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Abstract

Background: The rapid progress currently being made in genomic science has created interest in potential clinical
applications; however, formal translational research has been limited thus far. Studies of population genetics have
demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic
background of patient cohorts may often be complex.

Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene
array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327)
from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and
Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans
and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets.
A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin
making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and
drug response confirmed substantial within- and between-group heterogeneity.

Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the
individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide
association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.
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Introduction

With the dramatic decline in the cost of sequencing and the

availability of well annotated databases genomic research is moving

rapidly toward the clinical arena [1,2,3]. Risk loci have been

identified for many common diseases and while they collectively

explain a small proportion of the heritable risk modest effects have

been noted for markers associated with conditions such as focal

segemental glomerular sclerosis, hyperlipidemia, Crohn’s disease,

adult macular degeneration, type 2 diabetes, rheumatoid arthritis,

schizophrenia and bipolar disorder, and coronary artery disease

among others [4,5,6,7,8,9,10,11,12]. Of more immediate clinical

relevance has been the discovery of genetic variants which influence

the action of pharmacologic agents [13]. Because these loci are

unlikely to have been under selective pressure, variants altering drug

metabolism have in some cases increased to reasonable frequency

and can be associated with large effects [14]. As more geographic

populations are studied with high density genotype arrays it is also

becoming apparent that allele frequencies for the relevant markers

can vary widely [5,15,16,17].

These emerging data must be incorporated into a strategy that

positions genomic medicine for a clinical role. Because virtually all

risk loci have been identified via proxy markers, it cannot be

assumed that the haplotypes that are being identified in the

populations where the original findings are made will carry the

causal mutations in other geographically separated groups. For

example, a recent analysis of the three HapMap populations

showed considerable heterogeneity of allele frequencies for loci

associated with 26 common diseases [16]. Likewise, the fat mass

and obesity associated (FTO) locus, which has the strongest known

association with obesity in Europeans, shows a complex and

inconsistent pattern in African-origin populations [15,17]. The

generalizability of the current generation of published risk markers

in all racial/ethnic groups cannot therefore be taken for granted.

In the initial phase much of the interest in molecular studies of

population differentiation was focused on large continental
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groupings [18,19,20]. Fine-scale population structure has now

been examined using dense genotype data in Europe and North

America, and somewhat more limited data has become available

from Latin America, Africa and Asia [18,19,21,22,23]. Most of

these studies have attempted to identify ‘‘source’’ populations and

describe migration and other demographic patterns over a

historical framework [21,23,24]. In a sense, therefore, this research

has been ‘‘backward looking’’, as formalized in the Human

Diversity Project [25]. However migration and gene flow between

populations that had historically been geographically distant has

accelerated in the modern era and many large metropolitan areas

are now exceedingly diverse. Considered as a ‘‘city region’’, New

York City had an estimated population of 20 million; in 2005 36%

of the residents of New York City proper were foreign born,

speaking 170–200 languages [26,27]. In this cosmopolitan setting

the standard US racial/ethnic categories – ie, black, white,

Hispanic, Asian – become particularly problematic.

Mount Sinai Medical Center serves a diverse community in

northern Manhattan with outpatient visits totaling 800,000/year.

The Charles R. Bronfman Institute for Personalized Medicine at

Mount Sinai has initiated a program of research aimed at

translating the growing body of evidence on genetic susceptibility

for chronic disease and drug responsiveness into clinical practice.

As an initial step we collected dense genotype data on a sample of

977 outpatients served by our institution who self-identified into 3

major racial/ethnic groups. Genotype array analysis was used to

assess patterns of gene flow between the groups and consistency

and distribution of haplotypes at a series of loci known to

predispose to common disease or influence the metabolism of

drugs.

Methods

Ethics statement
This research study was reviewed and approved by the ethics

review board of the Program for the Protection of Human Subjects

(PPHS) of Mount Sinai School of Medicine under project #
HSD09-00030. The Mount Sinai Biobank Project (IRB # 07-

0529 0001 02 ME) is an IRB-approved research protocol with

IRB-approved informed consent forms. All study participants

provided written informed consent.

Participant recruitment
Study participants were recruited from the Biobank Program of

the Institute of Personalized Medicine at Mount Sinai Medical

Center. The primary sample consisted of 1030 self-identified

African Americans, European Americans or Hispanics. The

majority of the Hispanic participants were from the Caribbean,

primarily the Dominican Republic and Puerto Rico. One subject

from each group and one CEPH trio family were replicated for the

purpose of quality control of genotype data. The project was

reviewed and approved by the Institutional Review Boards of both

Mount Sinai Medical Center and Loyola University Chicago

Stritch School of Medicine.

