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Abstract

Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4
+ and

NO3
-) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids

are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free
amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants
were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration
likely to be found in soil solution (10 mM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.960.3,
0.360.06 and 0.360.04 mmol g21 root DW h21, respectively. The rate of N uptake as L-trialanine was the same as that as L-
alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%)
of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was
ca.5-fold faster than as NO3

-, but slower than as L-alanine, L-trialanine and NH4
+. Plants showed a limited capacity to take up

D-trialanine (0.0460.03 mmol g21 root DW h21), but did not appear to be able to metabolise it. We conclude that wheat is
able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely
L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other
forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the
terrestrial N cycle.
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Introduction

Nitrogen is a key factor in the control of carbon fixation by

photosynthetic primary producers [1,2]. Historically, higher plants

were thought to be dependent on inorganic N (NH4
+ and NO3

-)

for all of their N requirements. However, in the absence of human

inputs of synthetic inorganic N, most N enters soil as protein, and

this remains the dominant form of soil organic N [3–5].

Consequently, plant productivity in N-limited ecosystems was

thought to be controlled by the rate of microbial mineralization of

organic N to inorganic N. In the 1990s our understanding of the

regulation of plant productivity was revolutionised by the

demonstration of a ‘‘short-circuit’’ in the N cycle. Plants were

shown to take up L-enantiomers of amino acids [6,7] with

productivity being limited by the rate of microbial protein/peptide

cleavage to amino acids. The importance of L-amino acids to the

N cycle has subsequently received a great deal of interest [7].

However, soil soluble N is as abundant as small peptides (,1 kDa

MW) as it is as free amino acids (Table 1) [8,9]. Despite the

identification of peptide transporters in various plant tissues

including roots, there has been surprisingly little consideration of

the nutritional and ecological significance of plants competing

for N at an earlier stage of protein cleavage than free amino acids

[9–13].

Short peptides of D-amino acids are essential components of

bacterial peptidoglycan and some D-amino acids exist in soil

organic matter at 10 to 20% of the concentration of L-enantiomers

[14,15]. There is some existing evidence that plants are able to

metabolise D-amino acids, and D-amino acids and amino acid

racemases have been reported in plants [16–20]. Nevertheless,

some reports of phytotoxic effects of certain D-amino acids (e.g. D-

serine), when supplied at high concentrations relative to those in

soil, have resulted in D-amino acids being discounted as important

plant N resources [7,16,21,22]. D-peptides have been reported in

plant tissues [19,20], but very little information exists on the

capacity of plants to take up and assimilate them through their

roots [23].

We conducted a straightforward test of the effect of polymeric

and enantiomeric form on the uptake and assimilation of amino

acid N supplied to a higher plant in the absence of mycorrhizal

symbionts. We directly compared D- and L-forms of the same

amino acid, and the D- and L-forms of their corresponding
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tripeptides, to test the hypothesis that non-symbiotic higher plants

are able to take up and assimilate amino acids and small peptides

supplied at the low concentrations likely to be present in soil

solution, irrespective of entantiomeric form. We further compared

rates of uptake of these organic forms of N with those of inorganic

forms of N. As a conservative test of organic N use, we chose an

agricultural plant, wheat, which has been bred to grow with high

inputs of synthetic inorganic N. As the amino acid monomer, we

chose alanine which is common in all kingdoms of organisms as an

individual amino acid and short homopeptides, and in soil as both

L- and D-enantiomers [14,15,24].

Results and Discussion

Over 5 h, sterile roots of wheat took up 14C-labelled L-alanine,

D-alanine and L-trialanine at rates of 0.960.3, 0.360.06, and

0.360.04 mmol g21 DW root h21, respectively (mean 6 SEM;

