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Abstract

We studied morphological differentiation in the flight apparatus of the four currently recognised sub-species of Northern
Wheatears, Oenanthe oenanthe. Considering all measured birds without assigning them a priori to any sub-species we found
a clinal morphological shift. Relative wing length, wing pointedness, and the degree of tail forking were positively correlated
with migratory distance, whereas tail length (relative to wing length) was negatively correlated. The large-sized, long-
distance migrant ‘‘Greenland’’ Wheatear, O. o. leucorhoa, is characterized by relatively longer, broader and more pointed
wings and more forked tails, similar to the smaller-sized nominate Northern Wheatear, O. o. oenanthe, from North Europe,
Siberia and Russia. In contrast, the short distance migrant ‘‘Seebohm’s’’ Wheatear, O. o. seebohmi, from northwest Africa,
possesses much rounder wings, and the tail is relatively longer and less forked. Sub-species with intermediate migratory
habits (different populations of nominate Northern Wheatear, O. o. oenanthe, and ‘‘Mediterranean’’ Northern Wheatear, O. o.
libanotica) show, as expected, intermediate features according to their intermediate migratory behaviour. Our results are
congruent with other inter- and intraspecific studies finding similar adaptations for energy-effective flight in relation to
migration distance (morphological migratory syndrome).
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Introduction

The morphology of the avian wing constitutes a trade-off

between various selection pressures that act on its aerodynamic

and mechanical properties [1–3]. The evolution of wing and tail

size and shape is affected by the diverging demands of migratory

behaviour, take-off ability in response to predator attacks and by

the density of obstacles that constrain flight manoeuvrability in the

occupied habitats [4–7].

Slender and more pointed wings and shorter tails in relation to

the wing reduce the induced drag at the wings considerably and

are known to produce a larger forward component in flight during

migration [1–3,8]. Furthermore, more forked tails are known to

provide higher uplift and lower drag [3,9]. Consequently, we may

assume that the extent of migratory behaviour results in changes in

the external morphology of the flight apparatus [10–12] which

select for energy-efficient flight [13].

Many studies have shown that wing pointedness correlates

with migratory behaviour, also known as ‘‘Seebohm’s rule’’ [4–

5,7,13–18]. In a general approach across several taxa, Leisler &

Winkler [11] established the generalisation that migrants have

relatively longer and more pointed wings and also higher aspect

ratios. This pattern has been repeatedly confirmed at the

intraspecific level [13,19–26]. Among different populations of

blackcaps, Sylvia atricapilla, Fiedler [13] found with increasing

migratory distance: (1) an increase in wing length, aspect ratio

and wing pointedness; (2) a decrease in wing-load; (3) relatively

shorter slots on the wing-tip; (4) a shorter alula in relation to

wing length; and (5) a shorter tail in relation to wing length.

These changes were significantly greater than expected from the

simple trend of increasing body mass from southern to northern

populations [13] and evolved obviously under the demands of

diverging migratory behaviour.

The Northern Wheatear, Oenanthe oenanthe (Linnaeus, 1785), is

one of the most diverse migratory song birds of the Palaearctic and

therefore well suited for an intra-specific study [27]. This species is

distributed from North Africa northwards to Iceland and Green-

land and continuously from Europe towards eastern Russia [28].

Small populations have even settled the Nearctic region (Canada

and Alaska). All populations still overwinter in sub-Saharan Africa

and need to migrate large distances in order to reach their winter

quarters. However, the distinct populations differ considerably in

the distances they have to travel (Figure 1).

Four sub-species of Northern Wheatears are currently

recognised [28]. The sub-species O. o. seebohmi (Dixon, 1882;

‘‘Seebohm’s’’ Wheatear) is restricted to the Atlas mountains of

northwest Africa. The male nuptial plumage of this form is quite

distinct from all other Northern Wheatears, and it is therefore

sometimes treated as a separate species [28]. It shows the

shortest migration distances, wintering mainly in southwestern

Mauritania and Senegal [29]. The sub-species O. o. libanotica

(Hemprich & Ehrenberg, 1833; ‘‘Mediterranean’’ Northern

Wheatear) is continuously distributed from southern Europe

eastwards over Asia Minor, and Transcaucasia to Mongolia and
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China [28]. These birds winter in Mesopotamia and the

northern Afrotropics. The sub-species O. o. oenanthe (Linnaeus

1758; nominate Northern Wheatear) shows the largest range

inhabiting the whole of northern and central Europe, north Asia

to eastern Siberia and the northwestern parts of North America

(Alaska and Northwest Canada). The wintering grounds of this

sub-species are situated in central Africa. The sub-species O. o.

leucorhoa (Gmelin 1789, ‘‘Greenland’’ Northern Wheatear),

finally, is found in Greenland, Iceland, the Faroe Islands and

in northeastern Canada, and it winters in western Africa [28].