Genotyping and quality assessment
Genotyping was carried out on genomic DNA from 1030

subjects using the Affymetrix 6.0 gene chip. Genotyping was

performed in batches and within each batch samples were

randomized with respect to race/ethnicity, gender and diagnostic

status. Selected samples from each race plus a CEPH trio sample

were also replicated in each batch for the purpose of assessing

batch effect on genotypes. Quality control procedures were

performed with the Whole Genome Analysis software (Golden

Helix) and PLINK [28] (http://pngu.mgh.harvard.edu/purcell/

plink/). The chip analysis provided data on 909,600 SNPs of

which 905,384 mapped to the dbSNP rsID. Of the 1030 samples,

those that broadly failed genotyping (n = 36), had gender

inconsistency (n = 5) or had missing genotype proportion .0.05

(n = 7) were excluded. Similarly, 60,869 SNPs with missing

genotype rate .5% and 10,889 SNPs with MAF,0.01 were

excluded. Using the data on batch-replicated samples, mean

genotype concordance rate between batches was estimated to be

99.6560.08%. Investigation of batch effect on genotypes revealed

1,236 SNPs with substantial deviations associated with batch effect

and these were dropped. In addition, SNPs found to have

significantly differential missing rates (n = 217) between patients

with specific diagnoses and those failing Hardy-Weinberg

equilibrium (HWE) test (p-value = 0.001) (n = 2,587) were also

excluded. We estimated inbreeding coefficients and genome-wide

identity-by-descent (IBD) sharing among pairs of samples using the

software PLINK [28]. Finally, one additional sample with an

inbreeding coefficient greater than four standard deviations of the

mean coefficient was dropped. There was no significant evidence

of excess sharing of IBD proportion either due to sample

contamination, duplication, or cryptic relatedness. The final

quality-controlled cleaned dataset thus consisted of 977 unrelated

adult subjects – 324 African Americans, 326 European Americans

and 327 Hispanics with genome-wide information on 829,586

SNPs.

Creation of marker sets for population structure analysis
For population structure analysis the cleaned dataset was

merged with datasets from the International HapMap Project [29]

and prior studies conducted by the Department of Preventive

Medicine at Loyola. The HapMap data consisted of samples of

African ancestry in the southwest USA (ASW) (n = 71) and of

Mexican ancestry in Los Angeles, California (MEX) (n = 71).

Descriptions of the sample, genotyping and quality control of the

genotype data have been provided elsewhere [29,30]. The Loyola

dataset consisted of a population-based Yoruba sample from

Nigeria (YOR) (n = 334), African Americans from Maywood, IL

(AMW) (n = 204), and Brazilians (BRZ) (n = 109). The YOR and

AMW samples were recruited as controls in a study of genetics of

hypertension [31,32]. Data from appropriate Native American

groups were not available. The genotype data were generated on

Affymetrix 6.0 chip and details of the samples, genotyping and

quality control procedures have been described elsewhere [31].

There were 1770 samples in the combined dataset with genotypes

on 599,857 SNPs. The sample genotyping rate in the combined

dataset was .0.99 and the MAF of every SNP in each of the

subpopulations was at least 0.01.

Two different marker sets were created from the combined

dataset for population structure analysis. These markers were

chosen to ensure that the SNPs were not in strong linkage

disequilibrium (LD) and to make the analysis computationally

efficient. For the first marker set, we excluded SNPs with missing

genotype rate .0.1%, then used the software PLINK [28] to

prune the remaining 238,533 SNPs using pairwise linkage

disequilibrium r2
� �

maximum threshold of 0.2 in 50 SNP widows,

shifting and recalculating every 5 SNPs. The resulting subset of

SNPs consisted of 100,133 SNPs distributed across the genome.

The second marker set was created based on average genetic

distance difference dð Þ between African and European ancestral

populations. Using the HapMap allele frequencies, data for

samples of Yoruba in Ibadan, Nigeria (YRI) and CEPH (Utah

residents with ancestry from northern and western Europe) (CEU),

d was computed as the sum of the absolute differences between the
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allele frequencies [33] in the two samples. SNPs with dv50%
were then excluded from the combined dataset and the remaining

67,124 SNPs were pruned using r2 maximum threshold of 0.2 in

50 SNP widows, shifting and recalculating every 5 SNPs. The

resulting subset consisted of 28,783 SNPs spread across the

genome. The two marker sets were subsequently used separately

for population structure analysis.

Principal component and multidimensional scaling
analysis

Principal component analysis was performed with the Whole

Genome Analysis software (Golden Helix). The first two

components had large eigenvalues compared to the remaining

components. These two components were therefore extracted and

used as covariates to adjust for stratification in the candidate gene

association analysis in the samples of African Americans and

Hispanic Americans as described below. Also, using the genome-

wide identity-by-state (IBS) estimated with PLINK, we performed

multidimensional scaling analysis on the matrix of IBS. Distribu-

tions of samples on the first to fourth dimensions were used to

assess clustering and diversity within and between the groups.