n = 3) from a 10 mM solution reflecting realistic soil solution

concentrations. There was no difference in the rate of N uptake as

L-trialanine and that as L-alanine (Fig. 1). Plants took up 80 to

90% less (P,0.05) D-peptide than other forms of organic N. D-

trialanine was taken up at a rate of only 0.0460.03 mmol g21 DW

root h21. Recovery of plant 14C by combustion revealed that 14C

was translocated and 6665, 5865 and 8364% (L-alanine, D-

alanine and L-trialanine, respectively) of substrate 14C removed

from solution was lost in respiration (not recovered in plant

tissues). The 14C recovered in plants exposed to D-trialanine was

the same as that removed from solution and a much higher

(P,0.001) proportion of D-trialanine 14C was recovered in the

shoot than in the root in comparison to other substrates. Although

possibly not accurately representing the partitioning of N, the ratio

of 14C recovered in the root to 14C recovered in the shoot was

6.062, 4.660.4, 5.761.6 and 0.560.01 for D-alanine, L-alanine,

L-trialanine and D-trialanine, respectively. This indicates that

plants took up and assimilated L- and D-amino acids and L-

peptide, but were unable to assimilate even the small quantity of

D-peptide taken up. The ca.20-fold difference between L-alanine

uptake and the uptake of D-trialanine is consistent with the

previously reported 20-fold difference found in uptake of amino

acids between control plants and those treated with protonophores

e.g. CCCP [25]. Consequently, we suggest that uptake of D-

trialanine was by passive uptake alone.

When other forms of N were available to plants in an equimolar

solution containing five forms of N (L-alanine, D-alanine, L-

trialanine, KNO3 and NH4Cl), N was taken up as the D-amino

acid monomer at a five-fold higher (P = 0.004; Fig. 2) rate than

NO3
-. Uptake of N as D-alanine was, however, 37% slower

(P#0.04) than as L-alanine, which was taken up at the same rate

as L-trialanine N and NH4
+. Rates of metabolism of L-peptide and

L- and D-amino acids, as determined from losses of 14C in

respiration, were the same when acquired from the mixed solution

as when N forms were supplied individually. In both cases, the

proportion of the 14C taken up which was respired by plants was

greatest (P#0.03) when supplied as L-trialanine. This ca.25%

increase in post-uptake metabolism between peptides and their

amino acid monomers strongly suggests that there was no

extracellular cleavage of peptides prior to uptake.

Organic N uptake has been identified as important in natural

habitats [6,7,9,26,27]. However, our results show that even plants

such as wheat, bred to grow with high inorganic N additions, can

take up and assimilate peptide N at a rate comparable to those of

N forms of known importance for plant nutrition, namely L-amino

acid and NH4
+, and greatly exceeding that of NO3

-. This is true

even when peptides are supplied at low soil concentrations and

when other forms of N are available to the plant. The

concentration of solutes in soil is maintained by the balance

between their input or production, and their consumption by soil

microorganisms and plants. Consequently, successful root uptake

Table 1. Concentrations of inorganic, amino acid and peptide
N in the soil solution of a UK agricultural soila.

N concentration (mmol N l21)

Total dissolved N 844630

Total dissolved N ,1 kDa 746646

Peptidic-N ,1 kDa 3162

Free amino acid N 460.9

NH4
+ 1664

NO3
- 655638

aValues are mean 6 SEM; n = 4.
doi:10.1371/journal.pone.0019220.t001

Figure 1. Uptake of peptide or amino acid N by sterile roots of
wheat. Uptake determined over 5 h from the depletion of 14C from
10 mM solutions of single N forms. Values are mean 6 SEM; n = 3.
doi:10.1371/journal.pone.0019220.g001

Figure 2. Uptake of N by sterile roots of wheat from a mixed N
form solution. Uptake determined by solution 14C depletion (organic
N) or 15N recovery in plants (inorganic N). L-alanine N, D-alanine #, L-
trialanine ., NO3

-
%, NH4

+
&. Values are mean 6 SEM; n = 3.

doi:10.1371/journal.pone.0019220.g002
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and assimilation of peptides when supplied at the low concentra-

tions maintained in soil, strongly suggests that plants are capable of

competing with soil microorganisms for N at an early stage of

protein decomposition. Thus, the rate-limiting step in N-limited

plant productivity may be the rate of protein cleavage to short

peptides rather than the rate of protein/peptide cleavage to free

amino acids or the rate of microbial mineralisation of amino acids

to inorganic N. There is some evidence that plants may be able to

take up intact protein through their roots, but quantities appear to

be very low [28]. Consequently, uptake of peptides very likely

represents the uppermost level of plant competition with soil

microbes for N resources.

