

the contour plots of Figure 3. Real languages, for which the KL

divergence is approximately constant (see Figure 2B), define a

contour line with the same interdependency between correlation

and entropy as observed in the simplified model languages.

Discussion

We estimated the entropy for a large collection of texts

belonging to eight languages from five linguistic families and

one language isolate. Linguistic differences are reflected in

variations of the value of the entropy across languages. In

principle, for some of the languages considered, variability of

the direct entropy measures could be related to the specific

stylistic make up of each dataset. However, a large variability

was also observed within the group of European languages,

which were homogeneous in terms of styles, consisting mostly of

literature and some technical texts.

In order to assess the impact of correlations deriving from word

ordering, we studied the differences between the entropy obtained

from the original linguistic sequences and the entropy of random

texts lacking any linguistic ordering. While the entropy of a

symbolic sequence is well defined in the limit of infinite length, we

only considered texts for which our entropy estimators showed

convergence. This measure of relative entropy yielded an almost

constant value for all languages considered. This was observed

both when linguistic order was destroyed by disordering the words

and when a more formal model was used in which correlations

between words are ignored. Therefore, our evidence suggests that

quantitative effect of word order correlations on the entropy of

language emerges as a universal statistical feature.

Figure 3. Impact of word correlations in simplified models of language. Panels show curves of constant Kullback-Leibler divergence, Dr, as a
function of both the entropy of the random sequence, Hr, and the correlation length between words, l. Colors towards the violet represent lower
values of the divergence Dr. The divergence quantifies the impact of word correlations in the overall entropy of the texts. (A) Divergence Dr for a two-
word Markovian model of language computed analytically as described in Materials and Methods. (B) Average divergence corresponding to a
numerical simulation of 1011 realizations of a four-word Markovian language model.
doi:10.1371/journal.pone.0019875.g003

Figure 4. Word correlations and entropy in real languages. (A) Normalized histograms of the fluctuation exponent a computed using
Detrended Fluctuation Analysis (see Materials and Methods) for four languages. The medians of the distributions are statistically different (p,1025,
Mann-Whitney U-test computed over all possible pairs). (B) Average fluctuation exponent, �aa, as a function of the average entropy of the random texts,
�HHr, for the same languages as shown in panel A.
doi:10.1371/journal.pone.0019875.g004
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To understand the meaning of this finding we addressed two

simplified models of language in which we had control on their

structure. We estimated the impact of correlations in the structure

of these model languages as a function of the diversity of basic

symbols, represented by Hr, and a measure of the strength of

correlations among the symbols. At variance with real languages,

these simplified models based on Markov processes show a

correlation between words that decays exponentially rather than

as a power law. However, they provide an ideal heuristic

framework to isolate the interplay between symbol diversity and

correlation length in symbolic sequences. The results showed that

in order to keep constant the relative entropy, as is the case in

real languages, an inverse relationship must exist between the

correlation length and the entropy of the random text Hr.

Remarkably, real languages showed the same overall dependen-

cy, with languages with higher entropy Hr having correlations

with a faster decay, and vice versa.

Quantifiable statistical features shared by languages of different

families are rare. The two best known quantitative linguistic

universals are Zipf’s law [20] and Heap’s law [32], which refer to

the statistics of word frequencies. The property disclosed in this

paper, on the other hand, is the first that addresses the finer level

of word ordering patterns.

During their evolution, languages underwent structural

variations that created divergences in a way not very different

from biological evolution [4]. This may explain the variations

in parameters like the correlation length and the symbol

diversity found for different languages. However, our analysis

shows that the evolutionary drift was constrained to occur

keeping the relative entropy almost constant. Across all the

families considered, the variability of the entropy was almost

400% larger than the variability observed in the relative

entropy. Thus, according to our results, the relative entropy

associated with word ordering captures a fundamental quan-

titative property of language, which is common to all the

examples analyzed in this paper. More generally, these results

suggest that there are universal mechanisms in the way humans

assemble long word sequences to convey meaning, which may

ultimately derive from cognitive constrains inherent to the

human species.

Materials and Methods

1. Estimation of the relative entropy in symbol sequences
Let us represent any generic word in the text sequence by xi.

Then, any text segment of n words in length can be represented as

Sfng~fx1x2:::xng. We assume that each word belongs to a given

lexicon W, xi [W:fwjgV
j~1.

To compute the entropy of the shuffled text, let us note that the

number of ways in which the words can be randomly arranged is

given by

V~
n!

P
V

j~1
nj !