Several other named sub-species are currently not recognised as

taxonomic entities: O. o. rostrata (Hemprich and Ehrenberg, 1833;

from Mesopotamia, eastern Egypt, northern Arabia, Syria,

Caucasus), O. o. nivea (Weigold, 1913; southern Spain, Balearic

Islands) and O. o. virago (Meinertzhagen, 1920; islands of eastern

and southern Aegean, southeastern Europe) regarded as

synonyms of O. o. libanotica; O. o. argentea (Lonnberg, 1909;

Transbaikal), regarded as a synonym of O. o. oenanthe; and O. o.

schiöleri (Salomonsen, 1927; Island, Färöer), a synonym of O. o.

leucorhoa. The assignment of populations to the sub-species

O. o. oenanthe and O. o. libanotica remains to some extent arbitrary,

because the geographical limits of both forms have not been well

studied. The Somali Wheatear, O. phillipsi (Shelley, 1885;

Somalia and Ethiopia), has been treated formerly as another

sub-species of the Northern Wheatear, but recent genetic studies

show that this form is a distinct species [30–31].

The wide distribution of the populations of Northern Wheatears

suggests specific adaptations to migration, depending on the

distance the birds have to travel [27]. We therefore studied

museum specimens to examine how different migratory behav-

iours correlate with the morphologies of the different subspecies.

In particular, we studied which morphological changes of the

Figure 1. Breeding distribution range of the four sub-species of the Northern Wheatear Oenanthe oenanthe and their wintering area
[5]. The species has one of the largest breeding ranges for a passerine. The whole population winters in sub-Saharan Africa (in grey; [33]).
doi:10.1371/journal.pone.0018732.g001

Table 1. Values for 9 morphometric variables and 2 calculated indices of the flight apparatus in the four sub-species of Northern
Wheatear Oenanthe oenanthe.

Variable leucorhoa (n = 24) oenanthe (n = 106) libanotica (n = 94) seebohmi (n = 18)

WL 102.5460.48 96.1960.26 94.1760.29 95.1160.76

WW 68.8860.41 64.9760.17 64.9560.20 68.1960.43

S1Wt 33.6960.26 31.0060.18 28.7860.17 26.0360.31

P1Wt 62.7960.42 57.9860.25 56.2760.26 54.6960.39

AtWt 75.4860.36 69.8160.26 68.8360.25 68.1960.48

NoP2 24.9460.19 23.9760.13 24.2160.14 25.9760.25

NoP3 29.0460.22 28.5960.16 28.9660.16 30.5060.34

TL 58.2760.51 55.6960.23 56.2460.22 58.7060.53

TF 23.5460.16 23.4760.09 22.7760.10 20.9260.35

Tail-wing ratio 56.8560.54 57.8760.21 59.7660.26 61.2060.54

Wing shape index 0.2960.003 0.2760.002 0.2560.002 0.2260.004

Given are the means with standard error (SE).
doi:10.1371/journal.pone.0018732.t001

Morphological Migratory Syndrome in a Passerine
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Table 2. Comparison of 9 morphometric variables of the flight apparatus in the four sub-species of Northern Wheatear Oenanthe
oenanthe.