Global and local ancestries
To evaluate potential discrepancies between global and local

population structures or ancestries in the samples we use the

method of squared coefficients of canonical correlation l2
� �

as

described by Qinet al [34]. Briefly, let N denote the sample size,

A~ a1,:::,aK½ � denote the N|K matrix consisting of the first K

global principal components (PCs), and B~ b1,:::,bK½ � denote the

N|K matrix consisting of the first K local PCs in a local window.

The coefficient of multiple-determination R2
j for bj and A is the R2

in the linear regression of bj on A. The jth largest squared

coefficient of canonical correlation l2
j between A and B is the jth

largest coefficient of determination between any linear combina-

tion of B0s columns and any linear combination of A0s columns.

The local PCs were computed from the local 20 Mb-window

defined on each autosome. Squared coefficient was computed as

the square of the largest canonical correlation between the first 10

local PCs of each local 20 Mb-window and the first 10 global PCs

in each population sample. For this evaluation, we restricted

analysis to the three Biobank samples (ANY, ENY and HNY) and

three external comparison samples (AMW, BRZ and HapMap

CEU).

Structure analysis
Structure analysis was performed separately for the two marker

sets using the software STRUCTURE [35,36]. STRUCTURE

applies a Bayesian model-based clustering algorithm to assign

subjects into pre-assumed K ancestral populations each of which is

characterized by a set of allele frequencies at each SNP. Based on

their allele frequency profiles for the loci and under the

assumption that loci are at HWE and linkage equilibrium within

each population (racial group), the subjects are then probabilis-

tically assigned to populations, or jointly to two or more

populations if their genotypes indicated recent gene flow. For

each of the two marker sets, analysis was run under an assumed

number of ancestral populations ranging from K = 2 to K = 7.

Analysis parameters included admixture model, correlated allele

frequencies among populations, estimation of separate alpha for

each population, and burn-in period of 20,000 iterations followed

by 10,000 Markov chain Monte Carlo replications. Graphical

displays of results of population structure were produced using the

program DISTRUCT [35].

Linkage disequilibrium and haplotype analysis
To compare LD structure and organization of haplotypes

harboring published disease loci or loci that alter drug metabolism

we carried out analyses of obesity-related (viz, fat mass and obesity

associated (FTO) and melanocortin 4 receptor (MC4R)), and

pharmacogenomic variants (viz, solute carrier organic anion

transporter family, member 1B1 (SLCO1B1) and cytochrome

P450, family 4, subfamily F, polypeptide 2 (CYP4F2)). This analysis

was restricted to the Biobank sample. The software Haploview

[37] was used to compute estimates of pair-wise LD by the

standard D-prime method [38] and haplotype blocks defined by

the confidence interval [39] using the standard parameter setting.

All available SNPs in each gene were included in the analysis but

comparisons between groups were restricted to haplotypes and LD

blocks bearing or flanking the selected published disease or

pharmacogenomic variants.

Candidate gene association analysis for body mass index
(BMI)

We carried out single SNP test for association between BMI and

SNPs in FTO and MC4R genes. For each racial group, BMI was

log-transformed to approximate trait normality. The residuals

controlling for age and sex were standardized and used in

association analysis with the SNPs. Only an additive genetic model

was tested. The association analysis for the African-American and

Hispanic samples was adjusted for population structure by

inclusion of principal components as covariates.

Results

The primary study sample was drawn from the 7,266 consented

adult patients enrolled in Mount Sinai Medical Center Biobank

from September 2007 to December 2009. Although the institution

serves a diverse community in northern Manhattan, sampling was

limited to self-identified African American (ANY), European

American (ENY) and Hispanic (HNY) participants. Characteristics

of the 977 individuals included in these analyses are presented in

Table 1, including the frequencies of a set of common chronic

conditions (asthma, CKD, diabetes and morbid obesity). All

population structure analyses additionally included the ASW,

MEX, YOR, AMW and BRZ samples (see Methods). The

combined sample size including all population groups was 1770

and 2 separate pruned genotype marker sets with 100,133 and

28,732 SNPs were chosen, as described. Because the results from

both marker sets were broadly similar, only results from the larger

marker set are presented here.

Multidimensional scaling of identity by state pair-wise
distances

To assess the within- and between-group clustering and

diversity we performed multidimensional scaling analysis on the

matrix of estimated IBS pair-wise distances and extracted the first

four dimensions. Plots of the samples in the 1st vs. 2nd, 2nd vs. 3rd,

and 3rd vs. 4th dimensions are presented in Figure 1; the upper

panel describes all available population samples, including those

from Nigeria and Brazil, while the lower panel is restricted to the 3

groups of patients from New York. Based on the 1st and 2nd

dimension, the YOR sample formed a distinct non-overlapping

cluster separated from all other samples, while the ENY sample

also formed a small cluster. However, as best seen with extraction

of the 2nd dimension (middle panel, upper row), the groups

designated as MEX, BRZ and HNY showed much greater

dispersion, while partially overlapping with the ANY and ENY

samples. This pattern is clearly consistent with recent gene flow
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from geographically distant populations among the Latin Amer-

ican groups. As anticipated, the three Biobank samples (ANY,

ENY and HNY) tended to cluster with samples from similar

reference population groups (i.e., ANY with AMW and ASW; and

HYN with both the BRZ and MEX samples). When restricted to

the Biobank samples, the HNY sample can be observed to cluster

between the ANY and ENY samples and exhibited high within-

group diversity which resulted in the observed dispersion (Figure 1).