: ð1Þ

Since any of the possible permutations of the word’s positions has

the same probability of occurrence, the entropy per word of the

shuffled texts will be given by

Hs~
1

n
log2 V ð2Þ

2. Quantification of the impact of word correlations using
the Kullback-Leibler divergence

Let P fx1x2:::xngð Þ be the probability of occurrence of a given

word sequence of length n. In particular, P fx1gð Þ is simply the

normalized frequency of occurrence for a single word. Thus, if we

now consider a random version of the text in which there are no

correlations in the ordering of words, the probability of any given

sequence of length n is given by the product of the single-

token marginal probabilities of the original text, P fx1gð Þ
P fx2gð Þ:::P fxngð Þ. The entropy per word of the original text is

then given by the following expression:

H~{
1

n

X
fx1x2:::xng

P fx1x2:::xngð Þlog2 P fx1x2:::xngð Þð Þ ð3Þ

In a similar way, the entropy of the random text is given by:

Hr~{
1

n

X
fx1x2:::xng

P fx1gð ÞP fx2gð Þ:::P fxngð Þ

log2 P fx1gð ÞP fx2gð Þ:::P fxngð Þð Þ
ð4Þ

In both equations we assumed that n is sufficiently large as to

account for all possible correlations in the sequences of the original

text. For sequences with unbounded correlations the limit of n

going to infinity must be taken.

The difference of the entropies defined above, D~Hr{H, is a

measure of the relative entropy or Kullback-Leibler divergence

between the probability distributions that describe the random and

the original texts (Cover and Thomas, 2006). By subtracting

Equations 4 and 3, we find that the Kullback-Leibler divergence

reads,

D~
1

n

X
fx1x2...xng

P(fx1x2 . . . xng)

log2

P(fx1x2 . . . xng)
P(fx1g)P(fx2g) . . . P(fxng)

� � ð5Þ

It is straightforward to verify that the right-hand side of Eq. 5 is

indeed the difference Hr{H as defined above. The crucial step is

noting that, since

X
fx1x2...xng

P(fx1x2 . . . xng)log2 P(fxjg)~
X
fxjg

P(fxjg)log2P(fxjg) ð6Þ

for all j, the entropy of the random text can also be written as

Hr~{
1

n

X
fx1x2...xng

P(fx1x2 . . . xng)

log2 P(fx1g)P(fx2g) . . . P(fxng)ð Þ
ð7Þ

The entropy of the original texts accounts for contributions from

the ordering of words and the frequency of occurrence of those

words. Instead, in the random texts only the latter contribution is

present. Thus, their difference bears information about patterns in

word ordering that are beyond chance and are due to correlations

in written language.

It is not difficult to show that for long texts, Eq. 2 and Eq. 4

yield very similar values, and become identical in the limit of

Universal Entropy of Word Ordering
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infinitely long texts. To show this, one just needs to expand the

logarithm of the factorials using Stirling’s approximation [33] and

rearrange terms.

3. Entropy estimation based on compression algorithms
Direct methods of entropy estimation based on the computation

of block probabilities have proved extremely difficult to apply to

linguistic sequences due to the exponential explosion in the

number of parameters to estimate from finite data. This is

particularly true in the case of human language, given their long-

range correlations [21,22,34]. An alternative approach is provided

by non-parametric methods that do not rely on any a priori

assumption about the correlation structure of the sequences. In

particular, we used methods based on the Lempel-Ziv compression

algorithm that converge to the entropy even in the presence of

long-range correlations [19,23,35].

An important property of the entropy is that it is a lower bound

to the length of any lossless compressed version of a symbolic

sequence [15]. Thus, in principle, it is possible to estimate the

entropy of a symbolic sequence by finding the minimum length to

which it can be compressed without information loss. However,

instead of using an algorithm to compress the linguistic sequences,

we used an improved estimator based on the principles of the

Lempel-Ziv compression algorithm that shows a faster conversion

to the entropy. The details of the particular implementation, and

its application to estimate the entropy of English, are described in

[19]. Here, we briefly review the basic procedure.

Let us consider a whole symbolic sequence of length n as

S~fx1:::xi{1xixiz1 . . . xng, where i denotes any position inside

the sequence. For every position i, there is a length, li,
corresponding to the shortest contiguous subsequence that starts

at position i, and does not appear in any continuous subsequence

starting anywhere between position 1 and i{1. For instance,

consider the following alphabetical sequence: CDABCDEABCZ;

at position 8, the shortest mismatch is l8~4. After parsing the

whole sequence, the resulting series L~ l1,:::,li,:::,ln{1f g will

contain information about the redundancy in it. This procedure is

at the heart of the Lempel-Ziv compression algorithm [23] and the

entropy estimation method used in our analysis. In particular, it

can be shown that under certain general conditions the entropy H

of the symbolic sequence can be estimated as follows [19],

H~ lim
n??