Variable uncorrected body size corrected

ANOVA Bonferroni ANOVA Bonferroni

WL F3,239 = 60.20; leu vs oen (P,0.001) F3,234 = 5.43; leu vs oen (P = 1.000)

P,0.001 leu vs lib (P,0.001) P = 0.001 leu vs lib (P = 0.019)

leu vs see (P,0.001) leu vs see (P = 0.200)

oen vs lib (P,0.001) oen vs lib (P = 0.007)

oen vs see (P = 0.735) oen vs see (P = 0.451)

lib vs see (P = 1.000) lib vs see (P = 1.000)

WW F3,237 = 45.50; leu vs oen (P,0.001) F3,235 = 4.29; leu vs oen (P = 1.000)

P,0.001 leu vs lib (P,0.001) P = 0.006 leu vs lib (P = 1.000)

leu vs see (P = 1.000) leu vs see (P = 0.044)

oen vs lib (P = 1.000) oen vs lib (P = 1.000)

oen vs see (P,0.001) oen vs see (P = 0.003)

lib vs see (P,0.001) lib vs see (P = 0.006)

S1Wt F3,238 = 100.19; leu vs oen (P,0.001) F3,236 = 64.60; leu vs oen (P = 0.187)

P,0.001 leu vs lib (P,0.001) P,0.001 leu vs lib (P,0.001)

leu vs see (P,0.001) leu vs see (P,0.001)

oen vs lib (P,0.001) oen vs lib (P,0.001)

oen vs see (P,0.001) oen vs see (P,0.001)

lib vs see (P,0.001) lib vs see (P,0.001)

P1Wt F3,238 = 54.47; leu vs oen (P,0.001) F3,236 = 14.01; leu vs oen (P = 0.205)

P,0.001 leu vs lib (P,0.001) P,0.001 leu vs lib (P,0.001)

leu vs see (P,0.001) leu vs see (P,0.001)

oen vs lib (P,0.001) oen vs lib (P = 0.002)

oen vs see (P,0.001) oen vs see (P,0.001)

lib vs see (P = 0.078) lib vs see (P = 0.044)

AtWt F3,238 = 48.82; leu vs oen (P,0.001) F3,236 = 5.62; leu vs oen (P = 0.225)

P,0.001 leu vs lib (P,0.001) P = 0.001 leu vs lib (P = 0.009)

leu vs see (P,0.001) leu vs see (P = 0.002)

oen vs lib (P = 0.032) oen vs lib (P = 0.417)

oen vs see (P = 0.062) oen vs see (P = 0.066)

lib vs see (P = 1.00) lib vs see (P = 0.718)

NoP2 F3,238 = 13.91; leu vs oen (P = 0.006) F3,234 = 7.37; leu vs oen (P = 1.000)

P,0.001 leu vs lib (P = 0.086) P,0.001 leu vs lib (P = 0.289)

leu vs see (P = 0.073) leu vs see (P,0.001)

oen vs lib (P = 1.000) oen vs lib (P = 0.812)

oen vs see (P = 0.001) oen vs see (P,0.001)

lib vs see (P,0.001) lib vs see (P = 0.004)

NoP3 F3,236 = 7.90; leu vs oen (P = 1.000) F3,239 = 8.94; leu vs oen (P = 0.041)

P,0.001 leu vs lib (P = 1.000) P,0.001 leu vs lib (P,0.001)

leu vs see (P = 0.017) leu vs see (P,0.001)

oen vs lib (P = 0.593) oen vs lib (P = 0.374)

oen vs see (P,0.001) oen vs see (P = 0.004)

lib vs see (P = 0.001) lib vs see (P = 0.103)

TL F3,238 = 14.68; leu vs oen (P,0.001) F3,236 = 5.07; leu vs oen (P,1.000)

P,0.001 leu vs lib (P = 0.001) P = 0.002 leu vs lib (P = 0.308)

leu vs see (P = 1.000) leu vs see (P = 0.004)

oen vs lib (P = 0.565) oen vs lib (P = 0.604)

oen vs see (P,0.001) oen vs see (P = 0.005)

lib vs see (P = 0.001) lib vs see (P = 0.089)

Morphological Migratory Syndrome in a Passerine
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external flight apparatus are directly linked to the differences in

migratory distances, and if a general morphological migratory

syndrome exists which evolved under the constraints of diverging

needs for the adaptation to migration.