Global and local ancestry
The squared canonical correlation coefficients for the evalua-

tion of discrepancies between global and local ancestry for each of

the Biobank samples and corresponding external comparison

samples are presented in Figure 2. In each sample, the squared

coefficient is the largest canonical correlation between the first 10

local PCs of a 20 Mb-window and the first 10 global PCs. Criteria

for choice of top 10 PCs and window size for local ancestry

evaluation are as described in our previous study [40]. In each

sample, we observed variation in the distributions of the squared

canonical correlation coefficients from one autosome to the other,

showing that ancestry or population structure is not uniform across

the genome. It is expected that local genomic regions could be

subject to varying forms of population structure as a result of

natural selection, demographic history differences and local

random fluctuations of admixture, among others [34]. These

differential distributions of local population structures are also, to

some extent, evident between samples of similar ancestry and this

could have been amplified by sampling variation or genotype

batch effects associated with the genotype calling algorithms of

different platforms [41,42,43,44,45,46,47].

Table 1. Characteristics of subjects.

African Americans European Americans Hispanic Americans All

N (% females) 324 (50.31) 326 (41.10) 327 (49.54) 977 (46.98)

Age (years) 52.69613.77 49.55614.39 56.11613.72 52.79614.20

Diagnosis (#without) 217 (107) 88 (238) 217 (110) 522 (455)

Diabetes 132 41 147 320

CKD 56 10 38 104

Obesity 90 38 74 202

Asthma 83 35 92 210

Mean 6 SD.
doi:10.1371/journal.pone.0019166.t001

Figure 1. Multidimensional scaling plots for all samples (TOP) and only biobank samples (BOTTOM). Plots of subjects in the 1st and 2nd

dimensions (left column), 2nd and 3rd dimensions (middle column), and 3rd and 4th dimensions right column). Abbreviation for samples: African
American biobank sample (ANY); European American biobank sample (ENY); Hispanic American biobank sample (HNY); African ancestry in Southwest
USA (ASW); Mexican ancestry in Los Angeles, California (MEX); Yoruba from Nigeria (YOR); African American from Maywood, Illinois (AMW); Brazilians
from Brazil (BRZ).
doi:10.1371/journal.pone.0019166.g001
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Population structure
We carried out further analysis of population diversity using the

software STRUCTURE (Figure 3). Both the YOR and ENY

samples were assigned to separate populations. Evidence of recent

gene flow was can be seen as shared colors that correspond to the

proportions from each ancestral group. The ANY (and also AMW

and ASW) sample exhibited a higher proportion of ancestry from

Africa than from Europe. On the other hand, the HNY sample on

average exhibited higher proportion of ancestry from Europe than

from Africa. We likewise observed more within-population

variation of individual ancestral proportions in the HNY sample.

As K increased from 2, each sample with the exception of the YOR

showed varied levels of admixture of the assumed ancestral

populations. Closer inspection indicated that the admixture seen in

ANY and HNY best supports the presence of 2 and 3 ancestral

populations, respectively. In addition, evaluation of model

estimates for the different values of K indicated a better fit for

K = 2 and K = 3 for the ANY and HNY samples, respectively.

While clear differences exist in terms of the proportion of

continental ancestry between the Hispanics and African Ameri-

cans in this sample, this result is in part an artifact of the use of

group labels. In fact, ancestral heritage at the individual level

among persons from these two groups is best represented as a

continuum (Figure 4).

LD structure and haplotypes harboring published disease
variants

To assess within–population group LD structure and the

distributions of haplotypes harboring known disease variants, we

selected published obesity and pharmacogenomic variants that

were genotyped in our Biobank sample of African Americans,

European Americans and Hispanic Americans. For obesity

variants, we selected 7 FTO SNPs (rs1421085, rs1121980,

rs8057044, rs8050136, rs9939609, rs9941349 and rs9930506)

and 2 MC4R SNPs (rs17782313 and rs12970134). For pharma-

cogenomic variants, we selected rs4149056 and rs11045819 in the

SLCO1B1 gene and rs2108622 in the CYP4F2 gene. The SLCO1B1

variants affect response to 3-hydroxy-3-methylglutaryl-coenzyme

A (statins) [48,49,50] and the CYP4F2 variant affects response to

warfarin [1,51]. We included all available SNP genotypes in these

genes in the determination of the LD blocks and hyplotypes within

each group. Here, we present results from same region across

groups for the purpose of comparison.