1

n

XN

i~1

li

log2(iz1)

 !{1

ð8Þ

Although the limit cannot be attained in practice, we checked

convergence by computing the entropies from two halves of the

text and then comparing to the entropy of the whole text. Only

texts for which there was a maximum discrepancy of 10% in the

relative entropy estimation of the whole text and its halves were

accepted for the analysis. We tested that there was no difference in

the conclusions by either taking the threshold at 5% or 20%, thus

indicating that results are robust.

4. Simplified models of language
Markov processes have been used extensively in language

modelling. They have the advantage of allowing a systematic

control on the complexity of the correlation structure, and have

often been used as an approximation to complex natural processes.

A two-word Markovian language
This minimal model describes language as a first order Markov

process with a vocabulary of two words.

The model can be characterised by only two parameters. Let

the vocabulary of the language be W~ 0,1f g. The transition

matrix (grammar) of the Markov process is given as follows:

T~
a 1{b

1{a b

� �
ð9Þ

where a~p(0j0) and b~p(1j1). To simplify the notation denote

by p(w) the probability of finding the symbol x~w anywhere in

the sequence. In the same way, p(wijwj) is the conditional

probability of finding symbol wi at a particular position in the

sequence given that it was preceded by symbol wj .

As a more convenient pair of parameters to describe the model

language we choose the correlation length of the sequence and the

rate of occurrence of the word ‘1’. This overall rate determines the

shape of the Zipf’s distribution for the language and thus is related

to the diversity of the vocabulary. It can be computed as the

unconditional probability of the word ‘1’ in the sequence, r~p(1).
Since p(1)~p(1j0)p(0)zp(1j1)p(1), we have

r~
1{a

2{(azb)
ð10Þ

The correlation length can be related to the transition probabilities

by computing the autocorrelation function for the process,

c(t)~SxtztxtT{SxtT2 ð11Þ

Since the only variable pair contributing to the correlation is the

xtzt~xt~1, we just need to compute the t{step probability

p(xtzt~1jxt~1). Thus, the correlation function becomes

c(t)~p(xtzt~1jxt~1)p(1){p(1)2 ð12Þ

We find

p(xtzt~1jxt~1)~
1{a

2{(azb)

� �2

z
(1{b)(1{a)

(2{(azb))2
(azb{1)t ð13Þ

Then

c(t)~
(1{b)(1{a)

(2{(azb))2
e
{tlog 1

azb{1 ð14Þ

from which the correlation length is

l~{
1

log(azb{1)
ð15Þ

Finally, using the equations for l and r, we can write,

a~1{r(1{e
1
l)

and

b~rz(1{r)e
1
l ð16Þ

In this way we related the transition probabilities to the correlation

length l, and the symbol diversity r.
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Kullback-Leibler divergence for the two-word model
The entropy rate of any ergodic process can be computed as the

following limit:

H~{ lim
n??

1

n
log P(x1x2 . . . xn), ð17Þ

where we used H to designate the entropy of the original sequence.

If the process is first order Markov, we have

P(x1x2 . . . xn)~P(x1)P(x2jx1) . . . P(xnjxn{1) ð18Þ

Thus,

H~{ lim
n??

1

n

X
i~2,n

log P(xijxi{1) ð19Þ

where we dropped the term for i = 1 since it does not contribute to

the limit. We can group the terms in the sum above and write the

entropy for the Markov process in terms of the transition

probabilities and the symbol rates.

H~{
X

i,j

p(wi)p(wj jwi)log p(wj jwi) ð20Þ

where wi are the vocabulary symbols, or words. In the two-word

language model the transition probabilities are given in the matrix

T in Eq. 9. Equation 20 can then be written more clearly if we

introduce the column-wise entropies of the Markov transition

matrix:

Hi~{
X

j

p(wj jwi)log p(wj jwi) ð21Þ

The entropy of the original sequence can be written as

H~
X

i

p(wi)Hi ð22Þ

For the specific case where the transition probabilities are given by

the matrix T, we have for the column-wise entropies

ha~{a log a{(1{a)log(1{a)

hb~{b log b{(1{b)log(1{b) ð23Þ

where a and b are given in terms of the correlation length and

symbol diversity through Eq. 16.