Results

The four currently recognised sub-species of the Northern

Wheatear show clear morphological differentiation in the flight

apparatus (Table 1). Our ANOVAs identified various significant

differences both in uncorrected and body size corrected analysis

(Table 2, Table 3). Using a PCA on the 9 morphometric variables

of the flight apparatus (size corrected; log-transformed; varimax

rotation) we obtained two relevant principal components (PCs)

with an Eigen-Value .1 explaining 62.6% of total variance

(Table 4, Figure 2). PC1 explained 38.9% of the total variance

and comprises wing length (maximal wing chord), the distance of

first secondary-wing tip, distal primary-wing tip and alula-wing

tip. PC2 explained 23.7% of variance and comprises tail length,

the strength of the fork of the tail, wing width and the notches of

P2 and P3. A statistical comparison of PC1 between the four

subspecies showed clear differentiations (ANOVA: F3,241 =

31.27; p,0.001), with all four groups being significantly different

from each other (Bonferroni correction, p,0.05). The same holds

for PC 2 (ANOVA, F3,241 = 36.77; p,0.001) with all four groups

being significantly different from each other with the exception of

O. o. libanotica versus O. o. leucorhoa (Bonferroni correction,

p,0.05).

Since obvious clinal variation exists within the single sub-species

of the Northern Wheatear and the separation of the sub-species is

not always accurate due to distribution overlap, we conducted

linear regressions independent of taxonomic status. In these

analyses we included only specimens for which we had details on

the collection localities (n = 234). We found a significant

correlation between both principal components (PC1, PC2) and

the migratory distance (Table 5, Figures 3 and 4). Birds with

longer migratory pathways had (1) relative longer (WL) and more

pointed wings (S1Wt); (2) relatively more narrow wings (WW); (3) a

shorter alula and P1 in relation to wing length (AtWt, P1Wt); (4)

relatively shorter emarginations on the wing-tip (NoP2, NoP3);

and (5) relatively shorter and more forked tails in relation to wing

length (TL, TF). Regressions of migratory distance with tail-wing

ratio and wing shape index revealed congruent results (Table 5).

Birds with longer migration distances showed relatively shorter

tails in relation to wing length (Figure 5) and more pointed wings

(Figure 6).

Variable uncorrected body size corrected

ANOVA Bonferroni ANOVA Bonferroni

TF F3,238 = 38.20; leu vs oen (P = 1.000) F3,236 = 33.69; leu vs oen (P = 0.393)

P,0.001 leu vs lib (P = 0.005) P,0.001 leu vs lib (P = 0.005)

leu vs see (P,0.001) leu vs see (P,0.001)

oen vs lib (P,0.001) oen vs lib (P,0.001)

oen vs see (P,0.001) oen vs see (P,0.001)

lib vs see (P,0.001) lib vs see (P,0.001)

Results are shown for both uncorrected and body size corrected values (divided by tarsus length). Given are the F-values with degrees of freedom, significance and
Bonferroni pairwise comparison. Significant differences (P,0.05) are highlighted in bold.
doi:10.1371/journal.pone.0018732.t002

Table 2. Cont.

Table 3. Comparison of 2 indices of the flight apparatus in
the four sub-species of Northern Wheatear Oenanthe
oenanthe.

Variable ANOVA Bonferroni

Tail-wing ratio F3,239 = 25.78; leu vs oen (P = 0.338)

P,0.001 leu vs lib (P,0.001)

leu vs see (P,0.001)

oen vs lib (P,0.001)

oen vs see (P,0.001)

lib vs see (P = 0.007)

Wing shape index F3,230 = 62.79; leu vs oen (P = 0.002)

P,0.001 leu vs lib (P,0.001)

leu vs see (P,0.001)

oen vs lib (P,0.001)

oen vs see (P,0.001)

lib vs see (P,0.001)

Given are the F-values with degrees of freedom, significance and Bonferroni
pairwise comparison. Significant differences (P,0.05) are highlighted in bold.
doi:10.1371/journal.pone.0018732.t003

Table 4. Loadings of the PCA performed on 9 morphometric
variables of the flight apparatus measured in the four sub-
species of Northern Wheatear Oenanthe oenanthe (Varimax-
rotation with Kaiser-Normalisation).

Variable PC 1 PC 2

WL 0.847 0.399

TL 0.366 0.697

TF 20.303 0.678

S1Wt 0.861 20.217

WW 0.466 0.676

P1Wt 0.891 0.192

AtWt 0.849 0.327

NoP2 0.148 0.832

NoP3 0.184 0.754

doi:10.1371/journal.pone.0018732.t004

Morphological Migratory Syndrome in a Passerine
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Discussion

Our results show that different populations of the four

currently recognised sub-species of the Northern Wheatear (O.

o. leucorhoa, O. o. oenanthe, O. o. libanotica, O. o. seebohmi) are strongly

differentiated in several morphometric characteristics of their

flight apparatus. A regression analyses independent of taxonomic

status revealed that the flight apparatus of Northern Wheatears

has been shaped along a phenotypic continuum, obviously

according to the extent of the conducted migratory movements.