Results of the LD structure and distribution of haplotypes

bearing FTO and MC4R variants are shown in Figures 5a and 5b.

Substantial differences were observed between groups in the

number and length of LD blocks in the targeted regions. For

instance, in the FTO region there were 5 LD blocks in the African

American sample, 2 LD blocks in the European Americans, and 4

Figure 2. Canonical correlation based on window-wide local PCs for biobank samples and selected external samples. Each circle
represents the squared coefficient of the largest canonical correlation between the first 10 local PCs of a local 20 Mb-window and the first 10 global
PCs. Abbreviation for samples: African American biobank sample (ANY); European American biobank sample (ENY); Hispanic American biobank
sample (HNY); African American from Maywood, Illinois (AMW); CEPH (Utah residents with ancestry from northern and western Europe (CEU);
Brazilians from Brazil (BRZ).
doi:10.1371/journal.pone.0019166.g002
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Figure 3. Population structure results for ancestral populations K = 2 to K = 6. Each subject is represented by a thin vertical line colored in
proportion to their estimated ancestry within each cluster. The colors represent the proportion of inferred ancestry from each of the ancestral
populations within each specific K value. Abbreviation for samples: African American biobank sample (ANY); European American biobank sample
(ENY); Hispanic American biobank sample (HNY); African ancestry in Southwest USA (ASW); Mexican ancestry in Los Angeles, California (MEX) ; Yoruba
from Nigeria (YOR); African American from Maywood, Illinois (AMW); Brazilians from Brazil (BRZ).
doi:10.1371/journal.pone.0019166.g003

Figure 4. Population structure results for K = 2 ancestral populations sorted by ancestry proportions for African American biobank
sample (ANY) and Hispanic American biobank sample (HNY) (Top) and pooled sample of both ANY and HNY (Bottom).
doi:10.1371/journal.pone.0019166.g004
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in the Hispanics (Figure 5a). Similarly in the MC4R region, there

were 6, 2 and 4 LD blocks in the African American, European

American and Hispanic American samples, respectively

(Figure 5b). The observed strength of LD within blocks varied

widely between groups just as the number of haplotypes in every

block also varied between the three groups. As a result of the

variation in the number and length of the LD blocks, haplotypes

bearing or flanking the susceptibility variants were clearly not

always comparable.

Similar discordance between LD structures and haplotype

distributions was observed for the pharmacogenomic variants. In

the SLCO1B1 gene, there were 4, 1 and 5 LD blocks with widely

different number of haplotypes in the African American,

European American and Hispanic American samples, respectively

(Figure 6a). It is important to note that the length of the single

block in the European-American sample spanned the same region

in which multiple blocks were found in the other two groups. As a

consequence few SNPs tagging this haplotype would be observed

in the African-American and Hispanic samples making it difficult

to validate associations originally discovered in European

Americans. Results for the CYP4F2 variants are shown in

Figure 6b. Again, the racial groups differ from each other in

terms of length of LD block and number of haplotypes.

Candidate gene association
As an illustrative example, results of comparative association

analysis of the association between BMI and haplotypes tagged by

published SNPs in the FTO and MC4R loci are presented in

Figure 7. Although these loci have provided the strongest signals

for adioposity, the effect sizes are admittedly modest (#,1.3 for

BMI.30) and therefore large sample sizes are required to obtain

stable results. Nonetheless, it is clear that among European

Americans the association is consistent across this region, while

highly variable for African Americans and Hispanics. The MC4R

region includes fewer haplotypes and the underlying effect size is

smaller than for FTO, and is therefore less informative. The

pattern in Figure 7, however, suggests that the association with

BMI is less well captured by the common haplotypes than for the

other ethnic groups.

Discussion

Genomic technology has rapidly transformed the character of

biomedical research, however the translational impact of this new

science for clinical medicine remains undefined. Some investiga-

tors have suggested that the current state of knowledge justifies

sequencing individual patients’ genomes and placing this infor-

mation in the electronic medical record, although others hold that

the current utility of genome sequence data is still far too limited,

while the storage burden and interpretation are unsupportable,

and this state of affairs is unlikely to change in the foreseeable

future [2,13,52,53]. Clearly more incremental steps will be

required in order to adapt genomic science for clinical purposes

and evaluate its contribution to patient outcomes. One of the most

immediate challenges is the need to quantify and properly account

for the genetic diversity present in clinical populations. Formal

research studies have virtually always stratified on a conventional

descriptor of population structure and diversity is subsequently

assessed within and between groups [18,20,23,54]. While this

approach has been useful in describing global patterns, others have

argued that it narrowly ‘‘packages’’ our view of human variation

[55]. Even more problematic in the clinical arena, racial/ethnic

labels can vary widely by geographic location and time (eg,

Hispanic and Asian) and cosmopolitan cities now include many

individuals whose genetic heritage is drawn from multiple

continental origins.