Then, the entropy of the two-word Markov sequence takes the

following form:

H~(1{r)hazrhb ð24Þ

Finally, the entropy of the random sequence can be easily

computed from the rate parameter r, as

Hr~{(1{r)log(1{r){r log r ð25Þ

Therefore, the Kullback-Leibler divergence is computed as

Dr~Hr{H .

K-word Markovian language model
A K|K transition matrix contains K(K{1) parameters since

there are K normalization conditions for its columns. In general,

the stationary distribution of the Markov process is the normalized

eigenvector of the matrix T corresponding the largest eigenvalue

of the transition matrix, which is always unity for a Markov

process. From the stationary distribution the entropy of the

random sequence, Hr follows immediately, and Eq. 21 and Eq. 22

can be used to obtain H for the model language.

An estimation of the correlation length can be obtained by

considering the properties of the t{step transition matrix Tt in

the case of the K-word language model. From the spectral

decomposition of the matrix T, we have

Tt~
XK

i~1

u
{
i st

i vi, ð26Þ

where ui, vi, and si correspond respectively to the left and right

eigenvectors and eigenvalues of the matrix T. By rearranging the

sum in Eq. 26, we have

Tt~u
{
1v1zst

2 u
{
2v2z

XK

i~3

u
{
i

si

s2

� �t

vi

 !
ð27Þ

Since all the ratios si=s2v1 for i§3, for large t the decay of the

second term of the right hand side in Eq. 27 is determined by the

second eigenvalue term st
2. This holds for all the elements of the

matrix Tt. Then, all the correlation functions also decay as st
2 or,

equivalently, as exp({t log(1=s2)). Therefore, we can define a

correlation length for the K-word language models as follows:

l~{
1

log s2
ð26Þ

The dimension of the parameter space to explore grows as

K(K{1), thus making it very difficult to analyze languages with

large values of K. For instance, acceptable statistics for K~4
required the realization of 1011 transition matrices.

5. Detrended Fluctuation Analysis
Correlations in language are known to be of the power-law type

[21,27], decaying as t{c. Then, the smaller c the slower the decay

of the correlation. It is possible to estimate c using the method of

Detrended Fluctuation Analysis [28,29]. In particular, the

fluctuation exponent a is related to the correlation exponent c
by a simple linear relationship, a~(2{c)=2. Thus, the slower the

decay of the correlation strength (smaller c) the larger a.

Here we used the word as the minimum unit of information.

The mapping of texts onto time series is achieved by replacing

every word by its rank in the in a list of the words used in the text

ordered by decreasing frequency. Thus, the most frequent word is

replaced by ‘1’, the second most frequent by ‘2’, and so on [34].

6. Description of the corpora
All but the Sumerian and Egyptian texts were obtained from

Project Gutenberg (www.gutenberg.org). The Indo-European and

Finnish texts comprised a mixture of literary, scientific, historical,

and philosophical books. The Chinese texts were a collection of

literary and philosophical books from different periods from

antiquity to the present. The Tagalog corpus contained a variety

of literary texts including poetry. The Old Egyptian texts were

obtained from the page maintained by Dr. Mark-Jan Nederhof at
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the University of St Andrews (www.cs.st-andrews.ac.uk/,mjn/

egyptian/texts/) as transliterations from the original hieroglyphs.

The Sumerian texts were downloaded from The Electronic Text

Corpus of Sumerian Literature (www-etcsl.orient.ox.ac.uk/) and

consisted of transliterations of the logo-syllabic symbols. In the

case of Chinese, Old Egyptian, and Sumerian, the basic linguistic

units that we referred to as words were respectively, logograms,

hieroglyphs, and logo-syllables. Details of text sizes for each corpus

can be found in Table 2.
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Table 2. Details of the analized corpora.
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English 5112 67206 48904 1347 1267490

French 417 68727 59338 872 330339

German 999 44280 27820 2542 950371

Finnish 392 30991 23355 2095 159444

Tagalog 47 20086 11506 2953 209789

Sumerian 5 4766 4766 4246 5286

Old Egyptian 4 3284 3853 1101 4328

Chinese 101 109300 41953 1106 771917

For each language analyzed the table shows the size of the corpora in number of texts and the data specifying the average, median and absolute ranges of text sizes
measured in number of words. As in Table 1, the data correspond to the final set of texts used in the analysis.
doi:10.1371/journal.pone.0019875.t002
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