Birds with longer migratory pathways possess relatively longer,

more pointed, and more slender wings, shorter emarginations on

the wing tip, and show relatively shorter tails in relation to wing

length and a more forked tail.

The large sub-species O. o. leucorhoa shows the strongest

adaptations to long-distance migration, because it is the only

form which needs to cross a large water body (north Atlantic)

during migration. These adaptations include relative longer,

broader and more pointed wings and stronger forked tails, which

may help to stabilise the bird during migration in harsh climatic

conditions over the sea. Similar results were obtained in a recent

study by Delingat and colleagues [27], who showed by means of

isotopic analyses that presumed Greenlandic Northern Wheatears

of the sub-species O. o. leucorhoa have more pointed wings than

their congeners from other European breeding areas. However,

in our study we found that, despite smaller size, O. o. oenanthe from

Siberia, North Europe and Russia have very similar adaptations

in the flight apparatus in relation to the long distance these birds

have to travel. The other extreme of the Northern Wheatears, the

sub-species O. o. seebohmi from North Africa, which only crosses

the comparatively short distance over the Sahara to winter in

west Africa, has a much rounder wing and the tail is considerably

less forked. Western O. o. oenanthe and the members of the sub-

species O. o. libanotica show intermediate features and overlap in

their morphology according to the migratory distance they have

to travel. O. o. libanotica of the western Mediterranean (formerly

sub-species O. o. nivea) and the Aegean (formerly sub-species O. o.

virago) with short migration distances are morphologically more

similar to the birds of the sub-species O. o. seebohmi, while O. o.

oenanthe from West Europe are morphologically more similar to O.

o. libanotica from the Balkan and Turkey, Iran (formerly sub-

species O. o. rostrata).

Figure 2. PC1-PC2 plane of PCA performed on 9 morphometric variables of the flight apparatus measured in several populations of
the four sub-species of Northern Wheatear Oenanthe oenanthe. For PC1 the loadings were considerably stronger in WL, ATWT, P1Wt, S1Wt,
and for PC2 in TF, TL, WW, NoP2, NoP3 (compare Table 4).
doi:10.1371/journal.pone.0018732.g002

Table 5. Regression analyses between migratory distance
and PC1 (WL, ATWT, P1Wt, S1Wt), PC2 (TF, TL, WW, NoP2,
NoP3.), tail-wing ratio, and wing shape index in Northern
Wheatear Oenanthe oenanthe (n = 235).

Variable R df F P

PC1 0.543 223 92.928 P,0.001

PC2 0.412 223 45.431 P,0.001

Tail-wing ratio 0.336 230 29.099 P,0.001

Wing shape index 0.631 221 145.47 P,0.001

doi:10.1371/journal.pone.0018732.t005

Morphological Migratory Syndrome in a Passerine
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The adaptations in the flight apparatus observed in our study

follow the general predictions of the so-called migratory

syndrome [32]. Similar to the study of Fiedler [13], we found

birds with a more ‘‘migratory type’’ flight apparatus to have

developed a more efficient morphology of the external flight

apparatus than their less migratory conspecifics. Studies on

aerodynamics of bird flight [1,2,8] have demonstrated that the

observed morphological shift with increasing migratory distances

is well suited to produce a larger forward component in flight due

to a more prominent distal part of the wing. The more slender

and pointed wings and the shorter tail in relation to the wing

reduce the induced drag at the wings and produce greater uplift

Figure 3. Relationship between PC1 (WL, AtWT, P1Wt, S1Wt) and migratory distance. Populations of Northern Wheatears with longer
migration pathways have relatively longer wings (for statistics, see Table 5).
doi:10.1371/journal.pone.0018732.g003

Figure 4. Relationship between PC2 (TF, TL, WW, NoP2, NoP3) and migratory distance. Populations of Northern Wheatears with longer
migration pathways have more narrow wings, relatively shorter and stronger forked tails and shorter emarginations in the primaries (for statistics, see
Table 5).
doi:10.1371/journal.pone.0018732.g004

Morphological Migratory Syndrome in a Passerine
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and thrust [2,3]. Additionally, the short and stronger forked tails

provide high lift and low drag [3,9].