The analyses presented here attempt to capture the pattern of

genetic diversity in patients seen at a major medical center in New

York City. Consistent with previous studies of population genetics,

broad ancestral clustering is apparent in the 3 patient groups

[18,23,54]. At the same time, wide divergence is seen in the

Hispanic samples. Using the traditional perspective that ‘‘packag-

es’’ geographic populations, these sub-clusters roughly represent

Mexican Americans, persons of Caribbean origin (who would

overlap with Brazilians), and a third group that clusters with

African Americans [54]. Conversely, if one dispenses with the

conventional labels and relies solely on genotype the Hispanics in

the NY sample can be appropriately merged with the African

Americans (Figure 3). These data forcefully underscore the

diminishing relevance of the descriptors currently used for the

two principle minority groups in the US.

A complementary layer of complexity is demonstrated by the

illustrative examples based on genetic variants associated with

common traits and drug response. As is well recognized, both the

spectrum of allele frequencies for ‘‘causal’’ mutations and proxy

haplotypes can vary widely across population groups [15]. As this

phenomenon has become better appreciated, the relevance of

‘‘diagnosis by proxy’’ using race/ethnicity to predict genotype, has

dissipated [56]. Since the vast majority of current findings from

GWAs are based on SNPs that tag the relevant haplotype, until

the ‘‘causal mutation’’ is known for these findings it may not be

possible to transfer this information from the original study

population, virtually always of European ancestry [15]. The

relevance of cross-population haplotype diversity was perhaps

most clearly demonstrated in the analyses that defined the causal

mutation at the SORT1 locus [4]. A variant at this locus confers the

largest effect on LDL-cholesterol of any known common allele [4].

While a broad haplotype carrying numerous SNPs was captured

on GWAs in a European-origin sample, the apparent causal

mutation was isolated to a smaller haplotype present in persons of

African descent [4]. It must be assumed, therefore, that proxy

haplotypes cannot be used for individual-level patient analyses.

While the sample included in this study was restricted to a single

hospital the inferences are generalizable to most urban centers in

the US. The combination of rapid changes in migration away

from Europe and the realization that very few genetic variants are

sufficiently differentiated even between historically unrelated

populations mean that clinical decisions about genotypic effects

will require very detailed knowledge of the locus in question, and

analyses of individual patients. In a sense, therefore, much of the

research emphasizing continental origin and ancestry stands in

contradiction to the clinical imperative and a shift away from a

paradigm that is founded on racial/ethnic categories will be

required. We would suggest that this shift in perspective will be

one of many required before genomic science can be fully adapted

to use in the clinical arena.

This report has limitations which must be recognized. The

racial/ethnic background of patient populations will, of course,

vary widely across the US the specific composition observed in

New York may not be observed. We did not have access to

appropriate data on Native Americans that might have helped

define genetic ancestry of migrants from Mexico or other parts of

Central and South America. Recent analyses by Bryc et al

demonstrate the heterogeneity with Hispanics sub-groups and our

data are consistent with their results, albeit weighted toward

persons from the Caribbean [18,23,54]. We also recognize that

clinical testing must take place in approved laboratories and will be

restricted to genotypes that have been widely validated as relevant
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for patient outcomes therefore data from GWAs must be filtered

extensively before application in any group. This process of

defining the functional variant will by itself de-emphasize the

broad framework of race/ethnicity.

In conclusion, based on a consecutive series of patients from an

urban medical center in New York City we demonstrate that a

spectrum of mixed ancestry is emerging in the largest US minority

groups. While consistent with previous descriptive studies, when

viewed from the clinical perspective this evidence invites a re-

evaluation of the relevance of racial/ethnic labels. In combination

with evidence of locus heterogeneity within and between

populations, this picture of extensive gene flow lends credence to

Figure 5. a: Linkage disequilibrium structure (Top) and organization of haplotypes harboring published obesity variants (rsIDs indicated with blue
boxes) in FTO gene in biobank sample of African Americans (left column), European Americans (middle column), and Hispanic Americans (right
column). b: Linkage disequilibrium structure (Top) and organization of haplotypes harboring published obesity variants (rsIDs indicated with blue
boxes) in MC4R gene in biobank sample of African Americans (left column), European Americans (middle column), and Hispanic Americans (right
column).
doi:10.1371/journal.pone.0019166.g005
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Figure 6. a: Linkage disequilibrium structure (Top) and organization of haplotypes harboring published pharmacogenomic variants (rsIDs indicated
with blue boxes) in SLCO1B1 gene in biobank sample of African Americans (left column), European Americans (middle column), and Hispanic
Americans (right column). b: Linkage disequilibrium structure (Top) and organization of haplotypes harboring published pharmacogenomic variants
(rsIDs indicated with blue boxes) in CYP4F2 gene in biobank sample of African Americans (left column), European Americans (middle column), and
Hispanic Americans (right column).
doi:10.1371/journal.pone.0019166.g006
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the argument that the transfer of historical population labels which

reflect language and other social categories onto patient samples

will in many cases be unwarranted.