Plants are apparently unable to utilise D-peptide N, assuming

D-trialanine and wheat are representative. However, our data

show that they are clearly able to take up and assimilate D-alanine

when supplied at soil solution concentrations and do so in

preference to NO3
-. As D-amino acids, such as D-alanine, are

common in bacteria and in soil, we suggest that they may be more

important as a source of N to plants than has previously been

recognised. We further suggest that the often relatively high

concentrations of NO3
- in soil solution [29] (Table 1) may not

reflect its importance to plants as a large pool of available N, but

rather the preference of plants for other forms of N, which leads to

slower depletion of the soil NO3
- pool.

These findings indicate that plants can acquire and metabolise

N in forms that are not currently considered to be of importance

for plant nutrition, and at an earlier stage in the N cycle than

previously thought. Further, such early uptake of more complex

soil N by plants must necessarily affect the availability of substrate

for downstream microbial N transformations and the flux of N

through soil pools. There are many possible variations in peptide

composition, and much further work is necessary to fully elucidate

the relative importance of the various forms of soil N available to

plants. Nevertheless, we suggest that it may be necessary to

reconsider current assumptions concerning the fundamental

pattern of N flow in the plant-microbe-soil continuum.

Materials and Methods

Soil solution characterisation
Agricultural soil was collected from a depth of 0–10 cm in four

locations at Bangor University’s Henfaes Research Station (53u
149N, 4u 019W). Background soil characteristics are given in [30].

Soil solution was extracted by centrifugal drainage [31], sterilised

by filtration to 0.2 mm and passed through a 1 kDa ultrafiltration

membrane (Millipore, Billerica, MA, USA). Amino acid N was

measured fluorometrically according to [32] before and after

hydrolysis in 6 M HCl at 105uC for 16 h under N2. Total

dissolved N was measured in a TOC-V-TN analyzer (Shimadzu,

Kyoto, Japan). Nitrate and ammonium were measured colorimet-

rically according to [33] and [34], respectively.

Uptake from solutions of single N forms
Seeds of wheat (Triticum aestivum L. cv. Claire) were surface

sterilised in 10% NaClO followed by 80% ethanol, and grown in

Phytatrays (Sigma Aldrich, Gillingham, UK) on 10% Murashige

and Skoog agar in natural light. At the third leaf stage, roots of

single plants (n = 3) were placed in 4 ml of sterile (0.2 mm-filtered)

solutions of either 10 mM, ca.1.5 kBq U-14C-labelled, L-alanine

(C3H7NO2), D-alanine, L-trialanine (C9H17N3O4), or D-trialanine

(unlabelled from Bachem, Bubendorf, Switzerland; labelled from

American Radiolabeled Chemicals, St Louis, MA, USA). All

operations were carried out aseptically in a laminar flow cabinet at

ca.25uC and a light intensity of 170 mmol photons m-2 s-1 PAR.

After 5 h, plants were washed in deionised water for ca.1.5 min

and the remaining 14C activity of solutions was measured by liquid

scintillation counting in a Wallac 1404 scintillation counter

(Perkin-Elmer, Boston, MA, USA). Plants were dried at 80uC,

before combustion in an OX400 biological oxidizer (RJ Harvey,

Hillsdale, NJ, USA). Liberated 14CO2 was captured in Oxosol

scintillant (National Diagnostics, Atlanta, GA, USA) and measured

by liquid scintillation counting.

Uptake from solutions of mixed N-forms
Plant roots were placed in 4.5 ml of a mixed N form solution of

L-alanine, D-alanine, L-trialanine, NH4Cl and KNO3. Each of 3

replicates had one N form labelled with either ca.4 kBq 14C

(peptide and amino acids) or 98 atom % 15N (NH4
+ and NO3

-;

Sigma Aldrich, Gillingham, UK). In this case, substrates were all

supplied at a concentration of 50 mM to ensure that sufficient 15N

for accurate measurement could be recovered in plants. Aliquots

of 50 mL were removed after 2, 4 and 6 h and 14C activity

measured by liquid scintillation counting where appropriate. After

6 h plants were washed for ca.2 min in 0.1 M CaCl2. The 14C

activity of washings was measured. Plants were dried and

combusted in the biological oxidizer or ground and analyzed for
15N in a Eurovector EA-Isoprime IRMS (Eurovector SpA, Milan,

Italy) as appropriate. All methods and conditions were as

described for uptake from solutions of single N-form, except

where stated.

Statistical analysis
All statistical analysis by one-way ANOVA with LSD post-hoc

test (SPSS v14, SPSS Inc, Chicago, USA).
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