As a possible trade-off, the adaptations for migration constrain

the manoeuvrability of the birds. A decrease of Reynolds number

due to a higher aspect ratio of the wing and a reduced ability of the

tips to bend and generate lift due to relatively short notches at the

wing tip result in a reduced capacity for very slow flights under

high angles of attack [2,13]. Additionally, relatively short tails

generate less lift in slow flights and reduce the ability of the tail to

start or stop roll manoeuvres [9].

Besides, it is likely that other factors might have influenced the

morphological differentiation of the flight apparatus as well, such

Figure 5. Relationship between tail-wing ratio and migratory distance. Populations of Northern Wheatears with longer migration pathways
have shorter tails in relation to wing length (for statistics, see Table 5).
doi:10.1371/journal.pone.0018732.g005

Figure 6. Relationship between wing pointedness (wing shape index [13]) and migratory distance. Populations of Northern Wheatears
with longer migration pathways have more pointed wings (for statistics, see Table 5).
doi:10.1371/journal.pone.0018732.g006

Morphological Migratory Syndrome in a Passerine
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as differences in foraging, breeding habitat or sexual selection of

different sub-populations. However, because all sub-species live in

very similar habitat types (open, rocky areas) and show equivalent

breeding and foraging behaviour, we believe that the demands for

migration are the main driving forces for the morphological shift

of the flight apparatus.

To summarize, the intraspecific patterns in flight apparatus that

we found in the Northern Wheatear nicely follow the expectations

drawn from other work [11,13,32], indicating that in birds travelling

longer distances the traits for energy-effective flight (in terms of

distance travelled per energy expended) are obviously more strongly

developed then the traits for manoeuvrability. Future work needs to

reveal how these changes in external flight morphology are linked to

other physiological, behavioural and internal morphological

adaptations to migration and how fast these morphological shifts

may appear in the evolutionary history of a species.

Materials and Methods

We measured external morphological traits of the flight

apparatus to compare between Northern Wheatears of the four

currently recognised sub-species with different migratory behav-

iour (Figure 1). Specimens from the following European museum

collections were used (Appendix S1): Zoologisches Forschungsmu-

seum Alexander König (Bonn), Senckenberg Museum (Frankfurt),

Muséum National d’Histoire Naturelle (Paris), Natural History

Museum (Tring), Zoologische Staatssammlung (Munich), Museum

für Tierkunde (Dresden), Staatliches Museum für Naturkunde

(Stuttgart), Biozentrum Grindel and Zoologisches Museum

(Hamburg), Überseemuseum (Bremen) and Institut für Vogel-

forschung ‘‘Vogelwarte Helgoland’’ (Wilhelmshaven).

Nine external characters of the flight apparatus were measured

to the nearest 0.1 mm [11] (Table 6). Furthermore, we calculated

tail-wing ratio and wing shape index. The latter was derived by the

following formula: Wing shape index = (differences between

longest primary and innermost primary – difference between

longest primary and outermost primary)/wing length following

Fiedler [13]. A higher value indicates a more pointed wing. In

order to guarantee comparability between specimens we used only

skins of adult male specimens in spring or summer plumage

collected from breeding areas. We calculated the distance between

collection place and main wintering area [33] following the

method of Imboden & Imboden [34].

In total, we obtained data from 242 male Northern Wheatears,

Oenanthe oenanthe. For general comparison of the four currently

recognised sub-species (O. o. oenanthe, n = 106, O. o. libanotica, n = 94;

O. o. seebohmi, n = 18, O. o. leucorhoa, n = 24), we conducted ANOVAs

for the two indices and each of the nine parameters both

uncorrected and corrected for body size (divided by tarsus length).

Because several of the nine original variables of the flight apparatus

were correlated with each other, we subsequently conducted a

principal component analysis (PCA) including the size corrected

values of all variables. In order to account for allometry and to

normalize distribution, we log-transformed all measurements.

Finally we conducted regression analyses between migratory

distance and the two principal components and the two indices

(the latter two showed normal distribution). We did not correct for

phylogeny, because all forms are closely related and currently no

comprehensive tree exists for the genetic relationship between the

different sub-populations and sub-species. All analyses were done

in SPSS 12.0.
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