Acknowledgments

We would like to thank the participants from New York City, United

States, for participating in the ‘‘Mount Sinai IPM Biobank Program’’ and

the participants from Ibadan, Nigeria for their willing participation in the

‘‘Genetics of Hypertension in Blacks’’ project.

Author Contributions

Conceived and designed the experiments: EPB RSC. Performed the

experiments: GK WZ QS MT. Analyzed the data: BOT LT HQ WZ XZ

OG RSC EPB. Contributed reagents/materials/analysis tools: BOT XZ.

Wrote the paper: BOT RSC EPB. Provided Brazilian population genetic

data set: ACP.

References

1. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, et al. (2010) Clinical

assessment incorporating a personal genome. Lancet 375: 1525–1535.

2. Collins F (2010) Has the revolution arrived? Nature 464: 674–675.

3. Hawken SJ, Greenwood CM, Hudson TJ, Kustra R, McLaughlin J, et al. (2010)

The utility and predictive value of combinations of low penetrance genes for

screening and risk prediction of colorectal cancer. Hum Genet 128: 89–101.

4. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, et al. (2010)

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.

Nature 466: 714–719.

5. Behar DM, Rosset S, Tzur S, Selig S, Yudkovsky G, et al. (2010) African

ancestry allelic variation at the MYH9 gene contributes to increased

susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans.

Hum Mol Genet 19: 1816–1827.

6. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, et al. (2007) A

common allele on chromosome 9 associated with coronary heart disease. Science

316: 1488–1491.

7. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, et al. (2010)

Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s

disease susceptibility loci. Nat Genet 42: 1118–1125.

8. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, et al. (2010)

Genetic variants near TIMP3 and high-density lipoprotein-associated loci

influence susceptibility to age-related macular degeneration. Proc Natl Acad

Sci U S A 107: 7401–7406.

9. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al. (2010) Twelve

type 2 diabetes susceptibility loci identified through large-scale association

analysis. Nat Genet 42: 579–589.

10. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, et al. (2007)

Genomewide association analysis of coronary artery disease. N Engl J Med 357:

443–453.

11. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, et al. (2010) Genome-

wide association study meta-analysis identifies seven new rheumatoid arthritis

risk loci. Nat Genet 42: 508–514.

Figure 7. BMI associations with published obesity variants in FTO (Top) and MC4R (Bottom) genes in the three biobank samples.
doi:10.1371/journal.pone.0019166.g007

Genetic Diversity Background in Patients

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19166



12. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. (2009)

Common polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature 460: 748–752.

13. Shurin SB, Nabel EG (2008) Pharmacogenomics–ready for prime time?

N Engl J Med 358: 1061–1063.
14. Urban TJ (2010) Race, ethnicity, ancestry, and pharmacogenetics. Mt

Sinai J Med 77: 133–139.
15. Adeyemo A, Chen G, Zhou J, Shriner D, Doumatey A, et al. (2010) FTO

genetic variation and association with obesity in West Africans and African

Americans. Diabetes 59: 1549–1554.
16. Adeyemo A, Rotimi C (2010) Genetic variants associated with complex human

diseases show wide variation across multiple populations. Public Health
Genomics 13: 72–79.

17. Hassanein MT, Lyon HN, Nguyen TT, Akylbekova EL, Waters K, et al. (2010)
Fine mapping of the association with obesity at the FTO locus in African-derived

populations. Hum Mol Genet 19: 2907–2916.

18. Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, et al. (2010) Genome-
wide patterns of population structure and admixture in West Africans and

African Americans. Proc Natl Acad Sci U S A 107: 786–791.
19. Price AL, Butler J, Patterson N, Capelli C, Pascali VL, et al. (2008) Discerning

the ancestry of European Americans in genetic association studies. PLoS Genet

4: e236.
20. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, et al. (2002)

Genetic structure of human populations. Science 298: 2381–2385.
21. Tian C, Kosoy R, Lee A, Ransom M, Belmont JW, et al. (2008) Analysis of East

Asia genetic substructure using genome-wide SNP arrays. PLoS One 3: e3862.
22. Tian C, Plenge RM, Ransom M, Lee A, Villoslada P, et al. (2008) Analysis and

application of European genetic substructure using 300 K SNP information.

PLoS Genet 4: e4.
23. Wang S, Ray N, Rojas W, Parra MV, Bedoya G, et al. (2008) Geographic

patterns of genome admixture in Latin American Mestizos. PLoS Genet 4:
e1000037.

24. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, et al. (2009) The

genetic structure and history of Africans and African Americans. Science 324:
1035–1044.

25. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, et al. (2008) Worldwide
human relationships inferred from genome-wide patterns of variation. Science

319: 1100–1104.
26. New York City: Department of City Planning (2004) The Newest New Yorkers

2000: Immigrant New York in the New Millennium. New York City:

Department of City Planning, Population Division.
27. Rosenwaike I (1972) Population History of New York City. Syracuse, NY:

Syracuse University Press.
28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.
29. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second

generation human haplotype map of over 3.1 million SNPs. Nature 449:
851–861.

30. (2005) A haplotype map of the human genome. Nature 437: 1299–1320.
31. Kang SJ, Chiang CW, Palmer CD, Tayo BO, Lettre G, et al. (2010) Genome-

wide association of anthropometric traits in African- and African-derived

populations. Hum Mol Genet 19: 2725–2738.
32. Cooper R, Rotimi C, Ataman S, McGee D, Osotimehin B, et al. (1997) The

prevalence of hypertension in seven populations of west African origin.
Am J Public Health 87: 160–168.

33. Atzmon G, Hao L, Pe’er I, Velez C, Pearlman A, et al. (2010) Abraham’s

children in the genome era: major Jewish diaspora populations comprise distinct
genetic clusters with shared Middle Eastern Ancestry. Am J Hum Genet 86:

850–859.
34. Qin H, Morris N, Kang SJ, Li M, Tayo B, et al. (2010) Interrogating local

population structure for fine mapping in genome-wide association studies.

Bioinformatics.

35. Rosenberg NA (2004) distruct: a program for the graphical display of population

structure. Molecular Ecology Notes 4: 137–138.

36. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure

using multilocus genotype data: linked loci and correlated allele frequencies.

Genetics 164: 1567–1587.

37. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and

visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

38. Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for

fine-scale mapping. Genomics 29: 311–322.

39. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, et al. (2002) The

structure of haplotype blocks in the human genome. Science 296: 2225–2229.

40. Qin H, Morris N, Kang SJ, Li M, Tayo B, et al. (2010) Interrogating local

population structure for fine mapping in genome-wide association studies.

Bioinformatics 26: 2961–2968.

41. Chierici M, Miclaus K, Vega S, Furlanello C (2010) An interactive effect of

batch size and composition contributes to discordant results in GWAS with the

CHIAMO genotyping algorithm. Pharmacogenomics J 10: 355–363.

42. Hong H, Shi L, Su Z, Ge W, Jones WD, et al. (2010) Assessing sources of

inconsistencies in genotypes and their effects on genome-wide association studies

with HapMap samples. Pharmacogenomics J 10: 364–374.

43. Hong H, Su Z, Ge W, Shi L, Perkins R, et al. (2010) Evaluating variations of

genotype calling: a potential source of spurious associations in genome-wide

association studies. J Genet 89: 55–64.

44. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, et al. (2010) Tackling

the widespread and critical impact of batch effects in high-throughput data. Nat

Rev Genet 11: 733–739.

45. Miclaus K, Chierici M, Lambert C, Zhang L, Vega S, et al. (2010) Variability in

GWAS analysis: the impact of genotype calling algorithm inconsistencies.

Pharmacogenomics J 10: 324–335.

46. Miclaus K, Wolfinger R, Vega S, Chierici M, Furlanello C, et al. (2010) Batch

effects in the BRLMM genotype calling algorithm influence GWAS results for

the Affymetrix 500 K array. Pharmacogenomics J 10: 336–346.

47. Zhang L, Yin S, Miclaus K, Chierici M, Vega S, et al. (2010) Assessment of

variability in GWAS with CRLMM genotyping algorithm on WTCCC

coronary artery disease. Pharmacogenomics J 10: 347–354.

48. Kivisto KT, Niemi M (2007) Influence of drug transporter polymorphisms on

pravastatin pharmacokinetics in humans. Pharm Res 24: 239–247.

49. Link E, Parish S, Armitage J, Bowman L, Heath S, et al. (2008) SLCO1B1

variants and statin-induced myopathy–a genomewide study. N Engl J Med 359:

789–799.

50. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, et al. (2003)

Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes:

consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:

554–565.

51. Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, et al. (2009)

Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocou-

marol therapy. Blood 113: 4977–4979.

52. Hamburg MA, Collins FS (2010) The path to personalized medicine.

N Engl J Med 363: 301–304.

53. Ormond KE, Wheeler MT, Hudgins L, Klein TE, Butte AJ, et al. (2010)

Challenges in the clinical application of whole-genome sequencing. Lancet 375:

1749–1751.

54. Bryc K, Velez C, Karafet T, Moreno-Estrada A, Reynolds A, et al. (2010)

Colloquium paper: genome-wide patterns of population structure and admixture

among Hispanic/Latino populations. Proc Natl Acad Sci U S A 107 Suppl 2:

8954–8961.

55. Weiss KM, Lambert BW (2010) Does history matter? Evolutionary Anthropol-

ogy: Issues, News, and Reviews 19: 92–97.

56. Cooper RS, Kaufman JS, Ward R (2003) Race and genomics. N Engl J Med

348: 1166–1170.

Genetic Diversity Background in Patients

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e19166


